USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Computer Science and Engineering — Doctor of Philosophy

2021



ABSTRACT

USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen
Key-value stores have gained increasing popularity due to their fast performance and simple data
model. A key-value store usually consists of multiple replicas located in di erent geographical
regions to provide higher availability and fault tolerance. Consequently, a protocol is employed
to ensure that data are consistent across the replicas. The CAP theorem states the impossibility
of simultaneously achieving three desirable properties in a distributed system, namely consistency,
availability, and network partition tolerance. Since failures are a norm in distributed systems
and the capability to maintain the service at an acceptable level in the presence of failures is a
critical dependability and business requirement of any system, the partition tolerance property
is a necessity. Consequently, the trade-o between consistency and availability (performance) is
inevitable. Strong consistency is attained at the cost of slow performance and fast performance is
attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for
di erent needs. Among the consistency models, sequential consistency and eventual consistency
are two common ones. The former is easier to program with but su ers from poor performance
whereas the latter su ers from potential data anomalies while providing higher performance.

In this dissertation, we focus on the problem of what a designer should do if he/she is asked
to solve a problem on a key-value store that provides eventual consistency. Speci cally, we are
interested in the approaches that allow the designer to run his/her applications on an eventually
consistent key-value store and handle data anomalies if they occur during the computation. To that
end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization
approach. Inthe rstoption, the designer identi es a correctness predicate,, smd continues to
run the application as if it was running on sequential consistency, as our system monitbrs

is violated (because the underlying key-value store provides eventual consistency), the system rolls



back to a state where holds and the computation is resumed from there. In the second option,
the data anomalies are treated as state perturbations and handled by the convergence property of
stabilizing algorithms.

We choose LinkedIn's Voldemort key-value store as the example key-value store for our study.
We run experiments with several graph-based applications on Amazon AWS platform to evaluate
the bene ts of the two approaches. From the experiment results, we observe that overall, both
approaches provide bene ts to the applications when compared to running the applications on
sequential consistency. However, stabilization provides higher bene ts, especially in the aggressive
stabilization mode which trades more perturbations for no locking overhead. The results suggest
that while there is some cost associated with making an algorithm stabilizing, there may be a
substantial bene t in revising an existing algorithm for the problem at hand to make it stabilizing
and reduce the overall runtime under eventual consistency.

There are several directions of extension. For the detect-rollback approach, we are working to
develop a more general rollback mechanism for the applications and improve the e ciency and
accuracy of the monitors. For the stabilization approach, we are working to develop an analytical
model for the bene ts of eventual consistency in stabilizing programs. Our current work focuses

on silent stabilization and we plan to extend our approach to other variations of stabilization.
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CHAPTER 1

INTRODUCTION

1.1 The Trade-o between Consistency and Performance in Distributed Key-
value Stores.

Distributed key-value stores [4 10] have gained increasing popularity due to their scalability
and simple data model. Clients (users) view a distributed key-value store as a single table with two
elds: a uniquekey eld for storing the variable names, andralue eld for storing the associated
values of the variables. A machine storing that table is callegica (or serve). Clients' access
to the key-value store is performed by issuing two operatiBs (write) andGET (read), to the
replicas.

The clientsare distributed programs that coordinate to perform some computation task (e.g.
nd a valid coloring for a graph). During their execution, clients use the key-value store to retrieve
data and update computation results (i.e. permanent data are not kept locally at the clients). For the
client program to be correct, it is required that the values read by the clients are up-to-date. This
requirement can be divided into two smaller requirements: (1) the client actions are atomic [11]
(e.g. aclient should not read a value that is being updated by another client), and (2) the data store
is sequentially consistent [12], i.e. responses from di erent replicas are identical so that the clients
have the illusion that they are interacting with a single replica.

The rst requirement can be satis ed if the clients employ some mutual exclusion mechanism
such as locking [13] when they access data entries. The second requirement is trivially satis ed
if the key-value store consists of one replica. However, single-replica key-value store is not used
in practice since the replica will become a performance bottle-neck as well as a single point of
failure. To provide higher availability and fault tolerance, the key-value table is replicated across
multiple replicas located at regions geographically far enough (a failure in a region does not a ect

other regions). The key-value store also employs a consistency model (protocol) to keep the data at



replicas synchronized. To meetthe second requirement aforementioned, the model employed should
be the sequential consistency model. Sequential consistemegres naturalfor programmers to

write programs as it masks the complexity of replication and ensures that di erent clients always
observe the same value for the same key. However, when there is a transient failure, in order to
ful Il that contract, the sequential consistency model would block client operations until it is safe

to proceed (cf. Figure 1.1a). This restriction impedes the performance (throughput and latency of
operations) of the key-value store.

Another consistency model is eventual consistency which is a best-e ort approach. When a
clientreads the value of a key, each replica returns the most recent value that it knows (even when that
value di ers from the values stored at other replicas). When a client updates a key, a con rmation
from one replica is su cient for thePUT operation to be considered successful. (Con rmations
from multiple replicas are great but not required, and the responsive replica is usually located in the
same geographical region as the client). Since there is no blocking, the performance of a key-value
store under eventual consistency is higher than under sequential consistency. However, when there
is a transient network failure, di erent replicas could store di erent values for the same key under
eventual consistency. If this happens, clients may observe di erent values for the same key (cf.
Figure 1.1b) and they could perform undesirable actions. Although datzhanomaliesre not
frequent [4] and they are expected to be resolved eventually when the failure stops and new updates
override the old values, they a ect the correctness of the computation and compromise subsequent
execution.

