Automation of Fault-tolerant Graceful Degradation


Yiyan Lin, Sandeep Kulkarni, Arshad Jhumka

Abstract

Traditionally, (nonmasking and masking) faulttolerance has focused on ensuring that after the occurrence of faults, the program recovers to states from where it continues to satisfy its original specification. However, a problem with this limited notion is that, in some cases, it may be impossible to recover to states from where the entire original specification is satisfied. For this reason, one can consider a fault-tolerant graceful-degradation program that ensures that upon the occurrence of faults, the program recovers to states from where a (given) subset of its specification is satisfied. Typically, the subset of specification satisfied thus would be the critical/important requirements.

In this paper, we initially focus on automatically revising a given fault-intolerant program into a fault-tolerant gracefully degrading program. Specifically, we propose a two-step approach: In the first step, we transform the fault-intolerant program into a graceful program. This program is guaranteed to satisfy only the given subset of specification (e.g., critical requirements). In particular, this step involves adding new behaviors that will satisfy the given subset of the specification. The second step involves utilizing the original program and the graceful program to obtain a fault-tolerant gracefully degrading program. We also develop an algorithm to transform the gracefully degrading program into a distributed gracefully degrading program. Afterwards, the second phase of our transformation can be applied to generate a distributed fault-tolerant gracefully degrading program. We showcase the algorithm with three different non-trivial case studies. Finally, we formalize the problem of multi-graceful degradation and propose an algorithm that solves it and we use a complex case study to showcase the viability of the approach.  All the algorithms have polynomial time complexity in the size of the state space of the original program.


Paper:


Return to the publication list
Return to the Sandeep's home page