
USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science and Engineering – Doctor of Philosophy

2021

ABSTRACT

USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen

Key-value stores have gained increasing popularity due to their fast performance and simple data

model. A key-value store usually consists of multiple replicas located in di�erent geographical

regions to provide higher availability and fault tolerance. Consequently, a protocol is employed

to ensure that data are consistent across the replicas. The CAP theorem states the impossibility

of simultaneously achieving three desirable properties in a distributed system, namely consistency,

availability, and network partition tolerance. Since failures are a norm in distributed systems

and the capability to maintain the service at an acceptable level in the presence of failures is a

critical dependability and business requirement of any system, the partition tolerance property

is a necessity. Consequently, the trade-o� between consistency and availability (performance) is

inevitable. Strong consistency is attained at the cost of slow performance and fast performance is

attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for

di�erent needs. Among the consistency models, sequential consistency and eventual consistency

are two common ones. The former is easier to program with but su�ers from poor performance

whereas the latter su�ers from potential data anomalies while providing higher performance.

In this dissertation, we focus on the problem of what a designer should do if he/she is asked

to solve a problem on a key-value store that provides eventual consistency. Speci�cally, we are

interested in the approaches that allow the designer to run his/her applications on an eventually

consistent key-value store and handle data anomalies if they occur during the computation. To that

end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization

approach. In the �rst option, the designer identi�es a correctness predicate, say� , and continues to

run the application as if it was running on sequential consistency, as our system monitors� . If �

is violated (because the underlying key-value store provides eventual consistency), the system rolls

back to a state where� holds and the computation is resumed from there. In the second option,

the data anomalies are treated as state perturbations and handled by the convergence property of

stabilizing algorithms.

We choose LinkedIn's Voldemort key-value store as the example key-value store for our study.

We run experiments with several graph-based applications on Amazon AWS platform to evaluate

the bene�ts of the two approaches. From the experiment results, we observe that overall, both

approaches provide bene�ts to the applications when compared to running the applications on

sequential consistency. However, stabilization provides higher bene�ts, especially in the aggressive

stabilization mode which trades more perturbations for no locking overhead. The results suggest

that while there is some cost associated with making an algorithm stabilizing, there may be a

substantial bene�t in revising an existing algorithm for the problem at hand to make it stabilizing

and reduce the overall runtime under eventual consistency.

There are several directions of extension. For the detect-rollback approach, we are working to

develop a more general rollback mechanism for the applications and improve the e�ciency and

accuracy of the monitors. For the stabilization approach, we are working to develop an analytical

model for the bene�ts of eventual consistency in stabilizing programs. Our current work focuses

on silent stabilization and we plan to extend our approach to other variations of stabilization.

Copyright by
DUONG NGOC NGUYEN

2021

ACKNOWLEDGEMENTS

v

TABLE OF CONTENTS

LIST OF TABLES .ix

LIST OF FIGURES. .xi

CHAPTER 1 INTRODUCTION . 1
1.1 The Trade-o� between Consistency and Performance in Distributed Key-value

Stores. 1
1.2 Problem Statement . 3
1.3 Approaches . 5
1.4 Contributions . 7
1.5 Outline of the Dissertation . 12
1.6 Nomenclature . 13

CHAPTER 2 PRELIMINARIES .18
2.1 Predicate Detection in Distributed Systems . 18

2.1.1 System Model . 18
2.1.2 Causality in Distributed Systems . 18
2.1.3 Vector Clocks . 20
2.1.4 Hybrid Vector Clocks . 21
2.1.5 A Basic Framework of Predicate Detection 22
2.1.6 Linear Predicate and Detection Algorithm 25
2.1.7 Semilinear Predicate and Detection Algorithm 28

2.2 Key-Value Store . 29
2.2.1 General Architecture of a Key-Value Store 29
2.2.2 Voldemort Key-Value Store . 30
2.2.3 The Performance Di�erence between Eventual and Sequential Consis-

tency in Voldemort Key-Value Store . 30
2.3 Distributed Programs . 33

2.3.1 Traditional/Active-Node Model . 34
2.3.2 Passive-Node Model . 34
2.3.3 Similarity between Active-Node and Passive-Node Model 35
2.3.4 Executing a Node Action by Client . 36
2.3.5 Stabilization . 37

