Disassembling Real-Time Fault-Tolerant Programs”

Borzoo Bonakdarpour
3115 Engineering Building
Department of Computer
Science and Engineering
Michigan State University
East Lansing, MI 48823, USA

borzoo@cse.msu.edu

ABSTRACT

We focus on decomposition of hard-masking real-time fault-
tolerant programs (where safety, timing constraints, and
liveness are preserved in the presence of faults) that are de-
signed from their fault-intolerant versions. Towards this end,
motivated by the concepts of state predicate detection and
state predicate correction, we identify three types of fault-
tolerance components, namely, detectors, weak 0-correctors,
and strong 0-correctors. We show that any hard-masking
program can be decomposed into its fault-intolerant ver-
sion plus a collection of detectors, and, weak and strong
d-correctors. We argue that such decomposition assists in
providing assurance about dependability and time-
predictability of embedded systems.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability—Fault-tolerance,
Verification; D.4.7 [Operating Systems]: Organization
and Design— Real-time and embedded systems; F.3.1 [Logics
and Meanings of Programs|: Specifying and Verifying
and Reasoning about Programs— Logic of programs

General Terms
Theory, Verification, Reliability

Keywords

Fault-tolerance, Real-time, Component-based analysis, De-
composition, Bounded-time recovery, Formal methods

1. INTRODUCTION

Dependability and time-predictability are two vital prop-
erties of most embedded (especially, safety /mission-critical)

*This work was partially sponsored by NSF CAREER CCR-
0092724 and ONR Grant N00014-01-1-0744.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT 08, October 19-24, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

Sandeep S. Kulkarni
3115 Engineering Building
Department of Computer
Science and Engineering
Michigan State University
East Lansing, M| 48823, USA

sandeep@cse.msu.edu

Anish Arora
395 Dreese Hall
Department of Computer
Science and Engineering
Ohio State University
Columbus, OH 43210, USA
anish@cse.ohio-
state.edu

systems. Consequently, providing fault-tolerance and meet-
ing timing constraints are two inevitable aspects of depend-
able real-time embedded systems. Thus, it is highly de-
sirable to have access to methodologies to formally reason
about and, hence, gain assurance of these aspects during the
design and analysis of embedded systems. In the context
of analysis, verification of fault-tolerant real-time embedded
systems may be accomplished by illustrating the existence
of constituents that (1) guarantee fault-tolerance, (2) en-
sure timing constraints, and (3) perform basic functionali-
ties. With this motivation, we focus on the following ques-
tion:

Can a real-time fault-tolerant program be decom-
posed into components that can assist in its ver-
ification?

In this paper, we answer this question affirmatively by
broadening the theory of fault-tolerance components [5] to
the context of real-time programs. The theory in [5] essen-
tially separates fault-tolerance and functionality concerns of
untimed systems. More specifically, the theory identifies two
types of fault-tolerance components, namely detectors and
correctors. These components are based on the principle of
detecting a state predicate to ensure that program actions
would be safe and correcting a state predicate to ensure that
the program eventually reaches a legitimate state. We em-
phasize that since these components do not rely on detecting
faults or correcting faults, they can be applied in cases where
faults are not detectable (e.g., Byzantine faults).

In the context of real-time programs, we focus on de-
composition of hard-masking [6] real-time fault-tolerant pro-
grams, where (1) (timing independent) safety, (2) timing
constraints, and (3) liveness properties (including recovery
to legitimate states) are met even in the presence of faults.
We identify three types of components, namely, detectors,
weak 0-correctors, and strong d-correctors. We show that
these three components are in turn responsible for meet-
ing the three properties of hard-masking fault-tolerant pro-
grams. Our proofs are constructive in the sense that they
assist in identifying and subsequently decomposing a given
hard-masking program into its fault-intolerant version, de-
tectors, and d-correctors.

Intuitively, detectors and §-correctors work as follows.
Each of these components is specified using two predicates:
a detection (respectively, correction) predicate and a wit-
ness predicate. The goal of the detector component is to
detect whether the given detection predicate is true and

subsequently satisfy the witness predicate. It is required
that whenever the witness predicate is true, the detection
predicate must be true as well. Thus, the fault-tolerant
program can use the witness predicate of the detector to
provide the desired fault-tolerance requirements. In case
of a d-corrector, the component restores the program to a
state where the correction predicate is true within a bounded
amount of time. The use of the witness predicate by the
program is optional, as the program may not need to know
when the program state is restored.

Since we focus on demonstrating the existence of these
components in a given hard-masking program, our notion of
decomposition differs from that in [5]. In particular, we pre-
cisely define what it means for a fault-tolerant program to
reuse a fault-intolerant program. Furthermore, we formally
define what it means for a fault-tolerant program to contain
detectors and /or §-correctors. We note that for assistance in
analysis, it is necessary to ensure that the specification of the
added components can be derived from the fault-intolerant
version. Thus, in case of detectors, it is necessary to specify
how the results of these components (intuitively, the conclu-
sion that the predicate being detected is true) are syntacti-
cally used in the fault-tolerant real-time program. This part
is not important in the context of a design methodology and,
hence, is not formalized in [5].

Although detectors and correctors have been found to be

useful in the design of fault-tolerant programs ', their signifi-
cance in analysis has not been evaluated except in empirical
case studies. In these studies [11, 18], decomposition of a
fault-tolerant program into its components has been found
valuable in formal verification of the program. Thus, we
expect that an affirmative answer to existence of the com-
ponents would significantly assist in analysis of real-time
embedded fault-tolerant programs.
Organization. First, we present related work in Sec-
tion 2. In Section 3, we formally define real-time programs
and specifications. Section 4 is dedicated to present our
fault model and the notion of hard-masking fault-tolerance.
Then, in Section 5 (respectively, 6), we present the notion of
detector (respectively, J-corrector) components, the concept
of their containment in real-time programs, and their theory
of decomposition. Finally, we make concluding remarks and
discuss future work in Section 7.

2. RELATED WORK

The theory of detectors and correctors [5] was extended
in [14] for safety-critical systems. In [20], the authors have
used a similar approach for proving convergence of systems
to legitimate states. The theory has also been used in design
of several multi-tolerant examples [12,17] where tolerance
to different types of faults is provided and the level of fault-
tolerance varies depending upon the severity of faults. In
the context of automation of addition of fault-tolerance, the
theory has been exploited in [6,7,11,15,17]. In the context
of verification, simplified versions of this theory are applied
in verification of time-triggered architectures [19]. It has
also been used in software verification through separation of
concerns [18].

This work differs from the work on failure detectors (e.g.,
the line of research pioneered by Chandra and Toueg) in

The components have been shown to suffice in the design
of a large class of fault-tolerant programs [5] including pro-
grams designed using replication, state machine approach,
and, checkpointing and recovery.

that the predicates being detected in [8,9] are of the type
“process j has failed”. To the contrary, the predicates in our
work are arbitrary state predicates. Moreover, in [8,9], the
authors have considered detectors that are not perfect; sim-
ilar detectors can also be constructed from the components
in this paper. However, this issue is important in the con-
text of a design methodology and is discussed in [4, 6, 17].
Thus, issues such as atomicity or perfectness of the fault-
tolerance components are outside the scope of this paper; in
the context of analysis, the components contained in a fault-
tolerant program, by definition, would satisfy any atomicity
restrictions imposed on that fault-tolerant program.

