A Modified Approach to Dynamic Source Routing in Mobile Ad-Hoc Networks

Gautam Chakrabarti and Sandeep S. Kulkarni


To ensure uninterrupted communication in a mobile ad-hoc network, efficient route discovery is crucial when nodes move and/or fail. Hence, protocols such as Dynamic Source Routing (DSR) precompute alternate routes before a node moves and/or fails. In this paper, we modify the way these alternate routes are maintained and used in DSR, and show that these modifications permit more efficient route discovery when nodes move and/or fail. Our routing protocol also does load balancing among the number of alternate routes that are available. Our simulation results show that maintenance of these alternate routes (without affecting the route cache size at each router) increases the packet delivery ratio. We also show that our approach enables us to provide QoS guarantees by ensuring that appropriate bandwidth will be available for a flow even when nodes move. Towards this end, we show how reservations can be made on the alternate routes while maximizing the bandwidth usage in situations where nodes do not move. We also show how the load of the traffic generated due to node movement is shared among several alternate routes. In addition, we adaptively use Forward Error Correction techniques with our protocol and show how it can improve the packet delivery ratio.


Return to the publication list
Return to the Sandeep's home page