2.4 Consistency Violating Faults (2E 5) . 38

CHAPTER 3 DETECT-ROLLBACK APPROACH . 43
3.1 Predicate Detection Module . 43

3.1.1 Overall Architecture . 43
3.1.2 Local Predicate Detector . 46
3.1.3 Implementation of the Monitors. 47

3.2 Rollback from Violations . 51

vi

3.2.1 Rollback Mechanism . 51
3.2.2 Dealing with Potential of Livelocks . 54

3.3 Evaluation Results . 54
3.3.1 Experimental Setup . 54
3.3.2 Analysis of Throughput . 60
3.3.3 Analysis of System and Application Factors 62
3.3.4 Analysis of Violations and Detection Latency 65
3.3.5 Evaluating Strategies for Handling Livelocks 66
3.3.6 Analysis of Applications . 67

3.4 Summary . 71

CHAPTER 4 STABILIZATION APPROACH . 73
4.1 Expected Properties of2E 5. 73
4.2 Termination Detection Algorithms. 74
4.3 Experimental Evaluation of Bene�ts of Stabilization in Key-Value Stores 75

4.3.1 Experiment Setup . 75
4.3.2 Experiment Results . 76

4.4 Discussion and Extensions . 80
4.4.1 Bene�ts with Active Stabilization . 81
4.4.2 Bene�ts with Contained Active Stabilization 83
4.4.3 Bene�ts with Fault-Containment stabilization. 85
4.4.4 Other Traditional Models of Computation 86
4.4.5 Dealing with Non-Silent Algorithms . 86
4.4.6 Non-stabilizing Algorithms and2E 5 . 87

4.5 Summary . 88

CHAPTER 5 STABILIZATION VERSUS DETECT-ROLLBACK. 90
5.1 Experiment Setup . 90

5.1.1 System Con�guration . 90
5.1.2 Client Execution Modes. 91
5.1.3 Case Study Problems . 92
5.1.4 Input Graphs . 93
5.1.5 Workload Partitioning Schemes. 93
5.1.6 Performance Metrics . 94

5.2 Bene�ts of Stabilization versus Rollback: Comparison and Analysis 94
5.2.1 Stabilization vs. Rollback: Comparison and Analysis 94
5.2.2 Improving the Convergence Time of Stabilization Approach 100
5.2.3 Experiments on Amazon AWS . 104
5.2.4 Scalability Analysis . 104
5.2.5 Key Observation . 106

5.3 Analysis of Results and Their Implications in the Design 106
5.3.1 Insight into Comparison of Stabilization versus Rollback 106
5.3.2 Results with Non-Stabilizing Algorithm 107

5.4 Summary . 108

vii

CHAPTER 6 FUTURE WORK. .110
6.1 Improving The Detect-Rollback Approach . 110
6.2 Improving The Stabilization Approach . 111
6.3 Other Possibilities of Future Work . 113

6.3.1 Characteristics of Monitoring Errors . 113

CHAPTER 7 RELATED WORK. .115
7.1 Distributed Data Processing . 115
7.2 Consistency in Distributed Data Stores . 115
7.3 Predicate Detection in Distributed Systems . 116
7.4 Distributed Snapshots and Reset . 117
7.5 Monitoring Large-scale Web-services and Cloud Computing Systems. 118
7.6 Self Stabilization . 119
7.7 Summary . 119

CHAPTER 8 CONCLUSION. .120

APPENDIX .123

BIBLIOGRAPHY .126

viii

LIST OF TABLES

Table 1.1: List of Notations and Their Meanings. 17

Table 2.1: Examples of Possibly-� and De�nitely-� for the computation in Figure 2.3 . . . 26

Table 3.1: Machine con�guration in local lab experiments 55

Table 3.2: Setup of consistency models with# (replication factor),' (required reads),
and, (required writes) . 56