3. REAL-TIME PROGRAMS AND
SPECIFICATIONS

In our framework, real-time programs are specified in
terms of their state space and their transitions [2,3]. The def-
inition of specification is adapted from Alpern and Schnei-
der [1] and Henzinger [13].

3.1 Real-Time Programs

Let V = {v1,v2---vn}, n > 1, be a finite set of discrete
variables and X = {x1,z2-+-Tm}, m > 1, be a finite set
of clock variables. Each discrete variable v;, 1 < i < n, is
associated with a finite domain D; of values. Each clock
variable x;, 1 < j < m, ranges over nonnegative real num-
bers (denoted R>o). A location is a function that maps
discrete variables in V' to a value from their respective do-
main. A clock constraint over X is a Boolean combination
of formulae of the form z < cor x —y = ¢, where z,y € X,
¢ € Z>o, and =< is either < or <. We denote the set of all
clock constraints over X by ®(X). A clock valuation is a
function v : X — R>q that assigns a real value to each clock
variable.

For 7 € R>o, we write v + 7 to denote v(z) + 7 for every
clock variable z in X. Also, for A C X, v[\ := 0] denotes
the clock valuation that assigns 0 to each = € A and agrees
with v over the rest of the clock variables in X. A state
(denoted o) is a pair (s,v), where s is a location and v is a
clock valuation for X. Let u be a (discrete or clock) variable
and o be a state. We denote the value of u in state o by
u(o). The set of all possible states is called the state space
obtained from the associated variables.

Definition 3.1 (computations) Let V and X be finite
sets of discrete and clock variables respectively. A computa-
tion is a finite or infinite timed state sequence of the form
o = (00,70) — (01,71) — - - - iff the following conditions are
satisfied (1) o; = (ss,14) is a state in the state space of V
and X for all ¢ € Z>0, and (2) the sequence 1o, 71, - - - (called
the global time), where 7; € R> for all ¢ € Z>, satisfies the
following constraints:

e (monotonicity) for all i € Z>o, 73 < Tit1,

o (time consistency) for all i € Zxo, (1) if 7 < Tig1
then s; = si+1 and vit1(x) = vi(x) + (i1 — 74) for all
z € X, and (2) if 75 = 741 then vi41 = [\ := 0] for
some A, where A C X. 1
Notice that in Definition 3.1, we do not specify an initial
value for the global time. Now, let ¥ be any set of computa-
tions. We require that > must be closed with respect to time
offsets. Thatis, Vo € ¥ : Vt€ R : (G+t) € X, where g+t
denotes the computation (¢o,70 +t) — (01,71 +1t) — -+,
st. 7o+t >0.

Notation. Let @; denote the pair (o4, 7;) in computation
7. Also, let @ be a finite computation of length n and
be a finite or infinite computation. The concatenation of @
and /3 (denoted @B) is a computation, iff states @,—1 and 3,
meet the constraints of Definition 3.1. Otherwise, the result
of concatenation is null. If I' and ¥ are two sets containing
finite and finite/infinte computations respectively, then ['¥

={@b | (@el) A (BeD)}

Definition 3.2 (suffix and fusion closure) Suffiz clo-
sure of a set of computations means that if a computation &
is in that set then so are all the suffixes of . Fusion closure
of a set of computations means that if computations @(o, 7)7
and E(U,T)E are in that set then so are the computations
@(o, 7)Y and B(o, 7)7, where @ and 8 are computation pre-
fixes, 7 and 1) are computation suffixes, and o is a state at
global time 7. 1

Definition 3.3 (real-time programs) A real-time pro-
gram P is specified by the tuple (Vp, Xp,IIp) where Vp is
a finite set of discrete variables, Xp is a finite set of clock
variables, and IIp is a suffix closed and fusion closed set of
infinite mazimal computations in the state space of P. By
maximal, we mean that if 7 = @f is in IIp, where (1) @ =
(UO7T0) - (01771) - "'(0n7Tn)7 (2) ﬂ = ((Sn+1,ljn+1),
Tn+l) i ((3n+27 V7L+2)7 T7L+2) - ((S7L+37 Vn+3)7 Tn+3) Ty,
and (3) for all j > n, s; = sj41 and vj41 = v + (Tj41 — 75),
then no other computation in Il has a prefix of @. In other
words, given a computation prefix @ of P, P does not con-
tain the computation that stutters o,+1 infinitely if there
exists other computation of P that extends @. B

Observation. One can observe that Definitions 3.1 and
3.3 allow real-time programs (and later specifications) to
exhibit Zeno behavior. The reason is due to the fact that
when we develop the theory of fault-tolerance components,
we allow components to exhibit Zeno behavior. However,
as we will illustrate, it is important that the collection of
components in a program does not exhibit Zeno behavior.

Definition 3.4 (state predicates) A state predicate S
of a program P = (Vp, Xp,Ilp) is any subset of state space
of P st. in the corresponding Boolean expression, clock con-
straints are in ®(Xp), i.e., the magnitude of clock variables
are nonnegative integers. i

Definition 3.5 (closure) We say that a state predicate
S is closed in P = (Vp, Xp,IIp) iff in every computation
(00,70) — (01,71) — --- in Ip, if 0 = S (i.e., state pred-
icate S holds in state 0;), j € Z>o, then oy = S, for all k,
E>j.m

Definition 3.6 (S-computations) Let S be a state pred-
icate and P = (Vp,Xp,lIp) be a program. The
S-computations of P, denoted as P | S, is the set of all com-
putations in ITp that start in a state where S is true.

3.1.1 Example

We use the following example throughout the paper as
a running demonstration. Consider a one-lane turn-based
bridge where cars can travel in only one direction at any
time. The bridge is controlled by two traffic signals and
each signal changes phase from green to yellow and then to
red, based on a set of timing constraints. Moreover, if one
signal is red, it will turn green some time after the other
signal turns red. A traffic controller program (7C) for the

bridge has two discrete variables to represent the status of
the signals, i.e., Vre = {sig,, sig,}, where sig, and sig,
range over {G,Y, R} . Thus, at any time, the values of
sigy and sig; show in which direction cars are traveling.
Moreover, for each signal, 7C has three timers to change
signal phase, i.e., X7¢ = {x:,¥i, 2 | i = 0,1}. When a signal
turns green, it may turn yellow within 10 time units, but not
sooner than 1 time unit. Subsequently, the signal may turn
red between 1 and 2 time units after it turns yellow. Finally,
when the signal is red, it may turn green within 1 time unit
after the other signal becomes red. Both signals operate
identically.

