Collision-free Communication in Sensor
Networks*

Appears in the Symposium on Self-Stabilizing Systems (SSS) 2003,
(©Springer-Verlag, LNCS:2704

Sandeep S. Kulkarni and Umamaheswaran Arumugam

Software Engineering and Networks Laboratory
Department of Computer Science and Engineering
Michigan State University
East Lansing MI 48824 USA
Email: {sandeep, arumugam }@cse.msu.edu
Web: http://www.cse.msu.edu/"{sandeep, arumugam}

Abstract. In this paper, we provide a stabilizing solution for collision-
free diffusion in sensor networks. Such diffusions are often necessary in
sensor networks when information from one sensor needs to be commu-
nicated to other sensors that satisfy certain geographic properties. Our
solution deals with several difficulties, e.g., unidirectional links, unreli-
able links, long links, failed sensors, and sensors that are sleeping in order
to save energy, that occur in sensor networks. It also ensures that there
are no collisions during the diffusion and that the time required for the
diffusion is O(D) where D is the diameter of the network. Moreover,
while the solution can be applied to an arbitrary topology, it is more
suitable for a commonly occurring topology, a two-dimensional grid.
We show how our solution for collision-free diffusion can be used for
time-division multiplexing (TDM) in sensor networks. TDM ensures that
the message communication (other than the messages sent by diffusion)
among sensors is also collision-free. While collision-free diffusion and
time-division multiplexing are interdependent, we show how both these
properties can be achieved simultaneously. Our algorithms are stabilizing
fault-tolerant, i.e., collision-free diffusion and time-division multiplexing
are restored even if the system reaches an arbitrary state where the sen-
sors are corrupted or improperly initialized.

1 Introduction

In recent years, sensor networks have become popular in the academic and indus-
trial environment due to their application in data gathering, active and passive
tracking of unexpected /undesirable objects, environment monitoring and unat-
tended hazard detection. Due to their low cost and small size, it is possible to

* This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, and a grant from Michigan State
University

2 Authors Suppressed Due to Excessive Length

rapidly deploy them in large numbers. These sensors are resource constrained
and can typically communicate with other (neighboring) sensors over a wireless
network. However, due to limited power and communication range, they need to
collaborate to achieve the required task.

One of the important issues in sensor networks is message collision: Due to the
shared wireless medium, if a sensor simultaneously receives two messages then
they collide and, hence, both messages become incomprehensible. Such collision
is undesirable as it results in wastage of power to transmit the message that
resulted in a collision.

Collision among messages is especially problematic in the context of system-
wide computations where some sensor needs to communicate some information
to the entire network (respectively, a subset of the network that satisfies the ge-
ographic properties of interest). Such computations arise when a sensor needs to
communicate the observed value to the base station or when we want to organize
these sensors in a suitable topology (e.g., tree). In such diffusion, every sensor
that receives a message transmits it to its neighbors (in the given direction). It
follows that at any time multiple sensors may be forwarding the sensor values
to their respective neighbors. Therefore, the possibility of a collision increases.

Challenges in sensor networks. One of the important issues in sensor net-
works is the scenario where two sensors can communicate with each other only
with a very low probability. Also, sensor networks suffer from unidirectional
links where one sensor can communicate with another with a high probability
although the probability of the reverse communication is very low. In a situation
where sensor j can only communicate occasionally with sensor k, it is expected
that the signal strength received by k is so small that k¥ cannot correctly deter-
mine all the bits in that message. However, the signal strength that k receives is
often strong enough that it can corrupt another message that was sent to k at
the same time. The above discussion suggests that we need to consider the situa-
tion where two sensors cannot effectively communicate with each other although
they can effectively interfere with each other.

A collision-free diffusion is advantageous in obtaining clock synchronization
and time-division multiplexing. More specifically, when a sensor receives the
diffusion message, it can uniquely determine its clock by considering the clock
value when the diffusion was initiated and the path that the diffusion took to
reach that sensor. If clocks are synchronized, we can assign slots to each sensor
such that simultaneous message transmissions by two sensors do not collide.