Table 3.3: Overhead and bene�t of monitors in local lab network. ForConjunctiveand
Weather Monitoring, PUT percentage is 50%. 64

Table 3.4: Response time in20–647conjunctive predicate violations 66

Table 4.1: Bene�t of Eventual Consistency in the Presence of2E 5s over Sequential Con-
sistency. 15 Clients. With Local Mutual Exclusion. Convergence Time Unit:
second. 77

Table 4.2: Revisiting Local Mutual Exclusion (lme): Treating Violations as2E 5s. no-lme
means without local mutual exclusion. lme means with local mutual exclusion.
Number of clients is 15. Convergence Time Unit: second. 78

Table 4.3: E�ect of Increased Concurrency on the Bene�t of Eventual Consistency in the
Presence of2E 5s over Sequential Consistency. 10,000-nodesrandom-match
graph. Convergence Time Unit: second . 79

Table 4.4: AWS Experiments. Bene�t of Eventual Consistency in the Presence of2E 5s
over Sequential Consistency. 15 Clients. Convergence Time Unit: second. 80

Table 5.1: Con�gurations of machines used in the experiments 91

Table 5.2: Four client execution modes . 92

Table 5.3: Stabilization vs. Rollback. Graphs are partitioned in normal scheme. Network
latency was 20ms. SEQis baseline for comparison. Rows 7-10 are conver-
gence time bene�ts, shown in percentage increase or in speedup (e.g.� 5•2
means 5.2 times faster). 95

Table 5.4: E�ect of random partitioning on stabilization and detect-rollback. Rows 2-5
are convergence time. Rows 6-8 are bene�ts, in percentage increase or in
speedup (e.g.� 3 means 3 times faster). Network latency was 20ms 99

ix

Table 5.5: Comparison between the normal and random partitioning schemes of a planar
graph. For each property, the average (AVG) and standard deviation (STDEV)
among the partitions are calculated. 99

Table 5.6: Impact of Metis partitioning scheme. Latency was 20ms. 100

Table 5.7: E�ectiveness of the random coloring and the optimization for stabilization
approach in the arbitrary graph coloring problem (COLOR). Convergence
time is measured in seconds. Normal partition. Latency = 20ms 102

Table 5.8: Impact of network latency. Rows 4-6 are convergence time (in seconds). Rows
7-8 are the bene�ts, shown in percentage increase or in speedup (e.g.� 4•3
means 4.3 times faster). 103

Table 5.9: Experiment results on Amazon AWS network 104

Table 5.10: (AWS) Performance ofCOLORfor di�erent graph sizes. Normal partitioning . . 105

Table 5.11: Computation time (in seconds) of Stabilizing and Non-Stabilizing algorithms
for graph coloring. The average of node degree (3) varies between 2 and 10.
The baseline for calculating bene�t isSEQ . 108

x

LIST OF FIGURES

Figure 1.1: Illustration of two consistency models for key-value store. Original- = 0.
In sequential consistency (Figure 1.1a), thePUT (write) operation would not
succeed until the network condition is recovered because it requires con�r-
mations from all replicas. Hence, clients always have a consistent view of the
data under sequential consistency. In eventual consistency (Figure 1.1b), the
PUT operation succeeded but clients observed di�erent values of- 3

Figure 1.2: Illustration2E 5s: data anomalies in eventual consistency lead to incorrect
computation results. Figure 1.2a: two clients use Peterson algorithm for mu-
tually exclusive access to the critical section. However, the mutual exclusion
requirement is violated if the key-value store is eventually consistent. Opera-
tions related to variableturn are not shown since the conditions of the while
loop become false due to variablesx_1 andx_2. Figure 1.2b: Clients execute
incorrect actions in graph coloring computation due to violation of mutual
exclusion. On the left is the original color and on the right is the new coloring
after client 1 and client 2 executes actions on nodes� and� , respectively.
The new colors resulted from those actions are still not a valid coloring. 6

