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ABSTRACT

USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen

Key-value stores have gained increasing popularity due to their fast performance and simple data

model. A key-value store usually consists of multiple replicas located in di�erent geographical

regions to provide higher availability and fault tolerance. Consequently, a protocol is employed

to ensure that data are consistent across the replicas. The CAP theorem states the impossibility

of simultaneously achieving three desirable properties in a distributed system, namely consistency,

availability, and network partition tolerance. Since failures are a norm in distributed systems

and the capability to maintain the service at an acceptable level in the presence of failures is a

critical dependability and business requirement of any system, the partition tolerance property

is a necessity. Consequently, the trade-o� between consistency and availability (performance) is

inevitable. Strong consistency is attained at the cost of slow performance and fast performance is

attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for

di�erent needs. Among the consistency models, sequential consistency and eventual consistency

are two common ones. The former is easier to program with but su�ers from poor performance

whereas the latter su�ers from potential data anomalies while providing higher performance.

In this dissertation, we focus on the problem of what a designer should do if he/she is asked

to solve a problem on a key-value store that provides eventual consistency. Speci�cally, we are

interested in the approaches that allow the designer to run his/her applications on an eventually

consistent key-value store and handle data anomalies if they occur during the computation. To that

end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization

approach. In the �rst option, the designer identi�es a correctness predicate, say� , and continues to

run the application as if it was running on sequential consistency, as our system monitors� . If �

is violated (because the underlying key-value store provides eventual consistency), the system rolls



back to a state where� holds and the computation is resumed from there. In the second option,

the data anomalies are treated as state perturbations and handled by the convergence property of

stabilizing algorithms.

We choose LinkedIn's Voldemort key-value store as the example key-value store for our study.

We run experiments with several graph-based applications on Amazon AWS platform to evaluate

the bene�ts of the two approaches. From the experiment results, we observe that overall, both

approaches provide bene�ts to the applications when compared to running the applications on

sequential consistency. However, stabilization provides higher bene�ts, especially in the aggressive

stabilization mode which trades more perturbations for no locking overhead. The results suggest

that while there is some cost associated with making an algorithm stabilizing, there may be a

substantial bene�t in revising an existing algorithm for the problem at hand to make it stabilizing

and reduce the overall runtime under eventual consistency.

There are several directions of extension. For the detect-rollback approach, we are working to

develop a more general rollback mechanism for the applications and improve the e�ciency and

accuracy of the monitors. For the stabilization approach, we are working to develop an analytical

model for the bene�ts of eventual consistency in stabilizing programs. Our current work focuses

on silent stabilization and we plan to extend our approach to other variations of stabilization.
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CHAPTER 1

INTRODUCTION

1.1 The Trade-o� between Consistency and Performance in Distributed Key-
value Stores.

Distributed key-value stores [4�10] have gained increasing popularity due to their scalability

and simple data model. Clients (users) view a distributed key-value store as a single table with two

�elds: a uniquekey�eld for storing the variable names, and avalue�eld for storing the associated

values of the variables. A machine storing that table is called areplica (or server). Clients' access

to the key-value store is performed by issuing two operations,PUT (write) andGET (read), to the

replicas.

The clientsare distributed programs that coordinate to perform some computation task (e.g.

�nd a valid coloring for a graph). During their execution, clients use the key-value store to retrieve

data and update computation results (i.e. permanent data are not kept locally at the clients). For the

client program to be correct, it is required that the values read by the clients are up-to-date. This

requirement can be divided into two smaller requirements: (1) the client actions are atomic [11]

(e.g. a client should not read a value that is being updated by another client), and (2) the data store

is sequentially consistent [12], i.e. responses from di�erent replicas are identical so that the clients

have the illusion that they are interacting with a single replica.

The �rst requirement can be satis�ed if the clients employ some mutual exclusion mechanism

such as locking [13] when they access data entries. The second requirement is trivially satis�ed

if the key-value store consists of one replica. However, single-replica key-value store is not used

in practice since the replica will become a performance bottle-neck as well as a single point of

failure. To provide higher availability and fault tolerance, the key-value table is replicated across

multiple replicas located at regions geographically far enough (a failure in a region does not a�ect

other regions). The key-value store also employs a consistency model (protocol) to keep the data at
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replicas synchronized. To meet the second requirement aforementioned, the model employed should

be the sequential consistency model. Sequential consistency ismore naturalfor programmers to

write programs as it masks the complexity of replication and ensures that di�erent clients always

observe the same value for the same key. However, when there is a transient failure, in order to

ful�ll that contract, the sequential consistency model would block client operations until it is safe

to proceed (cf. Figure 1.1a). This restriction impedes the performance (throughput and latency of

operations) of the key-value store.

Another consistency model is eventual consistency which is a best-e�ort approach. When a

client reads the value of a key, each replica returns the most recent value that it knows (even when that

value di�ers from the values stored at other replicas). When a client updates a key, a con�rmation

from one replica is su�cient for thePUT operation to be considered successful. (Con�rmations

from multiple replicas are great but not required, and the responsive replica is usually located in the

same geographical region as the client). Since there is no blocking, the performance of a key-value

store under eventual consistency is higher than under sequential consistency. However, when there

is a transient network failure, di�erent replicas could store di�erent values for the same key under

eventual consistency. If this happens, clients may observe di�erent values for the same key (cf.