A closer inspection of diffusion and time-division multiplexing shows that
these two problems are interdependent. More specifically, if clocks are not syn-
chronized then the diffusion may fail in the following scenario: the clock values
of two sensors differ, one of these sensors transmits the diffusion message and the
other sensor transmits an unrelated message at the same time. It follows that
a collision in this situation will prevent the diffusion message from reaching all
the desired destinations. Moreover, if the diffusion does not complete successfully
then the clocks may remain unsynchronized forever. It is therefore necessary that
diffusion be stabilizing fault-tolerant [1], i.e., starting from an arbitrary state,

Collision-free Communication in Sensor Networks 3

the system should recover to states from where subsequent diffusing computa-
tion is collision-free. A stabilizing fault-tolerant solution also deals with the case
where the sensors are inactive for a long time and subsequently become active,
although at slightly different times.

Contributions of the paper. With the above motivation, in this paper, we
focus on stabilizing collision-free algorithm for diffusing computations in sensor
networks. The main contributions of this paper are as follows.

1. We present an algorithm (with 4 versions) for collision-free diffusion in sensor
networks. The first version focuses on an ideal sensor network where a sensor
communicates perfectly with the neighbors in its grid and does not interfere
with any other sensors in the network. Our second version improves the
performance of the first version for the case where a sensor can communicate
with other non-neighboring sensors at some distance, say x. The third version
extends the first version to deal with the case where a sensor interferes with
other sensors at some distance, say y. Finally, the fourth version combines
the second and the third versions to deal with the case where a sensor may
communicate with other sensors at distance, say x, and interfere with sensors
at a larger distance, say y.

2. We show how the algorithm for collision-free diffusion enables us to obtain
time-division multiplexing in sensor networks. In a two-dimensional grid,
we show that messages of two sensors that transmit simultaneously do not
collide with each other.

3. We show how collision-free diffusion can be obtained if some sensors have
failed or have been shut off to save power.

4. We show how stabilizing fault-tolerance can be added to our algorithms.
Thus, starting from an arbitrary state, each of our algorithms recovers to
states from where collision-free diffusion and time-division multiplexing are
achieved. Finally, these algorithms can also be tailored to deal with the case
where communication between (even the neighboring) sensors is unreliable.

Organization of the paper. The rest of the paper is organized as follows:
In Section 2, we discuss the model of the sensor network. Then, in Section 3,
we present our algorithm for collision-free diffusion. In Section 4, we extend our
algorithm to provide time-division multiplexing and show how both these prop-
erties can be achieved even if one begins in a state where the sensor clocks are
not synchronized. Subsequently, in Section 5, we discuss extensions of our algo-
rithms. Finally, in Section 6, we discuss the related work and make concluding
remarks in Section 7.

2 Model and Assumptions

In this section, we present the system model and identify the assumptions made
in this paper. We assume that sensors are arranged in a grid where each sen-
sor knows its location in the network (geometric position). Each message sent
by a sensor includes this geometric position. Thus, a sensor can determine the

4 Authors Suppressed Due to Excessive Length

position, direction and distance (with respect to itself) of the sensors that send
messages to it. Also, we assume that each sensor is aware of its communication
range and an interference range. Note that, interference range is greater than or
equal to the communication range.

Additionally, we assume that one clock tick of the sensor corresponds to
the propagation time of a message. Though the sensors can have high-precision
clocks, for communication, we use only the higher-order bits that correspond to
the propagation time of a message.

We assume that there is exactly one initiator that initiates the diffusion.
For simplicity, initially, we assume that the sensor at the left-top (at location
{0,0)) is the initiator. This assumption is made since we can view the diffusion
as propagating from this sensor to all the sensors in the network in one single
(south-east) quadrant. We remove this assumption in Section 3.5 and provide
an algorithm where the initiator is not at the left-top position.

We assume that the sensor network has a perfect grid topology and no sen-
sors have failed or are in sleeping state. By making these assumptions, we can
design algorithms for perfect grid-based sensor networks. Then, we extend the
algorithms to deal with the case where sensors (other than the initiator) have
failed.

3 Collision-free Diffusion

In this section, we provide an algorithm for collision-free diffusion for sensors
arranged in a two-dimensional grid. As mentioned in the Introduction, whenever
a sensor receives a diffusion message for the first time, it retransmits the message
to its neighbors. However, if two (nearby) sensors transmit the diffusion message
at the same time then the messages collide. The collision becomes even more
problematic in sensor networks where it is often not possible to detect whether
collision has occurred or not. Also, it is possible that message sent by one sensor
collides at one receiver whereas another receiver correctly receives it.