Figure 1.3: The detect-rollback approach: when the predicate of interest is violated, sys-
tem state is restored to the most recent consistent snapshot and the computation
resumes from there. 8

Figure 2.1: (This �gure is based on [1]). The lattice of distributed computation history
(right) is constructed from a particular execution (left) and causality.G¸ H ¡
15 is ade�nitely predicate since it is met by state(31 and every computation
passes through(31. G¸ H= 12 is apossiblypredicate since it is met by only
(21 and there are computation paths not going through(21. 23

Figure 2.2: Reduction of a SAT instance to a GLOB instance. 24

Figure 2.3: An example of a distributed computation . 26

Figure 2.4: Illustration of semi-forbidden state. 28

Figure 2.5: Illustration of locks. To update node 6, a client has to obtain these locks in
following order: ! _1_6– !_5_6– !_6_9 . 37

Figure 2.6: Illustration of2E 5in Voldemort. Clients run on eventual consistency R1W1 . . 40

Figure 2.7: A computation in the presence of2E 5 . 42

xi

Figure 3.1: Architecture of predicate detection module . 44

Figure 3.2: XML speci�cation for:P � ¹ G1 = 1 ^ H1 = 1º _ I 2 = 1 45

Figure 3.3: Illustration of candidates sent from a server to monitors corresponding to
three conjunctive predicates. If the predicate is semilinear, the candidate is
always sent upon a PUT request of relevant variables. 47

Figure 3.4: Illustration of causality relation under HVC interval perspective 48

Figure 3.5: Two client tasks involved in a violation. Since detection latency is much
smaller than theReadphase time, violation will be noti�ed withinRead
phase of the current task of at least one client. 52

Figure 3.6: Simulating network delay using proxies. The proxies virtually partition our
local lab network into three regions . 55

Figure 3.7: Illustration of result stabilization. TheSocial Media Analysisapplication is
run three times on Amazon AWS with monitoring enabled. Number of servers
(#) = 3. Number of clients per server (� • #) = 5. Aggregated throughput
measured bySocial Media Analysisapplication in three di�erent runs and
their average is shown. This average is used to represent the stable value of
the application throughput. 60

Figure 3.8: (AWS)Social Media Analysisapplication, 3 servers, 15 clients. The bene�t
of eventual consistency with monitors vs. sequential consistency without
monitors (throughput improvement compared to R1W3 and R2W2 is 57% and
78%, respectively), and the overhead of running monitors on each consistency
setting (the overhead is less than2%). 61

Figure 3.9: Bene�t and overhead of monitors inWeather Monitoringapplication. Per-
centage of PUT requests is 25% and 50% Number of servers =5. Number of
clients =10. Machines are on the AWS North Virginia region but in di�erent
availability zones. 62

Figure 3.10: E�ectiveness of livelock handling mechanisms. Number of servers=3, num-
ber of clients=30. We observed that adaptive mechanism worked best for
Social Media Analysis(Figure 3.10a), and backo� mechanism worked best
for Weather Monitoring(Figure 3.10b). 67

Figure 3.11: The bene�t and overhead of Eventual consistency+Rollback vs. Sequential
consistency inWeather Monitoringapplication. The inset �gure within Figure
3.11b is a close-up view showing the impact of rollback. The larger points
near the end of each data sequence are where we choose the representative
values for the data sequences. 69

xii

Figure 3.12: Comparing the completion time of Sequential Consistency (R1W3) vs. Even-
tual Consistency with rollback and adaptive consistency (R1W1+adaptive) in
Social Media Analysisapplication. On a power-law clustering graph, before
90% of the nodes are processed, R1W1+adaptive progresses about 18% faster
than R1W3. Overall, R1W1+adaptive is9•5%faster than R1W3. On a regu-
lar random graph, the bene�t before90%of the nodes are processed is26%
and the overall bene�t is20•8%. 70

