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Abstract

Establishing identity is becoming critical in our vastly interconnected society. Questions such as“Is she really who she
claims to be?,” “Is this person authorized to use this facility?,” or “Is he in the watchlist posted by the government?”
are routinely being posed in a variety of scenarios ranging from issuing a drivers license to gaining entry into a
country. The need for reliable user authentication techniques has increased in the wake of heightened concerns about
security and rapid advancements in networking, communication, and mobility. Biometrics, described as the science
of recognizing an individual based on his or her physical or behavioral traits, is beginning to gain acceptance as
a legitimate method for determining an individuals identity. Biometric systems have now been deployed in various
commercial, civilian, and forensic applications as a means of establishing identity. This paper presents an overview of
biometrics and discusses some of the pertinent terminology necessary to understand this technology. The importance
of information fusion in the context of biometrics is also highlighted. It is becoming increasingly apparent that
multibiometric systems will play a significant role in dispensing the role of identity management in the 21st century.

1 Introduction

Establishing the identity of an individual is of paramount importance in our highly networked society. The overarching
task of any identity management system is the ability to determine or validate the identity of its users prior to granting
them access to the resources protected by the system. Traditionally, passwords (knowledge-based schemes) and ID
cards (token-based schemes) have been used to validate the identity of an individual intending to access the services
offered by an application (e.g., online banking) or a facility (e.g., theme parks). However, such mechanisms for user
authentication have several limitations. For example, passwords can be divulged to unauthorized users resulting in
a breach of security; moreover, simple passwords can be easily guessed by an intruder while complex passwords can
be difficult to recollect for a legitimate user. ID cards, on the other hand, can be misplaced, forged or stolen thereby
undermining the security afforded by the system. Thus, it is necessary to utilize alternate methods of authentication
that are not merely based on what you know or what you have but, rather, on who you are.

Biometrics is the science of establishing the identity of an individual based on the inherent physical or behavioral
traits associated with the person [29, 4, 33]. Biometric systems utilize fingerprints, iris, face, hand geometry, palmprint,
finger vein structure, gait, voice, signature, keyboard typing pattern, etc. in order to recognize a person (Figure 1).
A typical biometric system operates by capturing the biometric trait of a person via an appropriately designed
acquisition module and comparing the recorded trait with the biometric samples (or templates) in a database in
order to determine the identity of the person (identification) or to validate a claimed identity (verification). For
example, a face biometric system captures the face image of an individual, extracts a feature set from the segmented
face, compares this feature set against the templates stored in the database and renders a decision regarding the
identity of the individual. Thus, a generic biometric system may be viewed as a pattern recognition system in which
the raw biometric data (or signal) constitutes the input pattern that is assigned a class label. In an identification
system, the class label pertains to the identity of the individual while in a verification system the class label is a
match (genuine) or a non-match (impostor). In both modes of operation, a reject label is emitted when the system
is unable to determine a valid class.
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Fig. 1. Examples of biometric traits that can be used for authenticating an individual’s identity.

The need for establishing identity in a reliable manner has spurred active research in the field of biometrics
[66]. The deployment of biometric systems in border security programs (e.g., US-VISIT3), criminal investigations
(e.g., IAFIS4), logical access points (e.g., computer login) and surveillance applications (e.g., face recognition in
public spaces) further underscores the importance of designing and implementing large-scale authentication systems
that can consistently render the correct decision under various operational scenarios. Furthermore, as the number of
enrolled subjects increases over time, it is imperative that the matching accuracy of these systems is not compromised.
Indeed, the problem of biometric recognition may be viewed as a Grand Challenge, given the expectations of high
matching accuracy, ease of usability and efficient scalability in a variety of applications accessed by different segments
of the general population [31].

3 United States Visitor and Immigrant Status Indicator Technology
4 Integrated Automated Fingerprint Identification System
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2 Operation of a biometric system

A biometric system is essentially a pattern recognition system that acquires biometric data from an individual,
extracts a salient feature set from the data, compares this feature set against the feature set(s) stored in the database,
and executes an action based on the result of the comparison. Therefore, a generic biometric system can be viewed as
having four main modules: a sensor module; a quality assessment and feature extraction module; a matching module;
and a database module. Each of these modules is described below.