To deal with these problems, we define the problem of collision-free diffusion
as follows. The first requirement for collision-free diffusion is that the diffusion
message should reach every sensor. The second requirement is that collisions
should not occur. More specifically, when sensor j transmits a message, it is
necessary that a collision should not occur at any sensor that is expected to
receive the message from j, i.e., a sensor in the communication range of j. Thus,
if sensor k transmits concurrently then the set of sensors in the communication
range of j should be disjoint from the set of sensors in the interference range of
k. Thus, the problem statement is defined as follows:

Collision-free Communication in Sensor Networks 5

Problem Statement: Collision-free Diffusion
Given a sensor grid; if a sensor initiates diffusion then the following properties
should be satisfied:
1. Diffusion message should reach every sensor.
2. If two sensors j and k transmit at the same time,
(Sensors in communication range of j) [
(Sensors in interference range of k) = @.

We present four versions of our collision-free diffusion algorithm. For sim-
plicity, in Sections 3.1-3.4, we assume that the sensor at (0,0) initiates the dif-
fusion. In Section 3.1, we discuss the algorithm for diffusion in networks where
a sensor can communicate only with its distance 1 neighbors. In Section 3.2,
we extend this version for diffusion in networks where a sensor can communi-
cate with its distance x,z > 1, neighbors. In both these algorithms, we assume
that the interference range of a sensor is same as its communication range. We
weaken this requirement in Sections 3.3, and 3.4. Specifically, in Section 3.3, we
extend the first version (cf. Section 3.1) to deal with the case where a sensor
can communicate with its distance 1 neighbors and interfere with its distance
y,y > 1, neighbors. And, in Section 3.4, we extend the third version (cf. Section
3.3) to deal with the case where a sensor can communicate with its distance
z,z > 1, neighbors and interfere with its distance y,y > z, neighbors. In Section
3.5, we provide an algorithm for collision-free diffusion initiated by an arbitrary
sensor. Although in Sections 3.1-3.5 we assume that the communication range
(respectively, interference range) of all sensors are identical, observations made
in Section 3.6 show that the algorithm can be applied even if they are different.

3.1 Version 1: Communicate 1, Interfere 1

Consider a simple grid network where a sensor can communicate with sensors
that are distance 1 away (cf. Figure 1)!.

5 Legend

7 @ Sensorsin communication range of <0, 0>

Fig. 1. Sample diffusion in networks where a sensor communicates with its dis-
tance 1 neighbors. The number associated with a sensor shows the slot in which
it should transmit.

! In these examples we have used the manhattan distance between sensors. Our algo-
rithms can be applied even if we consider the geographic distance between sensors.
See the first observation in Section 3.6.

6 Authors Suppressed Due to Excessive Length

From this figure, we observe that sensors (1,0) and (0,1) should not trans-
mit at the same time as their messages will collide at sensor (1,1). The following
algorithm provides a collision-free diffusion in networks where sensors can com-
municate only with their distance 1 neighbors.

when sensor j receives a diffusion message from sensor k
if (k is west neighbor at distance 1)
transmit after 1 clock tick.
else if (k is north neighbor at distance 1)
transmit after 2 clock ticks.
else // duplicate message received from east/south neighbor
ignore

Theorem 3.1 The above algorithm satisfies the problem specification of collision-
free diffusion.
Proof. The proof is similar to that of Theorem 3.3 where y=1. O

3.2 Version 2: Communicate x, Interfere x

Consider a grid network where a sensor can communicate with sensors that are
distance z,z > 1 away (cf. Figure 2, where z = 2).

Legend
2 @ Sensorsin communication range of <0, 0>

Fig. 2. Sample diffusion in networks where a sensor communicates with its dis-
tance 2 neighbors. The number associated with a sensor shows the slot in which
it should transmit.

From Figure 2, we observe that sensors (2,0) and {0, 2) should not transmit
at the same time as these messages will collide at (2,2). Since the sensor (0, 0)
can communicate at a larger distance and the sensors (0,2), (2,0) propagate
the diffusion, sensors (0,1), (1,0) and (1,1) need not transmit. The following
algorithm provides a collision-free diffusion in networks where sensors can com-
municate with their distance x,z > 1, neighbors.

when sensor j receives a diffusion message from sensor k
if (k is west neighbor at distance x)
transmit after 1 clock tick.
else if (k is north neighbor at distance z)
transmit after 2 clock ticks.
else //duplicate message from east/south neighbor or too close to source
ignore

Collision-free Communication in Sensor Networks 7

Theorem 3.2 The above algorithm satisfies the problem specification of collision-
free diffusion. O

3.3 Version 3: Communicate 1, Interfere y

Consider a grid network where a sensor can communicate with sensors that are
distance 1 away and interfere with sensors that are distance y,y > 1 away (cf.
Figure 3, where y = 2).