Figure 4.1: Convergence of maximal matching . 79

Figure 4.2: Convergence of maximal matching in the experiments deployed on Amazon
EC2 instances. Note that this convergence pattern is similar to the convergence
pattern in Figure 4.1 except that the convergence in Amazon EC2 experiments
converges slower. This is because the delay in Amazon AWS network is longer. 81

Figure 5.1: Measurement of client throughput (ops� operations per seconds) ofMAX-
MATCH with di�erent input graphs. Normal partitioning. Latency was 20
ms. 97

Figure 5.2: The convergence pattern of di�erent execution modes inCOLOR. Normal
partitioning. Latency was 20ms. 102

xiii

LIST OF ALGORITHMS

1 Linear predicate detection algorithm adapted from [2] 27
2 Semilinear predicate monitor algorithm adapted from [3] 29
3 Rollback algorithm at a client . 53

xiv

CHAPTER 1

INTRODUCTION

1.1 The Trade-o� between Consistency and Performance in Distributed Key-
value Stores.

Distributed key-value stores [4�10] have gained increasing popularity due to their scalability

and simple data model. Clients (users) view a distributed key-value store as a single table with two

�elds: a uniquekey�eld for storing the variable names, and avalue�eld for storing the associated

values of the variables. A machine storing that table is called areplica (or server). Clients' access

to the key-value store is performed by issuing two operations,PUT (write) andGET (read), to the

replicas.

The clientsare distributed programs that coordinate to perform some computation task (e.g.

�nd a valid coloring for a graph). During their execution, clients use the key-value store to retrieve

data and update computation results (i.e. permanent data are not kept locally at the clients). For the

client program to be correct, it is required that the values read by the clients are up-to-date. This

requirement can be divided into two smaller requirements: (1) the client actions are atomic [11]

(e.g. a client should not read a value that is being updated by another client), and (2) the data store

is sequentially consistent [12], i.e. responses from di�erent replicas are identical so that the clients

have the illusion that they are interacting with a single replica.

The �rst requirement can be satis�ed if the clients employ some mutual exclusion mechanism

such as locking [13] when they access data entries. The second requirement is trivially satis�ed

if the key-value store consists of one replica. However, single-replica key-value store is not used

in practice since the replica will become a performance bottle-neck as well as a single point of

failure. To provide higher availability and fault tolerance, the key-value table is replicated across

multiple replicas located at regions geographically far enough (a failure in a region does not a�ect

other regions). The key-value store also employs a consistency model (protocol) to keep the data at

1

replicas synchronized. To meet the second requirement aforementioned, the model employed should

be the sequential consistency model. Sequential consistency ismore naturalfor programmers to

write programs as it masks the complexity of replication and ensures that di�erent clients always

observe the same value for the same key. However, when there is a transient failure, in order to

ful�ll that contract, the sequential consistency model would block client operations until it is safe

to proceed (cf. Figure 1.1a). This restriction impedes the performance (throughput and latency of

operations) of the key-value store.

Another consistency model is eventual consistency which is a best-e�ort approach. When a

client reads the value of a key, each replica returns the most recent value that it knows (even when that

value di�ers from the values stored at other replicas). When a client updates a key, a con�rmation

from one replica is su�cient for thePUT operation to be considered successful. (Con�rmations

from multiple replicas are great but not required, and the responsive replica is usually located in the

same geographical region as the client). Since there is no blocking, the performance of a key-value

store under eventual consistency is higher than under sequential consistency. However, when there

is a transient network failure, di�erent replicas could store di�erent values for the same key under

eventual consistency. If this happens, clients may observe di�erent values for the same key (cf.

Figure 1.1b) and they could perform undesirable actions. Although suchdata anomaliesare not

frequent [4] and they are expected to be resolved eventually when the failure stops and new updates

override the old values, they a�ect the correctness of the computation and compromise subsequent

execution.