To concisely present computations of a program, we use
timed guarded commands. Notice that since the set of com-
putations of a program is suffix closed and fusion closed, the
program can be written in terms of transitions that it can
execute [5]. A timed guarded command (also called timed

action) is of the form L :: g 2, st, where L is a label, g is
a state predicate, st is a statement that describes how the
program state is updated, and A\ is a set of clock variables
that are reset by execution of L. Thus, L denotes the set
of transitions {(so,v) — (s1,v[A := 0]) | g is true in state
(so,v), and s;1 is obtained by changing s¢ as prescribed by
st}. A guarded wait command (also called delay action) is
of the form L :: ¢ — wait, where g identifies the set of
states from where delay transitions with arbitrary durations
are allowed to be taken as long as g continuously remains
true.

Thus, the traffic controller program is as follows. For i €

{0,1}:

TCl; :: (sig;, =G) N (1 <z; £10) REDN (sig; = =Y);
TC2; :: (sig;,=Y) AN (1 <y; <2) REIN (sig; = R);
TC3;:: (sig; =R) N (25 <1) RCON (sig; == G);
TC4; :» ((sig; =G) N (z: <10)) V

((sig; =Y) A (yi <2)) V

(sigy=R) A (21) —— waity

where j = (i+1) mod 2. We note that the choice of execu-
tion of timed guarded commands is
non-deterministic, i.e., a guarded command whose guard is
true is non-deterministically chosen for execution at each
time instance. Notice that the guard of 7C3; depends on
z timer of signal j. For simplicity, we assume that once a
traffic light turns green, all cars from the opposite direction
have already left the bridge.

3.2 Specifications

Definition 3.7 (specifications) A specification (or prop-
erty), denoted SPEC, is a tuple (Vsprc, Xsprc,Xsprc)
where Vspgrc is a finite set of discrete variables, Xspgc is a
finite set of clock variables, and Y sprc is a suffix closed and
fusion closed set of infinite computations in the state space
of SPEC. 1

We now define what it means for a program to refine a
specification and what it means for a program P’ (typically,
a fault-tolerant program) to refine a program P (typically, a
fault-intolerant program). Essentially, we would like to say
that “P’ refines P’ iff computations of P’ are a subset of that
in P. However, if P’ is obtained by adding fault-tolerance to
P then P’ may contain additional variables that are not in
P. Hence, it will be necessary to project the computations
of P on (the variables of) P and then check if the projected
computation is a computation of P.

Definition 3.8 (state projection) Let P = (Vp, Xp,IIp)
and P’ = (Vp:, Xp:,Ilp/) be real-time programs st. Vpr =
VpUA, and Xpr = Xp UA, for some A, and A,. The
projection of a state of P’ on P is a state obtained by consid-
ering Vp U Xp only, i.e., by abstracting away the variables
in A, UA,. I

The same concept applies to programs and specifications.
Extending this definition for computations, we say that the
projection of a computation of P’ on P (respectively, SPEC')
is a computation obtained by projecting each state in that
computation on P (respectively, SPEC).

Definition 3.9 (refines) Let P = (Vp, Xp,1lp) and
P' = (Vpr, Xp/,IIp/) be real-time programs, S be a state
predicate and SPEC = (Vsprc, Xsrec, Xspec) be a speci-
fication. We say that P’ refines P (respectively, SPEC) from
S iff the following two conditions hold: (1) S is closed in P’,
and (2) for every computation in IIp, that starts in a state
where S is true, the projection of that computation on P
(respectively, SPEC) is a computation of IIp (respectively,
Ysprc). B

In order to reason about the correctness of programs (in
the absence of faults), we define the notion of program in-
variant.

Definition 3.10 (invariants) Let P be a real-time pro-
gram, S be a nonempty state predicate, and SPEC be a
specification. We say that S is an invariant of P for SPEC
iff P refines SPEC from S. 1

We note that our rather unconventional definition of in-
variant is due to the fact that in our framework, an invariant
has double role. First, it specifies the closure of a program
in the absence of faults. Thus, starting from a set of ini-
tial states, one possible invariant can simply be the set of
reachable states. Secondly, as we will describe in Section
4, the invariant predicate also specifies a set of legitimate
states which in turn determines the reachability condition
of a program for recovery when faults occur.

Whenever the specification is clear from the context, we
will omit it; thus, “S is an invariant of P” abbreviates “S
is an invariant of P for SPEC”. Note that Definition 3.9
introduces the notion of refinement with respect to infinite
computations. In case of finite computations, we character-
ize them by determining whether they can be extended to
an infinite computation in the specification.

Definition 3.11 (maintains) Let P be a real-time pro-
gram, S be a state predicate, and SPEC be a specification.
We say that program P maintains SPEC from S iff (1) S
is closed in P, and (2) for all computation prefixes @ of P
that start from S, there exists a computation suffix 3 st.
the projection of @@ on SPEC is in SPEC. We say that P
violates SPEC' from S iff it is not the case that P maintains
SPEC from S. 1

We note that if P refines SPEC from S then P main-
tains SPEC from S as well, but the reverse direction does
not always hold. We, in particular, introduce the notion
of maintains for computations that a (fault-intolerant) pro-
gram cannot produce, but the computation can be extended
to one that is in SPEC via adding a J-corrector component
to the intolerant program (see Sections 4, 6 for details).
Specifying timing constraints. In order to express
time-related behaviors of real-time programs (e.g., dead-
lines and recovery time), we focus on a standard property
typically used in real-time computing known as the stable

bounded response property. A stable bounded response prop-
erty, denoted P —<s @, where P and @ are two state pred-
icates and § € Zx>o, is the set of all computations (oo, 70) —
(o1,71) — --- in which, for all 4 > 0, if o; = P then there
exists j, j >4, st. (1) 05 = Q, (2) 75 — 7 < 4, and (3) for
all k, i < k < j, o E P, ie., it is always the case that a
state in P is followed by a state in @ within § time units
and P remains true until Q becomes true. We call P the
event predicate, Q the response (or recovery) predicate, and
0 the response (or recovery) time.

Assumption 3.12 We assume that the set of clock vari-
ables of any stable bounded response property P —<s @
contains a special clock variable, which gets reset whenever
P becomes true. This assumption is necessary to ensure
that stable bounded response properties are fusion closed. i

The specifications considered in this paper are an inter-
section of a safety specification and a liveness specification
[1,13]. In particular, we concentrate on a special case where
the specification is the intersection of (1) timing independent
safety characterized by a set of bad instantaneous transitions
(denoted SPEC%), (2) timing dependent safety character-
ized by a set of stable bounded response properties (denoted
SPECY%;), and (3) liveness.

Definition 3.13 (safety specifications)

1. (timing independent safety) Let SPEC: be a finite set
of instantaneous bad transitions of the form (so,v) —
(s1,v[X := 0]), where so and s; are two locations and
A C Xspec. We denote the specification whose com-
putations have no transition in SPEC4; by SPEC;.