Figure 1.1b) and they could perform undesirable actions. Although suchdata anomaliesare not

frequent [4] and they are expected to be resolved eventually when the failure stops and new updates

override the old values, they a�ect the correctness of the computation and compromise subsequent

execution.

The advantages and disadvantages of the sequential and eventual consistency models re�ect

the inevitable trade-o� between consistency and performance in a key-value store. Recall that due

to the CAP theorem [14, 15], it is impossible for a distributed key-value store to simultaneously

achieve three properties: (C) sequential consistency, (A) availability, i.e. a client request is always

satis�ed within a provisioned time, and (P) partition tolerance, i.e. the key-value store is still

operational despite the presence of network failures. Since failures are a norm in distributed

systems and the capability to maintain the service at an acceptable level in the presence of failures
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(a) Sequential consistency (b) Eventual consistency

Figure 1.1: Illustration of two consistency models for key-value store. Original- = 0. In sequential
consistency (Figure 1.1a), thePUT (write) operation would not succeed until the network condition
is recovered because it requires con�rmations from all replicas. Hence, clients always have a
consistent view of the data under sequential consistency. In eventual consistency (Figure 1.1b), the
PUT operation succeeded but clients observed di�erent values of- .

is a critical dependability and business requirement of any system, the partition tolerance property

is a necessity. Consequently, the trade-o� between consistency and availability (performance) is

inevitable. The best trade-o� decisions between consistency and performance often depend on

the speci�c applications carried out by the clients and there is an array of consistency models

designed for di�erent needs [16, 17]. This dissertation focuses on sequential consistency and

eventual consistency as they are the consistency models available in most distributed key-value

stores [4, 5, 10, 18�24]. In this dissertation, we choose LinkedIn's Voldemort [5] key-value store

as the example of key-value store for studying and evaluation since the project is open-source and

supports tunable consistency.

1.2 Problem Statement

The problem we are interested in this study is as follows:
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A designer has to solve a distributed computation problem on a key-value store. The

key-value store only provides sequential consistency and eventual consistency, and the

key-value store has better performance under eventual consistency. What should the

designer do to make use of this advantage of eventual consistency?.

In order to use eventual consistency, the designer has to address the problem associated with

it: data anomalies could lead to incorrect computation results. As an illustration of this problem,

consider a distributed computation that relies on a key-value store to arrange exclusive access to

a critical resource for the clients. If the key-value store employs sequential consistency and the

clients use Peterson's algorithm [13] then the mutual exclusion is guaranteed but the performance

is slow. If eventual consistency is adopted then the mutual exclusion is violated (cf. Figure 1.2a).

The reason for this violation is that when there is a transient network failure, client requests are still

served by the local replicas (servers) and the clients will observe di�erent values for the variables

related to Peterson algorithm (namelyx_1, x_2, andturn ). Both clients think that the status of

the lock is available and they proceed to the critical section simultaneously. We say that two clients

con�ict when the time intervals during which the clients want to access the same critical section

overlap.

For the sake of discussion, suppose that the computation task carried out by the clients is the

graph coloring problem [25] in which the clients have to assign colors to every graph node (vertex)

so that neighboring nodes have di�erent colors. Each client is assigned to work on a partition

of the input graph (a subset of graph nodes). Assume client 1 and client 2 are working on two

neighboring nodes� and� , respectively. To ensure action atomicity, a lock is imposed on the

edge¹�– � º so that client 1 (respectively client 2) could not process node� (respectively node� )

if it has not obtained the lock corresponding to edge¹�– � º. As illustrated before, this lock could

be (incorrectly) obtained by both clients under eventual consistency. Each client then proceeds to

perform the action on its node, i.e. it reads the colors of neighboring nodes and chooses a di�erent

color for its node. Suppose the initial color of every node is0, both clients choose color1 as the

new color for both� and� . However, these client actions are incorrect since� and� are neighbors

4



so they should have di�erent colors (cf. Figure 1.2b). The reason for these incorrect actions is that

client 1 (respectively client 2) reads the color of node� (respectively node� ) while that color is

being updated by client 2 (respectively client 1). If the clients use locks and the key-value store is

sequentially consistent, the resultant coloring is always valid since at most one client is allowed to

proceed and update the color of its node at any given time.

We denote such erroneous client actions asconsistency violating faults(2E 5s) because the

consequences of those actions are similar to consequences of faulty program transitions and the

causes of those actions are due to data anomalies in eventual consistency. We will formally de�ne

2E 5s in Section 2.4.

1.3 Approaches

To address the problem caused by2E 5s, the designer has two options: either prevent2E 5s by

employing sequential consistency or let2E 5s occur in eventual consistency and handle them. The

�rst option retards the performance and is not in accordance with the goal of the problem we have

stated before. For the second option, there are several approaches:

1. Develop a brand new algorithm that works under eventual consistency, or

2. Use stabilization to handle2E 5s, or

3. Run an existing algorithm (available for sequential consistency) on eventual consistency

by pretending that the underlying system satis�es sequential consistency but monitor the

execution to detect violations of the mutual exclusion requirement and perform corrective

actions upon a violation is reported.

In case of the �rst approach, we potentially need to develop a new algorithm for each computation

task at hand. In case of the second option, data anomalies and the consequences of2E 5s are treated

as state perturbations and a stabilizing algorithm is already designed to handle the issue. In case

of the third option, the corrective actions may include rolling back the system to an earlier state if

a violation is found. While rollback in general distributed systems is a challenging task, existing
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