3
6 Legend
9 @ Sensorsin communication range of <0, 0>

@ Sensorsin interference range of <0, 0>

Fig. 3. Sample diffusion in networks where a sensor communicates with its dis-
tance 1 neighbors and interferes with its distance 2 neighbors. The number asso-
ciated with a sensor shows the slot in which it should transmit.

Once again, we observe that sensors (1,0) and (0, 1) should not transmit at
the same time. Also, sensors (2,0) and {0,1) should not transmit at the same
time as their messages will collide at (1,1) and (2,1). The third version of the
algorithm is as follows:

when sensor j receives a diffusion message from sensor k
if (k is west neighbor at distance 1)
transmit after 1 clock tick.
else if (k is north neighbor at distance 1)
transmit after y + 1 clock ticks.
else // duplicate message received from east/south neighbor
ignore

Theorem 3.3 The above algorithm satisfies the problem specification of collision-
free diffusion.

Proof. Let us assume that the source sensor (0,0) starts transmitting at time
t = 0. By induction, we observe that sensor (i,j) will transmit at time ¢t =
i+ (y + 1)j. Now, we show that collisions will not occur in this algorithm.
Consider two sensors (i1, j1) and {i2,72). Sensor (i1, j;) will transmit at time
t1 =41+ (y + 1)j1 and (ia, jo) will transmit at time t2 = i2 + (y + 1)j2. Collision
is possible only if the following conditions hold:

-t = tz, i.e., (21 — l2) + (y + 1)(J1 —]2) =0.
= i —d2| + [j1 = jo| Sy + 1.
— i —d2| + [jr = J2| 2 1.

8 Authors Suppressed Due to Excessive Length

From the first condition, we conclude that (i1 — i) is a multiple of (y + 1).
Combining this with the second condition, we have |i; — i2|=0 or |j1 — j2|=0.
However, if |i1 — i2|=0 (respectively, |j1 — j2|=0) then from the first condition
(j1 — j2) (respectively, (i — i2)) must be zero. If both (i; — i2) and (j; — j2)
are zero then the third condition is violated. Thus, collision cannot occur in this
algorithm. O

3.4 Version 4: Communicate x, Interfere y

Consider a grid network where a sensor can communicate with sensors that are
distance z,z > 1 away and interfere with sensors that are distance y,y > x away.
This network can be viewed as a modified network where the intermediate sensors
are removed. Hence, in this modified network, a sensor can communicate with
its distance 1 neighbors and interfere with its distance [Z] neighbors. Now, we
apply the version 3 of our algorithm with parameters communicate 1, interfere

[l
3.5 Diffusion by an Arbitrary Sensor

If sensor k (other than, (0,0)) initiates the diffusion, we split the network into
four quadrants with sensor k at the intersection of = and y axes. For each quad-
rant, we can use the algorithm similar to that in Sections 3.1-3.4; We simply
need to ensure that messages in different quadrants do not collide (on z and y
axes). For the case where communication range = interference range = 1, we
can achieve this as follows: (Extensions for other values of communication and
interference range are also similar.)

Sensors in south-east quadrant transmit the diffusion message as before (i.e.,
a sensor (i, j) will transmit the diffusion at |i| + 2|j|). Sensors in the north-east
and south-west quadrants (including the —ve x-axis and +ve y-axis but excluding
the +ve x-axis and —ve y-axis) transmit the diffusion similar to the south-east
quadrant, but with 2 clock ticks delay. This is to ensure the diffusion messages
do not collide at the z and y axes. Specifically, a sensor (7, j) in the north-east
quadrant or in the south-west quadrant transmits the diffusion at |i| + 2|j] + 2.
Sensors in the north-west quadrant (excluding the axes) transmits the diffusion
similar to the other quadrants except that the delay here is 4 clock ticks. In
other words, a sensor (i,j) in the north-west quadrant transmits the diffusion
at |i| + 2|j| + 4. We leave it to the reader to verify that with this modification,
diffusion initiated by an arbitrary sensor is collision-free.