The advantages and disadvantages of the sequential and eventual consistency models re ect
the inevitable trade-o between consistency and performance in a key-value store. Recall that due
to the CAP theorem [14, 15], it is impossible for a distributed key-value store to simultaneously
achieve three properties: (C) sequential consistency, (A) availability, i.e. a client request is always
satis ed within a provisioned time, and (P) partition tolerance, i.e. the key-value store is still
operational despite the presence of network failures. Since failures are a norm in distributed

systems and the capability to maintain the service at an acceptable level in the presence of failures



(a) Sequential consistency (b) Eventual consistency

Figure 1.1: lllustration of two consistency models for key-value store. OrigiraD. In sequential
consistency (Figure 1.1a), tRJT (write) operation would not succeed until the network condition

is recovered because it requires con rmations from all replicas. Hence, clients always have a
consistent view of the data under sequential consistency. In eventual consistency (Figure 1.1b), the
PUT operation succeeded but clients observed di erent values. of

is a critical dependability and business requirement of any system, the partition tolerance property
is a necessity. Consequently, the trade-o between consistency and availability (performance) is
inevitable. The best trade-0 decisions between consistency and performance often depend on
the speci ¢ applications carried out by the clients and there is an array of consistency models
designed for di erent needs [16,17]. This dissertation focuses on sequential consistency and
eventual consistency as they are the consistency models available in most distributed key-value
stores [4,5, 10,18 24]. In this dissertation, we choose LinkedIn's Voldemort [5] key-value store
as the example of key-value store for studying and evaluation since the project is open-source and

supports tunable consistency.

1.2 Problem Statement

The problem we are interested in this study is as follows:



A designer has to solve a distributed computation problem on a key-value store. The
key-value store only provides sequential consistency and eventual consistency, and the
key-value store has better performance under eventual consistency. What should the

designer do to make use of this advantage of eventual consistency?

In order to use eventual consistency, the designer has to address the problem associated with
it: data anomalies could lead to incorrect computation results. As an illustration of this problem,
consider a distributed computation that relies on a key-value store to arrange exclusive access to
a critical resource for the clients. If the key-value store employs sequential consistency and the
clients use Peterson's algorithm [13] then the mutual exclusion is guaranteed but the performance
is slow. If eventual consistency is adopted then the mutual exclusion is violated (cf. Figure 1.2a).
The reason for this violation is that when there is a transient network failure, client requests are still
served by the local replicas (servers) and the clients will observe di erent values for the variables
related to Peterson algorithm (namelyl, x_2, andturn ). Both clients think that the status of
the lock is available and they proceed to the critical section simultaneously. We say that two clients
con ict when the time intervals during which the clients want to access the same critical section
overlap.

For the sake of discussion, suppose that the computation task carried out by the clients is the
graph coloring problem [25] in which the clients have to assign colors to every graph node (vertex)
so that neighboring nodes have di erent colors. Each client is assigned to work on a partition
of the input graph (a subset of graph nodes). Assume client 1 and client 2 are working on two
neighboring nodes and , respectively. To ensure action atomicity, a lock is imposed on the
edge! — ©so that client 1 (respectively client 2) could not process nodeespectively node )
if it has not obtained the lock corresponding to edlge °. As illustrated before, this lock could
be (incorrectly) obtained by both clients under eventual consistency. Each client then proceeds to
perform the action on its node, i.e. it reads the colors of neighboring nodes and chooses a di erent
color for its node. Suppose the initial color of every nod8,iboth clients choose coldras the

new color for both and . However, these client actions are incorrect sin@d are neighbors



so they should have di erent colors (cf. Figure 1.2b). The reason for these incorrect actions is that
client 1 (respectively client 2) reads the color of nodérespectively node ) while that color is
being updated by client 2 (respectively client 1). If the clients use locks and the key-value store is
sequentially consistent, the resultant coloring is always valid since at most one client is allowed to
proceed and update the color of its node at any given time.

We denote such erroneous client actionscassistency violating fault&2E 5) because the
consequences of those actions are similar to consequences of faulty program transitions and the
causes of those actions are due to data anomalies in eventual consistency. We will formally de ne

2E 5 in Section 2.4.

1.3 Approaches

To address the problem causeddly 5, the designer has two options: either prex&ats by
employing sequential consistency or 2 S occur in eventual consistency and handle them. The
rst option retards the performance and is not in accordance with the goal of the problem we have

stated before. For the second option, there are several approaches:
1. Develop a brand new algorithm that works under eventual consistency, or
2. Use stabilization to handRE S, or

3. Run an existing algorithm (available for sequential consistency) on eventual consistency
by pretending that the underlying system satis es sequential consistency but monitor the
execution to detect violations of the mutual exclusion requirement and perform corrective

actions upon a violation is reported.

In case ofthe rstapproach, we potentially need to develop a new algorithm for each computation
task at hand. In case of the second option, data anomalies and the consequ2icssu# treated
as state perturbations and a stabilizing algorithm is already designed to handle the issue. In case
of the third option, the corrective actions may include rolling back the system to an earlier state if

a violation is found. While rollback in general distributed systems is a challenging task, existing
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