2. (timing constraints) We denote SPEC%;: by the con-
junction /\;ZO(PZ- —<s; Qi), for state predicates P;
and @;, and, response times §;. i
Thus, given a specification SPEC', one can implicitly iden-
tify SPEC+; and SPEC;, as defined above. Throughout the
paper, SPEC+ is meant to prescribe how a program should
meet its timing constraints such as providing bounded-time
recovery to its normal behavior after the occurrence of faults.
We formally define the notion of recovery in Section 4.

Definition 3.14 (liveness specifications) A liveness
specification of SPEC is a set of computations that meets
the following condition: for each computation prefix @, there
exists an infinite computation 3 st. @8 € SPEC.

3.2.1 Example (cont d)

Following Definition 3.13, the safety specification of 7C
comprises of SPECy; . and SPEC; SPECyt,. is the
set of transitions where both signals are not red in their
target states:

SPECyirc = {(00,01) | (sigo(o1) # R) A (sigi(o1) # R)}.

We define SPEC%,: of TC in Section 4, where we formally
define the notion of bounded-time recovery.
One invariant for the program 7°C is the following:

Ste=Vi e {0,1} :
[(sig, = G) = ((sig, = R) A (2 <10) A (2> 1))]
[(sig; =Y) = ((sig; = R) A (yi <2) A (2 >1))]
[((sig; = R) A (sig; = R))
= ((z<1) @ (z <)),
where j = (i+1) mod 2 and @ denotes the ezclusive or op-
erator. It is straightforward to see that 7C refines SPE CETC
from Stc.

A
A

4. FAULT MODEL
AND FAULT-TOLERANCE

4.1 Fault Model

Intuitively, the faults that a program is subject to are
systematically represented by the union of transitions whose
execution perturbs the program state and transitions that
unexpectedly advance time.

Definition 4.1 (faults) Let P = (Vp, Xp,Ilp) be a real-
time program. The set f of faults is specified by the union
of the following two sets:

1. afinite set f° of immediate faults of the form (so,v) —
(s1,v[A := 0]) where so and s; are two locations and
A is a subset of Xp, and

2. afinite set f* of delay faults of the form (s,v) — (s, v+
7), which keeps the program in location s for time
duration 7, 7 € R>o. I

Assumption 4.2 Given a real-time program P =
(Vp, Xp,Ilp) and a set f of faults, for simplicity, we as-
sume that no computation in II» contains a transition in

i

We emphasize that such representation is possible
notwithstanding the type of faults (be they stuck-at, crash,
fail-stop, timing, performance, Byzantine, message loss, etc.),
the nature of the faults (be they permanent, transient, or
intermittent), or the ability of the program to observe the
effects of the faults (be they detectable or undetectable).

Let P = (Vp, Xp,1lp) be a program and f be a set of
faults. We denote the program P in the presence of f by
Plf = (Vp, Xp,Ippy). Intuitively, IIppj; is obtained by
inserting transitions of f in computations of I1p. Formally,
let Z be a set of computations and e be the operator that
fuses two (finite or infinite) computations of Z st.

«(2) = {@(o,")B | 37,7 : o
@)y e 2) A (Yo, 7)B € Z)},
i.e., o(Z) adds additional computations obtained by insert-
ing timed state (o, 7) to computations in the given set. Also,
let o'(Z) = o(0'"1(2)), i > 1, and FFC(Z) = U2, &' (2).
Now, we define the computations of P in the presence of f
as follows:

Hpyy={7|d€ FFC(Mlp U f) N @ & FFC(f)}.

Just as we use invariants to show program correctness in
the absence of faults, we use fault-spans to show the correct-
ness of programs in the presence of faults.

Definition 4.3 (fault-spans) Let P = (Vp, Xp,Ilp) be
a real-time program with invariant S, T" be a state predicate,
and f be a set of fault transitions. We say that 7" is an f-
span of P from S iff (1) S C T, and (2) T is closed in
Hppy. W

4.1.1 Example (cont'd)

7C is subject to clock reset faults due to circuit malfunc-
tions. In particular, we consider faults that reset either zo
or z1 at any state in the invariant St¢ (cf. Subsection 3.2),
without changing the location of 7C. Formally,

Fo : Stc REIR skip;
Fiy 2 Sre 1=, skip;

It is straightforward to see that in the presence of Fy and
Fy, TC may violate SPECETC- For instance, if Fi occurs
when 7C is in a state of S7¢c where (sig, = sig; = R) A
(z0 < 1) A (21 > 1), in the resulting state, we have (sig, =
sig; = R) A (20 < 1) A (z1 = 0). From this state, immediate
execution of timed actions 7C3¢ and then 7 C31 results in a
state where (sig, = sig; = G), which is clearly a violation of
the safety specification SPECETC- In our traffic controller
example, for simplicity, we assume that faults Fy and I}
only occur in a state where S7¢ holds (i.e., faults do not
re-occur outside the invariant of 7C).

4.2 Fault-Tolerance

We now define what we mean by fault-tolerance in the
context of real-time programs. Obviously, in the absence
of faults, a program should refine its specification. In the
presence of faults, however, it may not refine its specifica-
tion and, hence, it may refine some ‘tolerance specification’.
These specifications are based on refinement of a combina-
tion of (timing independent) safety, liveness, timing con-
straints, and a desirable bounded-time recovery mechanism
in the presence of faults. The resulting tolerance specifi-
cation with respect to each combination, defines a level of
fault-tolerance. In this paper, we focus on the strongest level,
known as hard-masking fault-tolerance [6]. Intuitively, given
a specification SPEC, the hard-masking tolerance specifi-
cation of SPEC is identical to SPEC. In other words, the
occurrence of all faults are masked. Moreover, we require
SPEC to prescribe a bounded-time recovery mechanism.

Definition 4.4 (hard-masking tolerance specification)

Let SPEC = (Vspec,Xspec,Xsrec) be a specification
where SPEC = (—R —<p R) for some recovery predicate
R and some recovery time 6 € Z>o. The hard-masking tol-
erance specification of SPEC is SPEC. 1

We are now ready to define what it means for a program to
be hard-masking f-tolerant. With the intuition that a pro-
gram is hard-masking f-tolerant to SPEC if it refines SPEC
in the absence of faults and it refines the hard-masking tol-
erance specification of SPEC in the presence of f, we define
‘hard-masking f-tolerant to SPEC from S’ as follows.

Definition 4.5 (hard-masking programs) Let P be
a real-time program with invariant S, f be a set of fault
transitions, SPEC be a specification, and 6 be a nonnegative
integer. We say that P is hard-masking f-tolerant to SPEC
with recovery time 0 from S iff the following two conditions
hold:

e P refines SPEC from S, and

e there exists T st. T D S and P[|f refines the hard-
masking tolerance specification of SPEC for recovery
time 6 and recovery predicate S from 7. i

4.2.1 Example (cont'd)

Thus, the fault-tolerant version of 7C has to, first, reach
a state where both signals are red and subsequently recover
to Stc where exactly one signal turns green. To this end,
we specify the following stable bounded-response properties:

SPEC-

trre = (0STc <7 STe) A (2S1C =<3 Qre),

where Qr¢ = Vi € {0,1} ((sig; = R) N (2 > 1)).
The response times in SPEC’QTC are simply two arbitrary
numbers for illustration.