3.6 Observations about OQur Algorithm

We make the following observations about our algorithm:

1. In Sections 3.1-3.5, we considered the manhattan distance between sensors,
i.e., if the interference range is y then we said that sensors (i1, j1) and (i, j2)
interfered with each other only if |i; — 42| + |j1 — j2| < y. We note that our

Collision-free Communication in Sensor Networks 9

algorithm works correctly even if we say that sensors (i1,j1) and (iz,j2)

interfere only if |iy — i2| < y and |j1 — ja2| < y. It follows that our algorithm

works correctly even if we consider the geographic distance between sensors
and say that two sensors (i1, j1) and (i2,j2) interfere with each other if the
geographic distance between them, /|i; —i2[? + [j1 — j2[?, is less than or

equal to y.

Even if the interference range is overestimated, our algorithm works correctly.

3. Even if the communication range is underestimated, as long as it is at least
1, our algorithm works correctly.

4. We can apply our algorithm even if the communication and interference
ranges of different sensors vary. We can use the minimum of the communi-
cation range of each sensor (underestimate) and the maximum of the inter-
ference range of each sensor (overestimate).

N

4 Application to Time-division Multiplexing (TDM)

In this section, we present an algorithm for time-division multiplexing in sen-
sor networks using the collision-free diffusion algorithm discussed earlier. Time-
division multiplexing is the problem of assigning time slots to each sensor. Two
sensors j and k can transmit in the same time slot if j does not interfere with
the communication of ¥ and k& does not interfere with the communication of j.
In this context, we define the notion of collision-group. The collision-group of
sensor j includes the sensors that are in the communication range of j and the
sensors that interfere with the sensors in the communication range of 5. Hence,
if two sensors j and k are alloted the same time slot then j should not be present
in the collision-group of k and & should not be present in the collision-group of
j. Thus, the problem of time-division multiplexing is defined as follows:

Problem Statement: Time-division Multiplexing
Assign time slots to each sensor such that,
If two sensors j and k transmit at the same time then
(j & collision-group of sensor k).

Now, we present the algorithm for allotting time slots to the sensors. In
Section 4.1, we present the algorithm for TDM in perfect grids. In Section 4.2,
we discuss how stabilization is achieved starting from an improperly initialized
state.

4.1 Simple TDM Algorithm

In this section, we present our simple TDM algorithm that uses the third version
of the diffusion algorithm (cf. Section 3.3) where communication range is 1 and
interference range is y. Let j and k be two sensors such that j is in the collision
group of k. Let t; (respectively, t;) be the slots in which j (respectively, k)
transmits its diffusion message. We propose an algorithm where the slots assigned

10 Authors Suppressed Due to Excessive Length

for j are t; + ¢ x MCG where ¢ > 0 and MCG captures information about the
maximum collision group in the system.

From the correctness of the diffusion computation, we know that t; #t;. Now,
future messages sent by j and k can collide if t; +¢; * MCG =t} + co x MCG,
where ¢1,ce > 0. In other words, future messages from j and k can collide iff
[t; —tx| is a multiple of M CG. More specifically, to ensure collision-freedom, it
suffices that for any two sensors j and k such that j is in the collision group of
k, MCG does not divide |t; —t|. We can achieve this by choosing MCG to be
maz(|t;—tg| : j is in the collision group of k) + 1.

In the third version of our algorithm, if j is in the collision group of k£ then
|t; —tr| is at most (y + 1)?; such a situation occurs if j is at distance of y + 1
in north/south of k. Hence, the algorithm for time division multiplexing is as
follows:

If sensor j transmits a diffusion message at time slot ¢;,
4 can transmit at time slots, Ve, ¢ > 0,t; +c* ((y +1)% + 1).

The algorithm assigns time slots for each sensor based on the time at which
it transmits the diffusion. Thus, a sensor (say, j) can transmit in slots: ¢;, t; +
(y+1)241),t; +2((y + 1) + 1), ..., etc. Figure 4 shows a sample allocation
of slots to the sensors.

0,10 1,11 212 313

3,13 |4,14 |515 |6,16 Legend
@ Sensorsin communication range of <0, 0>

6,16 [7,17 |8,18 |9,19 @ Sensorsininterferencerange of <0, 0>
—O—O0——

Fig. 4. Sample TDM in networks where a sensor communicates with its distance
1 neighbors and interferes with its distance 2 neighbors. The numbers associated
with a sensor shows the slots in which it could transmit.