The advantages and disadvantages of the sequential and eventual consistency models re�ect

the inevitable trade-o� between consistency and performance in a key-value store. Recall that due

to the CAP theorem [14, 15], it is impossible for a distributed key-value store to simultaneously

achieve three properties: (C) sequential consistency, (A) availability, i.e. a client request is always

satis�ed within a provisioned time, and (P) partition tolerance, i.e. the key-value store is still

operational despite the presence of network failures. Since failures are a norm in distributed

systems and the capability to maintain the service at an acceptable level in the presence of failures

2

(a) Sequential consistency (b) Eventual consistency

Figure 1.1: Illustration of two consistency models for key-value store. Original- = 0. In sequential
consistency (Figure 1.1a), thePUT (write) operation would not succeed until the network condition
is recovered because it requires con�rmations from all replicas. Hence, clients always have a
consistent view of the data under sequential consistency. In eventual consistency (Figure 1.1b), the
PUT operation succeeded but clients observed di�erent values of- .

is a critical dependability and business requirement of any system, the partition tolerance property

is a necessity. Consequently, the trade-o� between consistency and availability (performance) is

inevitable. The best trade-o� decisions between consistency and performance often depend on

the speci�c applications carried out by the clients and there is an array of consistency models

designed for di�erent needs [16, 17]. This dissertation focuses on sequential consistency and

eventual consistency as they are the consistency models available in most distributed key-value

stores [4, 5, 10, 18�24]. In this dissertation, we choose LinkedIn's Voldemort [5] key-value store

as the example of key-value store for studying and evaluation since the project is open-source and

supports tunable consistency.

1.2 Problem Statement

The problem we are interested in this study is as follows:

3

A designer has to solve a distributed computation problem on a key-value store. The

key-value store only provides sequential consistency and eventual consistency, and the

key-value store has better performance under eventual consistency. What should the

designer do to make use of this advantage of eventual consistency?.

In order to use eventual consistency, the designer has to address the problem associated with

it: data anomalies could lead to incorrect computation results. As an illustration of this problem,

consider a distributed computation that relies on a key-value store to arrange exclusive access to

a critical resource for the clients. If the key-value store employs sequential consistency and the

clients use Peterson's algorithm [13] then the mutual exclusion is guaranteed but the performance

is slow. If eventual consistency is adopted then the mutual exclusion is violated (cf. Figure 1.2a).

The reason for this violation is that when there is a transient network failure, client requests are still

served by the local replicas (servers) and the clients will observe di�erent values for the variables

related to Peterson algorithm (namelyx_1, x_2, andturn). Both clients think that the status of

the lock is available and they proceed to the critical section simultaneously. We say that two clients

con�ict when the time intervals during which the clients want to access the same critical section

overlap.

For the sake of discussion, suppose that the computation task carried out by the clients is the

graph coloring problem [25] in which the clients have to assign colors to every graph node (vertex)

so that neighboring nodes have di�erent colors. Each client is assigned to work on a partition

of the input graph (a subset of graph nodes). Assume client 1 and client 2 are working on two

neighboring nodes� and� , respectively. To ensure action atomicity, a lock is imposed on the

edge¹�– � º so that client 1 (respectively client 2) could not process node� (respectively node�)

if it has not obtained the lock corresponding to edge¹�– � º. As illustrated before, this lock could

be (incorrectly) obtained by both clients under eventual consistency. Each client then proceeds to

perform the action on its node, i.e. it reads the colors of neighboring nodes and chooses a di�erent

color for its node. Suppose the initial color of every node is0, both clients choose color1 as the

new color for both� and� . However, these client actions are incorrect since� and� are neighbors

4

so they should have di�erent colors (cf. Figure 1.2b). The reason for these incorrect actions is that

client 1 (respectively client 2) reads the color of node� (respectively node�) while that color is

being updated by client 2 (respectively client 1). If the clients use locks and the key-value store is

sequentially consistent, the resultant coloring is always valid since at most one client is allowed to

proceed and update the color of its node at any given time.

We denote such erroneous client actions asconsistency violating faults(2E 5s) because the

consequences of those actions are similar to consequences of faulty program transitions and the

causes of those actions are due to data anomalies in eventual consistency. We will formally de�ne

2E 5s in Section 2.4.