Below, we present a hard-masking version of our traffic
controller program, denoted by 7C’, where i € {0,1} and
j=(0G+1) mod 2:

TC' 1 (sig;, =G) A (1 <z; <10) REDN (sig, :=Y);
TC'2;: (sig;, =Y) A (1 <y; <2) REIN (sig, := R);
TC'3i: (sig; =R) A (2 <1)A
(sig; = R) 5 (sig; = G);

TC'4;: ((sig; = G) A (z: <10)) V

((sig; =Y) A (i <2)) V

((sig; = R) N (2; <1)) —— wait;
TC'5i (sig; # R V sig; # R) A (2i,2 < 1)

TC'6i: (sig; = sig; = R) N (21,27 <4) A

(t1 <3) —— wait;
TC'Ti: (sig; = sig; = R) N (zi,2; > 1)
{zi} ..
skip;
TC'8i: (sig; = sig; = R) A (21,27 > 1) A
(t2<7) —— wait;

where t1 and t2 are the special clock variables that accom-
pany stable bounded response properties in SPEC’;TC (cf.
Assumption 3.12). In Sections 5 and 6, we demonstrate how
we decompose 7C’ into 7C and its fault-tolerance compo-

nents.

5. DETECTORS AND THEIR ROLE IN
HARD-MASKING PROGRAMS

This section is organized as follows. We formally intro-
duce the notion of detector components in Subsection 5.1.
In Subsection 5.2, we precisely define what we mean by con-
tainment of a detector in a real-time program. Then, we
present detector components of the hard-masking version of
our traffic controller in Subsection 5.3. Finally, in Subsection
5.4, we develop the theory of detectors by proving the neces-
sity of existence of hard-masking detectors in hard-masking
fault-tolerant programs.

5.1 Detectors

Intuitively, a detector is a program component that en-
sures satisfaction of timing independent safety (i.e., SPECy;
in Definition 3.13).

Definition 5.1 (detects) Let W and D be state predi-
cates. Let ‘W detects D’ be the specification, that is the set
of all infinite computations & = (o9,70) — (01,71) — -+,
satisfying the following three conditions:

o (Safeness) For all i € Z>o, if 0; = W then o; = D.
(In other words, o; = (W = D).)

o (Progress) For all i € Z>o, if 0; |= D then there exists
k,k>1i,st. o =W or oy & D.

o (Stability) There exists i € Z>o, st. for all j, j > i, if
o] ': W then Oj+1 ': W or Oj+1 [75 D.n

Definition 5.2 (detectors) Let D be a program and D,
W, and U be state predicates of D. We say that W detects
D inD from U (i.e., D is a detector) iff D refines ‘W detects
D’ from U. 1

A detector D = (Vp, Xp,IIp) is used to check whether its
“detection predicate”, D, is true. Since D satisfies Progress
from U, in any computation in Ilp, if U A D is true con-
tinuously, D eventually detects this fact and makes W true.
Since D satisfies Safeness from U, it follows that D never
lets W witness D incorrectly. Moreover, since D satisfies
Stability from U, it follows that once W becomes true, it
continues to be true unless D is falsified. In the context
of fault-tolerance, D is typically a predicate of the fault-
intolerant program from where safety should be always sat-
isfied and W is a predicate of the fault-tolerant program
that witnesses the detection of D.

In order to analyze the behavior of a detector in the pres-
ence of faults, we consider the notion of hard-masking tol-
erant detectors. More specifically, a detector D is a hard-
masking tolerant detector if SPEC is substituted by ‘W de-
tects D’ in Definition 4.5.

5.2 Containment of Detectors in Real-Time
Programs

In order to show the existence of detectors in hard-masking
fault-tolerant programs, we would like to show that the pro-
gram contains a detector for a detection predicate associ-
ated with the fault-intolerant program. However, we need
to identify syntactic characteristics of a program before de-
tection predicates can be identified. In particular, since a
detector is used to ensure that the execution of an action is
safe, its witness predicate must be used by the fault-tolerant
program. Intuitively, the syntactic constraints identified in
this section require the witness predicate to be a guard of
the corresponding action in the fault-tolerant program.

In order to accomplish our goal, first, we show that viola-
tion of timing independent safety (i.e., SPEC%; in Definition
3.13) can be merely determined by considering transitions
in SPECp;.

Lemma 5.3 Let SPEC be a specification, @ be a computa-
tion prefiz, o and o' be two states, and T,7" € R>o, where
=1
If

e a(o,T) maintains SPECy;
then

e a(o,7)(0’,7') maintains SPECs iff (o,7)(0’,7") main-

tains SPECs; . I

In Lemma 5.4, we show that there exists a set of states
from where execution of programs maintains SPEC3;. We
call such a state predicate a detection predicate for SPEC;.

Lemma 5.4 Given a program P = (Vp, Xp,1lp), there ex-
ists a state predicate D (called detection predicate) st. all
computations of Ilp that start from D maintain SPEC;. R

We now prove the uniqueness of the weakest detection
predicate for a given program P.

Lemma 5.5 Given a program P = (Vp, Xp,Ilp) and a
specification SPEC , there exists a unique weakest detection
predicate of P for SPEC3;. 1

We are now ready to define what it means for a program to
contain detectors. As mentioned in Subsection 3.1.1, since
the set of computations of a program is suffix closed and
fusion closed, the program can be written in terms of timed

guarded commands. Given a timed guarded command, say

L : Guard 2 st, Lemma 5.5 shows that there exists a
unique weakest detection predicate, say wdp, from where
execution of L does not violate SPEC%;. Hence, to show
the existence of detectors, we require the detection predi-
cate of such a timed action to be Guard A wdp. Further-
more, to show that the fault-tolerant program contains the
desired detector, we show that it must be using the wit-
ness predicate of that detector to ensure that execution of
the corresponding timed action is safe. Towards this end,
we define the notion of encapsulation. Intuitively, if (typi-
cally, a fault-tolerant) program P’ encapsulates (typically, a
fault-intolerant) program P then for each timed action of P

of the form Guard 2 st, P’ contains a timed action of the

form Guard A Guard' 22, st||st’. The semantic of st||st’
corresponds to the statement where st and st’ are executed
simultaneously, clock variables in A U X’ are reset, and the
timed action is executed only when its guard, Guard A g’, is
true. In other words, P’ has a timed action corresponding
to each timed action of P (possibly) with a stronger guard,
additional assignments in st’, and additional clock variables
in \’. Notice that the assignments in st’ and clock variables
in)" may be added in order to add fault-tolerance to P (cf.
the notion of projection in Subsection 3.2). To show that
P’ is using a detector for a timed action of P, we require
the witness predicate of that detector to be Guard A Guard’
which is the guard of the corresponding timed action in P’.