Theorem 4.1 The above algorithm satisfies the problem specification of TDM.
O

4.2 Stabilization of TDM and Diffusion

We now add stabilization to the TDM algorithm discussed in Section 4.1, i.e., if
the network is initialized with arbitrary clock values (including the case where
there is a phase offset among clocks), we ensure that it recovers to states from
where collision-free communication is achieved. The simple TDM algorithm re-
lies on the collision-free diffusion algorithm discussed earlier (cf. Section 3.3).
Whenever a sensor does not get the diffusion message for certain consecutive
number of times, the sensor shuts down, i.e., it will not transmit any message

Collision-free Communication in Sensor Networks 11

until it receives a diffusion message. The network will eventually reach a state
where the diffusion message can be received by all sensors. From then on, the
sensors can use the simple TDM algorithm to transmit messages across different
sensors. Moreover, if there are no faults in the network and the links are reliable
then no sensor will ever shut down.

Dealing with unreliable links. Now, we show that in the absence of faults,
a sensor rarely shuts down even if the link between the neighboring sensors are
unreliable. Let p be the probability that a sensor receives a message from its
neighbor. Also, let n be the number of diffusion periods a sensor waits before
shutting down. Now, consider a sensor j that receives a diffusion message after
| intermediate transmissions. The probability that this sensor does not receive
the diffusion message is 1 — p' and the probability that this sensor shuts down
in the absence of faults is (1 — p')™. Note that this is an overestimate since a
sensor receives the diffusion message from more than one sensor. If we consider
p =0.90,] = 10 and n = 10, the probability that the sensor j will incorrectly
shut down is 0.0137.

Observations about our stabilizing fault-tolerant algorithms. We make
the following observations about our stabilizing fault-tolerant algorithms:

1. If there are no failures in the network and the links are reliable then no
sensor will ever shut down.

2. If there are no failures in the network and the links are unreliable then
sensors may shut down rarely. However, the probability that a sensor shuts
down incorrectly due to unreliable links can be made as small as possible.

5 Extensions: Dealing with Failed/Sleeping Sensors and
Arbitrary Topology

In this section, we discuss extensions that remove some of the assumptions made
in Section 2. In Section 5.1, we extend the algorithm to deal with the case where
sensors are subject to fail-stop faults. In Section 5.2, we provide an algorithm
for collision-free diffusion in the case where the underlying graph is not a two-
dimensional grid.

5.1 Diffusion in Imperfect Grids or Grids with Failed Sensors/Links

In this section, we consider the case where sensors can fail, links between sensors
can fail, or the grid can be improperly configured (with some sensors missing).

Based on the extension in Section 3.5, without loss of generality, assume that
the left-top sensor initiates the diffusion. In the absence of failure of sensors or
links between them, the sensors receive the diffusion messages from their north
or west neighbors before receiving duplicate messages from their east or south
neighbors. Hence, if a sensor receives the diffusion message for the first time
from its east or south neighbor, it can conclude that some of the sensors in the
network are missing or failed. When a sensor receives such a message from the

12 Authors Suppressed Due to Excessive Length

south/east neighbor, it updates its clock based on the time information in the
diffusion message. Based on its geographic location, it then determines the slot
in which it would have transmitted the diffusion if no sensor had failed. Finally,
it uses the time-division multiplexing algorithm (cf. Section 4) to find the next
slot when it can transmit a message; this slot would be used for retransmitting
the diffusion message.

5.2 Diffusion to Other Graphs

Collision-free diffusion in other graphs can be achieved by embedding a (partial)
grid in that graph. (Note that the goal of this solution is to show the feasibility of
such extension. If additional information about the topology is available then it is
possible to improve the efficiency of the diffusion on the transformed graph [2].)
To show one approach for embedding such a partial grid, we begin with the
observation that, an arbitrary tree can be mapped into a (complete) binary tree.
Also, a complete binary tree can be mapped on a 2-dimensional grid with dilation
[(k —1)/2] where k is the depth of the tree [3]. If the degree of a node is more
than 3, we split that node to construct a binary tree (cf. Figure 5).