1.3 Approaches

To address the problem caused by2E 5s, the designer has two options: either prevent2E 5s by

employing sequential consistency or let2E 5s occur in eventual consistency and handle them. The

�rst option retards the performance and is not in accordance with the goal of the problem we have

stated before. For the second option, there are several approaches:

1. Develop a brand new algorithm that works under eventual consistency, or

2. Use stabilization to handle2E 5s, or

3. Run an existing algorithm (available for sequential consistency) on eventual consistency

by pretending that the underlying system satis�es sequential consistency but monitor the

execution to detect violations of the mutual exclusion requirement and perform corrective

actions upon a violation is reported.

In case of the �rst approach, we potentially need to develop a new algorithm for each computation

task at hand. In case of the second option, data anomalies and the consequences of2E 5s are treated

as state perturbations and a stabilizing algorithm is already designed to handle the issue. In case

of the third option, the corrective actions may include rolling back the system to an earlier state if

a violation is found. While rollback in general distributed systems is a challenging task, existing

5

	List of Tables
	List of Figures
	Introduction
	The Trade-off between Consistency and Performance in Distributed Key-value Stores.
	Problem Statement
	Approaches
	Contributions
	Outline of the Dissertation
	Nomenclature

	Preliminaries
	Predicate Detection in Distributed Systems
	System Model
	Causality in Distributed Systems
	Vector Clocks
	Hybrid Vector Clocks
	A Basic Framework of Predicate Detection
	Linear Predicate and Detection Algorithm
	Semilinear Predicate and Detection Algorithm

	Key-Value Store
	General Architecture of a Key-Value Store
	Voldemort Key-Value Store
	The Performance Difference between Eventual and Sequential Consistency in Voldemort Key-Value Store

	Distributed Programs
	Traditional/Active-Node Model
	Passive-Node Model
	Similarity between Active-Node and Passive-Node Model
	Executing a Node Action by Client
	Stabilization

	Consistency Violating Faults (cvf)

	Detect-Rollback Approach
	Predicate Detection Module
	Overall Architecture
	Local Predicate Detector
	Implementation of the Monitors.

	Rollback from Violations
	Rollback Mechanism
	Dealing with Potential of Livelocks

	Evaluation Results
	Experimental Setup
	Analysis of Throughput
	Analysis of System and Application Factors
	Analysis of Violations and Detection Latency
	Evaluating Strategies for Handling Livelocks
	Analysis of Applications

	Summary

	Stabilization Approach
	Expected Properties of cvf.
	Termination Detection Algorithms.
	Experimental Evaluation of Benefits of Stabilization in Key-Value Stores
	Experiment Setup
	Experiment Results

	Discussion and Extensions
	Benefits with Active Stabilization
	Benefits with Contained Active Stabilization
	Benefits with Fault-Containment stabilization.
	Other Traditional Models of Computation
	Dealing with Non-Silent Algorithms
	Non-stabilizing Algorithms and cvf

	Summary

	Stabilization versus Detect-Rollback
	Experiment Setup
	System Configuration
	Client Execution Modes.
	Case Study Problems
	Input Graphs
	Workload Partitioning Schemes.
	Performance Metrics

	Benefits of Stabilization versus Rollback: Comparison and Analysis
	Stabilization vs. Rollback: Comparison and Analysis
	Improving the Convergence Time of Stabilization Approach
	Experiments on Amazon AWS
	Scalability Analysis
	Key Observation

	Analysis of Results and Their Implications in the Design
	Insight into Comparison of Stabilization versus Rollback
	Results with Non-Stabilizing Algorithm

	Summary

	Future Work
	Improving The Detect-Rollback Approach
	Improving The Stabilization Approach
	Other Possibilities of Future Work
	Characteristics of Monitoring Errors

	Related Work
	Distributed Data Processing
	Consistency in Distributed Data Stores
	Predicate Detection in Distributed Systems
	Distributed Snapshots and Reset
	Monitoring Large-scale Web-services and Cloud Computing Systems.
	Self Stabilization
	Summary

	Conclusion
	Appendix
	Bibliography