Definition 5.6 (encapsulates) Let P = (Vp, Xp,IIp)
and P’ = (Vp,, Xp/, Il ps) be two real-time programs and S
be a state predicate. We say that P’ encapsulates P from S

iff each timed action in P’ that is enabled in a state in S and

that updates variables i m Vp is of the form Guard A g’ =" AN

st||st’, where Guard 2, st is a timed action of P and st’
does not update variables in Vp and X' N Xp = {}. B

Based on the above discussion, given a timed guarded

command of the form Guard 2 st of P, its (weakest) de-
tection predicate wdp and the corresponding action Guard A

Guard’ 22, st||st’ of P’, we require the detection predicate
of the desired detector to be Guard A wdp and the witness
predicate of the desired detector to be Guard A Guard'.

Finally, in order to formalize the notion of containment
and existence of detectors, we need to define what it means
to obtain a fault-tolerant program by reusing its
fault-intolerant version.

Definition 5.7 (reuses) Let P and P’ be two real-time
programs. We say that P’ reuses P from S iff the following
two conditions are satisfied:

e P’ refines P from S, and

e P’ encapsulates P from S.

5.3 Example (cont’d)

It is straightforward to see that the weakest detection
predicate for 7C; is:

U/dec; ={o| Sigj(U) = R},

where ¢ € {0,1} and j = (i + 1) mod 2. Thus, in program
TC' (cf. Subsection 4.2), the guard of 7C3; is strength-
ened in order for 7C’ to refine SPEC+ rc in the presence of
faults. Intuitively, 7C’ is allowed to change phase from red
to green only when the other signal is red. More precisely,

TC’ uses the detector Dy, which consists of timed guarded

commands 7C'1;, T7C'2;, and 7C'4; with the following de-
tection and witness predicates:

Drc; = guard(TC3;) A wdpre:
Wrer = guard(7C'3;).

It is easy to see that that WTC/ detects DTC/ in DTC/ from
STc in both absence and presence of Fy and Fy. Notlce
that DTcg exhibits Zeno behavior since when the witness
predicate becomes true, there does not exist a timed guarded
command whose guard is enabled except 7C’4;. However,
it is important that the entire program does not show Zeno
behavior. For instance, one can observe that, 7C’3; ensures
time progress for 7C'.

5.4 The Necessity of Existence of Detectors in
Hard-Masking Programs

Based on the formalization of the notion of containment,
we are now ready to prove that hard-masking programs con-
tain hard-masking tolerant detectors. Our strategy to ac-
complish our goal is as follows. First, based on Definitions
5.6 and 5.7, we show that if a program refines SPEC; in
the absence of faults then it contains detectors. The intu-
ition is that if program P’ is designed by transforming P
so as to refine SPEC4;, then the transformation must have
added detectors for P, and P’ reuses P. We formulate this
in Claim 5.10. Then (in the presence of faults), using Claim
5.10, we show that if a hard-masking program P’ is designed
by reusing P to tolerate a set f of faults, P’ contains a hard-
masking tolerant detector for each action of P. This is shown
in Theorem 5.11.

In order to show that a program contains a detector com-
ponent, we are required to show that the corresponding
timed guarded commands satisfy the Progress condition of
Definition 5.1. Thus, we assume that programs need to sat-
isfy the following fairness condition.

Assumption 5.8 We assume that program computations
are fair in the sense that in every computation, if the guard
of an action is continuously true then that action is eventu-
ally chosen for execution. B

Assumption 5.9 Without loss of generality, for simplicity,
we assume that transitions that correspond to different ac-
tions of the program are mutually disjoint, i.e., they do not
contain overlapping transitions. The results in this paper are
valid without this assumption since we can easily modify a
given program to one that satisfies this assumption. B

We are now ready to formulate our claim on existence of
detectors in programs that refine SPEC%; in the absence of
faults.

Claim 5.10 Let P and P’ be real-time programs, S be a
nonempty state predicate, and SPEC be a specification.

If
e P’ reuses P from S, and
o P’ refines SPEC; from S,
then

e (Vac | ac is a timed action of P : P’ contains a detec-
tor of a detection predicate of ac for SPEC').

Now, we show that if a hard-masking f-tolerant program
P’ is designed by reusing P then P’ contains a hard-masking
tolerant detector for each action in P.

Theorem 5.11 Let P and P’ be real-time programs,
S be a nonempty state predicate, f be a set of faults,
and SPEC be a specification.
If

o P refines SPECy; from S,

o P’ reuses P from R, where R = S for some

nonempty state predicate R, and
e P’ is hard-masking f-tolerant to SPEC from R

e (Yac | ac is a timed action of P : P’ is a hard-
masking f-tolerant detector of a detection predi-
cate of ac for SPEC). 1

6. 0-CORRECTORS AND THEIR ROLE IN
HARD-MASKING PROGRAMS

This section is organized as follows. We formally intro-
duce the notion of weak and strong d-corrector components
in Subsection 6.1. In Subsection 6.2, we define what we
mean by containment of a d-corrector in a real-time pro-
gram. Then, we present d-corrector components of the hard-
masking version of our traffic controller in Subsection 6.3.
Finally, in Subsections 6.4 and 6.5, we develop the theory of
strong and weak J-correctors, respectively, by proving the
necessity of existence of hard-masking weak and strong ¢-
correctors in hard-masking fault-tolerant programs.

6.1 Weak and Strong s-Correctors

Intuitively, a d-corrector is a program component that en-
sures bounded-time recovery to a correction predicate. In
fault-tolerant computing, recovery is essential to guarantee
that liveness properties (cf. Definition 3.14) and timing con-
straints (cf. SPECq; in Definition 3.13) are met where the
state of a program is perturbed by the occurrence of faults.
Depending upon the closure of the correction predicate in
d-correctors, they are classified into weak and strong.

Definition 6.1 (weakly corrects) Let C and W be
state predicates. Let ‘W weakly corrects C within §’ be
the specification, that is the set of all infinite computations
7 = (00,70) — (01,71) — - -, satisfying the following con-
ditions:

o (/Weak] Convergence) There exists i € Zx>o, st. o; = C
and (1; — 70) < 0.
o (Safeness) For all i € Z>o, if 0; = W then o; = C.

o (Progress) For all ¢ € Z>o, if o; = C then there exists
k. k>1i,st. o =W or o EC.

o (Stability) There exists i € Z>o, st. for all j, j > i, if
oj EW thenojii EWoroj EC. 1

Definition 6.2 (strongly corrects) Let C' and W be
state predicates. Let ‘W strongly corrects C' within § be
the specification, that is the set of all infinite computations
7, satisfying the following two conditions:

o W weakly corrects C' within §, and

e (/[Strong] Convergence) In addition to Weak Conver-
gence, C is closed in 7. B

Definition 6.3 (J-correctors) Let C be a program and
C, W, and U be state predicates of C. We say that W
weakly/ strongly corrects C in C from U (ie., C is a
weak /strong d-corrector) iff C refines ‘W weakly /strongly
corrects C' within ¢’ from U. R

Similar to the concept of tolerant detectors, in order to
analyze the behavior of a d-corrector C in the presence of
faults, we consider the notion of hard-masking tolerant ¢-
correctors. More specifically, a weak/strong d-corrector C is
a hard-masking tolerant weak/strong §-corrector if SPEC is
substituted by ‘W weakly/strongly corrects C' within §’ in
Definition 4.5.