1 1

50 0803 B8
//O\ \ t i ‘2.0 12 ‘1.0 14 ‘3.0.0?3.0.1
% 5 2 OfOfOfOfOfOfO Legend)
110 ‘4 i1 ‘1.1 i6 ‘3.1 iz Normallink
G—O0—O----O-0—O0=—0 Broken link

10 1112 13 10 1112 136 7 8081
Arbitrary tree Complete binary tree 2-dimensional grid

Fig. 5. Mapping an arbitrary tree into a 2-dimensional grid

We can observe from Figure 5 that node 1 is split into 5 nodes, 1.0...1.4.
Hence, node 1 will get § different time slots for communication. Also, nodes in
the 2-dimensional grid can communicate with the nodes that are at distance 1
(except in the case where the link drawn is a broken link). Some of the nodes in
the 2-dimensional grid can communicate with nodes that are at a larger distance.
For the purpose of collision-free diffusion, we can treat this communication as
interference (e.g., in Figure 5, the communication between 1.1 and 3.1 can be
treated as interference). It follows that given an arbitrary tree, we can embed a
partial grid in it; in this partial grid, the communication range is 1. And, the
interference range is determined based on the way in which nodes of degree more
than 3 are split.

Finally, for an arbitrary graph, we can use its spanning tree, and embed a
partial grid in it. Then, we can add the remaining edges to this partial grid and
treat them as interference-only. With such approach, it is possible to apply the
collision-free diffusion algorithm to arbitrary graphs.

Collision-free Communication in Sensor Networks 13

6 Related Work

Related work that deals with communication issues in radio/wireless/sensor net-
works includes [4-6]. In [4], the authors provide a fault-tolerant broadcasting
algorithm in radio networks. The model proposed in this paper assumes that
the upper bound on the number of faulty nodes is known at start. They also
assume that the faults are permanent. The authors do not consider the notion of
interference range for nodes. Our paper differs considerably from that in [4]. The
assumption about knowledge of the number of faults is not made in our algo-
rithms. Also, unlike [4], we allow sensors (other than the initiator) to fail/recover
during computation.

In [5,6], new time synchronization services are proposed. In [5], the authors
propose a time synchronization service for tiny sensor devices like motes [7].
This service maintains a tree structure of motes where the root sends a periodic
beacon message about its time. Each non-root node gets the best-approximation
of the root’s time from the neighbor which is closest to the root. In [6], the
authors propose a time synchronization service which rely on a third-party node.
The nodes normalize their local-time based on the synchronization pulse sent by
the third-party node. Based on our observations with motes, collision-freedom
is important in these system-wide computations. For this reason, in this paper,
we developed a collision-free communication algorithm. Our algorithm can be
used for collision-free transmission of the time synchronization messages, thereby
enhancing the proposed time synchronization services.

In [8], the authors provide algorithms for completely connected graphs where
they consider the difference between a globally synchronous (global clock) and a
locally synchronous (local clock with same rate of increase) model with known or
unknown network size. In [9], the authors provide algorithms for mobile/ad hoc
networks. They provide broadcasting algorithms for a model without collision
detection and a model with collision detection. Unlike our algorithms, in [8,9],
the authors assume that the network is fully connected. Also, the algorithms
in [8,9] are not stabilizing fault-tolerant.

Our algorithms differ from Code-division Multiple Access (CDMA) [10].
CDMA requires that the codes used in the system should be orthogonal to ensure
minimal interference. Also, it requires expensive operations to encode/decode a
message. Our algorithms do not need any specialized codes. Further, to ensure
collision-freedom, our algorithm requires only very limited resources, e.g., an
addition and a comparison unit.

In [11], the authors have proposed a randomized startup algorithm for TDM.
Whenever a collision occurs during startup, exponential backoff is used for de-
termining the time to transmit next. In our approach, we use a deterministic
startup algorithm which guarantees collision-freedom and stabilization in case
of fail-stop failures. Further, the complexity of the algorithm proposed in [11]
is O(N) where N is the number of system nodes, whereas the complexity of
our diffusion algorithm is O(D) where D is the diameter of the network. More-
over, the algorithm in [11] optimizes time and communication overhead with
increased computation overhead, while our diffusion algorithm optimizes all the

14 Authors Suppressed Due to Excessive Length

three overheads. The disadvantage of our algorithm is that it has a single point
of failure (i.e., initiator of diffusion). In situations where the initiator fails, we
can use the startup algorithm from [11] to assign TDM slots.

7 Conclusion and Future Work

In this paper, we presented a stabilizing algorithm for collision-free diffusion
in sensor networks and showed how it can be used to provide time-division
multiplexing. We presented four versions of our collision-free diffusion algorithm
based on the ability of sensors to communicate with each other and their ability
to interfere with each other. While the solutions were designed for a grid network,
we showed how they could be modified to deal with failed sensors as well as with
arbitrary topologies. With these modifications, our solutions deal with commonly
occurring difficulties, e.g., failed sensors, sleeping sensors, unidirectional links,
and unreliable links, in sensor networks.

Our algorithms permit sensors to save power by turning off the radio com-
pletely as long as the remaining sensors remain connected. These sleeping sensors
can periodically wake up, wait for one diffusion message from one of its neighbors
and return to sleeping state. This will allow the sensors to save power as well
as keep the clock synchronized with their neighbors. Moreover, our algorithm is
stabilizing fault-tolerant [1]. Thus, even if all sensors are deactivated for a long
time causing arbitrary clock drift, our algorithm ensures that starting from such
an arbitrary state, eventually the diffusion will complete successfully and the
time-division multiplexing would be restored.

One of the important issues in our algorithms is to determine the communica-
tion and interference range of a sensor. Initially, we can start with the manufac-
ture specification about the ability of sensors to communicate with each other.
Then, we can use the biconnectivity experiments by Choi et al [12] to determine
the appropriate communication and interference range. One such approach is
discussed in [2].

In our solution, it is possible for the initiator of a diffusion to handoff this
responsibility to other sensors as the diffusion can be initiated by any sensor
as long as only one sensor initiates it. Thus, the current initiator can designate
another sensor as subsequent initiator if the current initiator has low battery or
if the initiating responsibility is to be shared by multiple sensors.

There are several questions raised by this work: For one, an interesting ques-
tion is how to determine the initial sensor that is responsible for initiating the
diffusion. In some heterogeneous networks where some sensors are more power-
ful and more reliable, these powerful/reliable sensors can be chosen to be the
initiators. Alternatively, during deployment of sensors (e.g., by dropping them
from a plane), we can keep several potential initiators that communicate with
each other directly and use the approach in [8,9] so that one of them is chosen
to be the initiator. Another important concern is how to deal with errors in the
location of the sensors. Specifically, we need to analyze the effects of these errors
on the collision-free property of our algorithms.

Collision-free Communication in Sensor Networks 15

References

1.

2.

10.

11.

12.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11), 1974.

Sandeep S. Kulkarni and Umamaheswaran Arumugam. Collision-free communica-
tion in sensor networks. Technical Report MSU-CSE-03-3, Department of Com-
puter Science, Michigan State University, February 2003.

J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville,
MD, 1984.

Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Fault-tolerant broadcasting
in radio networks. Journal of Algorithms, 39(1):47-67, April 2001.

Ted Herman. NestArch: Prototype time synchronization service. NEST Challenge
Architecture. Available at: http://www.ai.mit.edu/people/sombrero/nestwiki/
index/ComponentTimeSync, January 2003.

Jeremy Elson and Deborah Estrin. Time synchronization for wireless sensor net-
works. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), Workshop on Parallel and Distributed Computing Issues in
Wireless and Mobile Computing, April 2001.

David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk, and Alec Woo.
A network-centric approach to embedded software for tiny devices. In EMSOFT,
volume 2211 of Lecture Notes in Computer Science, pages 97-113. Springer, 2001.
Leszek Gasieniec, Andrzej Pelc, and David Peleg. The wakeup problem in syn-
chronous broadcast systems. SIAM Journal of Discrete Mathematics, 14(2):207—
222, 2001.

Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech
Rytter. Deterministic broadcasting in ad hoc radio networks. Distributed Comput-
ing, 15(1):27-38, 2002.

Andrew J. Viterbi. CDMA: Principles of Spread Spectrum Communication. Addi-
son Wesley Longman Publishing Co., Inc., Redwood City, CA, 1995.

Vilgot Claesson, Henrik Lonn, and Neeraj Suri. Efficient TDMA synchronization
for distributed embedded systems. In Proceedings of the 20th IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 198-201, October 2001.

Y. Choi, M. Gouda, M. C. Kim, and A. Arora. The mote connectivity protocol.
Technical Report TR03-08, Department of Computer Sciences, The University of
Texas at Austin, 2003.