Notice that since C satisfies Weak (respectively, Strong)
Convergence from U, it follows that C reaches a state where
C becomes true within § time units (and, respectively, C
continues to be true thereafter). In addition to convergence,
a d-corrector never lets the predicate W witness the correc-
tion predicate C incorrectly, as C satisfies Safeness from U.
Moreover, since C satisfies Progress from U, it follows that
W eventually becomes true. And, finally, since C satisfies
Stability from U, it follows that when W becomes true, W
is never falsified.

6.2 Containment of d-Correctors in
Real-Time Programs

As mentioned earlier, in the context of real-time programs,
d-correctors ensure bounded-time recovery to their correc-
tion predicate. Intuitively, we will use weak J-correctors
where we need refinement of stable bounded response prop-
erties in the presence of faults. In such properties, when the
event predicate becomes true, the program needs to reach a
state where the response predicate holds within the respec-
tive recovery time. Nonetheless, the program does not need
to remain in the response predicate.

Unlike weak d-correctors, we will use strong d-correctors
where we need bounded-time recovery to a state predicate
in which the program is required to stay in. The correction
predicate of a §-corrector C is typically an invariant predicate
of the fault-intolerant program while the witness predicate
witnesses the correction of the correction predicate. This is
obviously due to the fact that real-time programs are closed
in their invariant predicate. Existence of strong d-correctors
are of special interest, since recovery to the invariant pred-
icate automatically ensures refinement of the liveness spec-
ification. In particular, in Subsection 6.4, we show the ne-
cessity of existence of strong dé-correctors in hard-masking
programs in order to refine the property —S —<g S (cf.
Definition 4.4), where S is in invariant predicate.

In terms of the behavior of d-correctors, observe that in
Definition 6.1 (and, hence, Definition 6.2 as well), state oo
is the earliest state from where recovery must commence.
Thus, 7; is the time instance where correction is complete
and 7; — 79 is the duration of correction. In case of strong
d-correctors, op is also the earliest state reached outside the
invariant due to occurrence of faults.

We note that although detectors and J-correctors share
three identical constraints, their semantics of containment
are completely different. Intuitively, a detector uses the wit-
ness predicate in order to detect whether program execution
is safe. Hence, as we developed the theory of detectors in
Section 5, we imposed constraints that require the witness
predicate to be used. To the contrary, a program may not
use the witness predicate of a d-corrector, as a fault-tolerant
program may not need to know when correction is complete.

6.3 Example (cont’d)

Continuing with our traffic controller example, we identify
d-correctors for each stable bounded-response property in
SPECY,. . introduced in Subsection 4.2. To this end, first,
consider the property —S7¢c —<3 Q. When TC[|{Fo, F1}
reaches a state in =S7¢ A =@ where at least one signal is
red and the value of both z timers is less than or equal to
1, it needs to recover to () within 3 time units. Let C%—C/
be the weak 3-corrector in 7C’ consisting of timed actions
TC'5; and TC'6,; with correction and witness predicates both
equal to Q. Intuitively, Cch, ensures that when 7C’ is in a
state outside the invariant, it reaches a state where both
signals are red within 3 time units.

Likewise, for the property —S7c¢ +—<7 Stc, let C%. be
the strong 7-corrector consisting of timed actions 7C’7; and
TC'8; with witness and corrections predicates equal to Szc.
In C%./, a z timer gets reset when the state of 7C’ is in
—S7e AQ within 7 time units since the occurrence of a fault.
Such a reset takes the traffic controller back to its invariant
predicate St¢ where timed action 7C1; is enabled. Notice
that unlike the the entire program 7 C’, both Cx, and C7c/
exhibit Zeno behavior when running individually.

6.4 The Necessity of Existence of Strong
0-Correctors in Hard-Masking Programs

We are now ready to prove that hard-masking programs

contain hard-masking tolerant strong d-correctors. Our
strategy to accomplish our goal is as follows. First, in Claim
6.5, we show that in the absence of faults, if a program refines
a specification within 6 time units then it contains strong
d-correctors for some § € Z>o. Then, (in the presence of
faults), using Claim 6.5, we show that if a hard-masking pro-
gram P’ is designed by reusing P to tolerate a set f of faults,
P’ contains a hard-masking tolerant strong é-corrector. This
is shown in Theorem 6.8.
Notation. For simplicity, we use the pseudo-arithmetic
expressions to denote timing constraints over finite compu-
tations. For instance, G<s, denotes a finite computation
(00,70) — (01,71) — -+ (0n,7Tn) that satisfies the timing
constraint 7, — 70 < J, where 0 € Z>o9. We use S* to de-
note a finite computation (og,70) — (01,71) — -+ (On,Tn)
st. o3 = S for all ¢, 0 <4 < n. Thus, (true)s,, denotes an
arbitrary finite computation with no specific time bound.

Definition 6.4 (becomes) Let P = (Vp, Xp,IIp) and
P" = (Vp:r, Xps,IIp:) be two real-time programs. We say
that P’ becomes P within 0 from T iff P’ refines (true),Ip
from 7. B a

In Claim 6.5, we show that given a program P, state predi-
cate S, and specification SPEC, where P refines SPEC from
S, if a program P’ is designed st. it behaves like P within
0 and, thus, has a suffix in SPEC, then P’ is a strong -
corrector of an invariant predicate of P for some § € Zxo.
We prove this Claim by showing that P’ itself refines the
required strong d-corrector specification.

Claim 6.5 Let P and P’ be real-time programs, S and T be
nonempty state predicates, SPEC be a specification, and 0
be a nonnegative integer.
If

o P refines SPEC from S,

e P’ refines P from S, and

o P’ becomes P|S within 0 from T,

then

o there exists § € Z>o st. P’ is a strong §-corrector of
S.n

The next lemma generalizes Claim 6.5. In general, given
a program P that refines SPEC from S, P’ may not behave
like P from each state in S but only from a subset of S, say
R. This may happen, for example, if P’ contains additional
variables and P’ behaves like P only after the values of these
additional variables are restored. Lemma 6.6 shows that
in such a case, P’ contains a hard-masking tolerant strong
d-corrector of an invariant predicate of P. The strong d-
corrector is hard-masking in the sense that the correction
predicate is preserved only after P’ reaches a state where R
is true.

Lemma 6.6 Let P and P’ be real-time programs, R, S, and
T be nonempty state predicates where R = S, SPEC be a
specification, and 6 be a nonnegative integer.
If

o P refines SPEC from S,

e P’ refines P from R, and

e P’ becomes (P|R) within 6 from T,
then

o there exists § € Z>o st. P’ is a hard-masking strong
d-corrector with recovery time 6 of S. W

We now illustrate the role of strong d-correctors in
hard-masking programs in the presence of faults. In par-
ticular, we use Claim 6.5 and Lemma 6.6 to show that if
a hard-masking f-tolerant program P’ with recovery time
0 is designed by reusing P then there exists § € Z>o st.
P’ contains a hard-masking f-tolerant strong J-corrector
with recovery time 6 for an invariant predicate of P. Notice
that, since our goal is to identify components that provide
bounded-time recovery in the presence of faults, there needs
to be some bound on the number of occurrence of faults. In
fact, it is straightforward to show that providing bounded-
time recovery in the presence of unbounded occurrence of
faults is generally impossible.

Assumption 6.7 Let P = (Vp, Xp,IIp) be a program with
invariant predicate S and f be a set of faults. Also, let
(00,70) — (01, 71) — -+ (0n,Tn) be a computation prefix in
IIppjy where o9 = S and oy = S, 1 < i < n. We assume
that the number of occurrence of faults between states o1
and o, is at most k for some k € Z>q.

Theorem 6.8 Let P and P’ be real-time programs,
R and S be nonempty state predicates, SPEC be a
specification, and 0 be a nonnegative integer.
If
e P refines SPEC from S,
e P’ is hard-masking f-tolerant for SPEC from R,
where R = S,
o P’ refines P from R, and
o P’ becomes P|R within 0 from T, where T is an
f-span of P’,
then
o there exist 6 and 0’ in Zxo st. P’ is a hard-
masking f-tolerant strong §-corrector with recov-
ery time 0’ of S. 1

6.5 The Necessity of Existence of Weak
0-Correctors in Hard-Masking Programs

Just like the relation between recovery constraint and
strong d-correctors in hard masking programs, we show that
if a hard-masking f-tolerant program P’ is designed by
reusing program P then P’ contains a hard-masking tolerant
weak d-corrector for each stable bounded response property
in SPEC;.

Theorem 6.9 Let P and P’ be real-time programs,
R and S be nonempty state predicates where R = S,
SPEC be a specification, and 6 be a nonnegative inte-
ger.
If

e P refines SPEC from S,

o P’ reuses P from R,

e P’ is hard-masking f-tolerant to SPEC from R

o (Vi | 0 < i < m: there exists § € Z>o st. P’
is a hard-masking tolerant weak §-corrector for
the response predicate of stable bounded response
property P; —<s; Qi of SPECy;). 1

7. CONCLUSION AND FUTURE WORK

In this paper, we focused on a theory of fault-tolerance
components in the context of hard-masking real-time pro-
grams. Our main contributions are we (1) identified three
types of fault-tolerance components, namely, detectors, weak
d-correctors, and strong d-correctors, (2) formally defined
the notion of containment of components in real-time pro-
grams, and (3) showed that every hard-masking program
can be decomposed into its fault-intolerant version and a
collection of fault-tolerance components.

The significance of this work follows from the fact that
detectors and correctors have been found to be useful for
analysis of several fault-tolerant programs. Examples in-
clude Byzantine agreement, mutual exclusion, tree mainte-
nance, leader election, termination detection, and bounded
network management [10,16,18]. This work shows that such
analysis is possible for all fault-tolerant programs that are
designed from their fault-intolerant version. This work com-
plements the results in [5] in that while [5] is focused on a
design methodology, the current work focuses on analysis.

We are currently focusing on using these components in
the context of automated addition of fault-tolerance to em-
bedded systems. In particular, by designing and verifying
these components in advance, it would be possible to speed
up automated addition of fault-tolerance to real-time pro-
grams. Towards this end, we are working on extending our
current work on automated addition of fault-tolerance [6,7]
to use pre-synthesized detectors and J-correctors.

8. REFERENCES

[1] B. Alpern and F. B. Schneider. Defining liveness.
Information Processing Letters, 21:181-185, 1985.

[2] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.

[3] R. Alur and T. A. Henzinger. Real-time system =
discrete system + clock variables. International
Journal on Software Tools for Technology Transfer,
1(1-2):86-109, 1997.

[4] A. Arora and S. S. Kulkarni. Component based design
of multitolerant systems. IEFE Transactions on
Software Engineering, 24(1):63-78, 1998.

[5] A. Arora and S. S. Kulkarni. Detectors and correctors:
A theory of fault-tolerance components. In
International Conference on Distributed Computing
Systems (ICDCS), pages 436-443, 1998.

[6] B. Bonakdarpour and S. S. Kulkarni. Incremental
synthesis of fault-tolerant real-time programs. In
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (5SS), LNCS 4280,
pages 122-136, 2006.

[7] B. Bonakdarpour and S. S. Kulkarni. Masking faults
while providing bounded-time phased recovery. In
International Symposium on Formal Methods (FM),
pages 374-389, 2008.

[8] T. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685-722, 1996.

[9] T. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225-267, 1996.

[10] A. Ebnenasir and B. H. C. Cheng. Architecting
Dependable Systems IV, chapter A Pattern-Based
Approach for Modeling and Analyzing Error Recovery,
pages 115-141. Springer Berlin / Heidelberg, 2007.

[11] F. C. Gértner and A. Jhumka. Automating the
addition of fail-safe fault-tolerance: Beyond
fusion-closed specifications. In FORMATS/FTRTFT,
pages 183-198, 2004.

[12] S. Ghosh and X. He. Fault-containing self-stabilization
using priority scheduling. Information Processing
Letters, 73(3-4):145-151, 2000.

[13] T. A. Henzinger. Sooner is safer than later.
Information Processing Letters, 43(3):135-141, 1992.

[14] A. Jhumka, F. Gartner, C. Fetzer, and N. Suri. On
systematic design of fast and perfect detectors.
Technical Report 200263, School of Computer and
Communication Sciences, EPFL, 2002.

[15] A. Jhumka, M. Hiller, and N. Suri. Component-based
synthesis of dependable embedded software. In Formal
Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT), pages 111-128, 2002.

[16] S. S. Kulkarni. Component-based design of
fault-tolerance. PhD thesis, Ohio State University,
1999.

[17] S. S. Kulkarni and A. Ebnenasir. Automated synthesis
of multitolerance. In International Conference on
Dependable Systems and Networks (DSN), pages
209-219, 2004.

[18] S. S. Kulkarni, J. Rushby, and N. Shankar. A
case-study in component-based mechanical verification
of fault-tolerant programs. In Internationa Workshop
on Self-Stabilization (WSS), pages 33-40, June 1999.

[19] J. Rushby. An overview of formal verification for the
time-triggered architecture. In Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT),
pages 83-105, 2002.

[20] O. Theel and F. Gartner. An exercise in proving
convergence through transfer functions. In Workshop
on Self-Stabilizing Systems (555), pages 41-47, 1999.