1. Sensor module: A suitable biometric reader or scanner is required to acquire the raw biometric data of an
individual. To obtain fingerprint images, for example, an optical fingerprint sensor may be used to image the
friction ridge structure of the fingertip. The sensor module defines the human machine interface and is, therefore,
pivotal to the performance of the biometric system. A poorly designed interface can result in a high failure-to-
acquire rate and, consequently, low user acceptability.

2. Quality assessment and feature extraction module: The quality of the biometric data acquired by the
sensor is first assessed in order to determine its suitability for further processing. Typically, the acquired data is
subjected to a signal enhancement algorithm in order to improve its quality. However, in some cases, the quality
of the data may be so poor that the user is asked to present the biometric data again. The biometric data is then
processed and a set of salient discriminatory features extracted to represent the underlying trait. For example, the
position and orientation of minutia points (local ridge and valley anomalies) in a fingerprint image are extracted
by the feature extraction module in a fingerprint-based biometric system. During enrollment, this feature set is
stored in the database and is commonly referred to as a template .

3. Matching and decision-making module: The extracted features are compared against the stored templates
to generate match scores. In a fingerprint-based biometric system, the number of matching minutiae between
the input and the template feature sets is determined and a match score reported. The match score may be
moderated by the quality of the presented biometric data. The matcher module also encapsulates a decision
making module, in which the match scores are used to either validate a claimed identity or provide a ranking of
the enrolled identities in order to identify an individual.

4. System database module: The database acts as the repository of biometric information. During the enrollment
process, the feature set extracted from the raw biometric sample (i.e., the template) is stored in the database
(possibly) along with some biographic information (such as name, Personal Identification Number (PIN), address,
etc.) characterizing the user. The data capture during the enrollment process may or may not be supervised by
a human depending on the application. For example, a user attempting to create a new computer account in her
biometric-enabled workstation may proceed to enroll her biometrics without any supervision; a person desiring
to use a biometric-enabled ATM, on the other hand, will have to enroll her biometrics in the presence of a bank
officer after presenting her non-biometric credentials.

The template of a user can be extracted from a single biometric sample, or generated by processing multiple
samples. Thus, the minutiae template of a finger may be extracted after mosaicing multiple samples of the same
finger. Some systems store multiple templates in order to account for the intra-class variations associated with a
user. Face recognition systems, for instance, may store multiple templates of an individual, with each template
corresponding to a different facial pose with respect to the camera. Depending on the application, the template can
be stored in the central database of the biometric system or be recorded on a token (e.g., smart card) issued to the
individual.

In the face recognition literature, the raw biometric images stored in the database are often referred to as gallery
images while those acquired during authentication are known as probe images. These are synonymous with the terms
stored images and query/input images, respectively.

3 Performance of a biometric system

Unlike password-based systems, where a perfect match between two alphanumeric strings is necessary in order to
validate a user’s identity, a biometric system seldom encounters two samples of a user’s biometric trait that result in
exactly the same feature set. This is due to imperfect sensing conditions (e.g., noisy fingerprint due to sensor mal-
function), alterations in the user’s biometric characteristic (e.g., respiratory ailments impacting speaker recognition),
changes in ambient conditions (e.g., inconsistent illumination levels in face recognition) and variations in the user’s
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interaction with the sensor (e.g., occluded iris or partial fingerprints). Thus, the distance between two feature sets
originating from the same biometric trait of a user is typically non-zero (a distance score of zero would indicate that
the feature sets are identical). In fact, a perfect match might be an indication that a replay attack is being launched
against the system.

The variability observed in the biometric feature set of an individual is referred to as intra-class variation, and
the variability between feature sets originating from two different individuals is known as inter-class variation. A
useful feature set exhibits small intra-class variation and large inter-class variation.

A similarity match score is known as a genuine or authentic score if it is a result of matching two samples of
the same biometric trait of a user. It is known as an impostor score if it involves comparing two biometric samples
originating from different users. An impostor score that exceeds the threshold η results in a false accept (or, a false
match), while a genuine score that falls below the threshold η results in a false reject (or, a false non-match). The
False Accept Rate (FAR) (or, the False Match Rate (FMR)) of a biometric system can therefore be defined as the
fraction of impostor scores exceeding the threshold η. Similarly, the False Reject Rate (FRR) (or, the False Non-
match Rate (FNMR)) of a system may be defined as the fraction of genuine scores falling below the threshold η. The
Genuine Accept Rate (GAR) is the fraction of genuine scores exceeding the threshold η. Therefore,

GAR = 1 − FRR. (1)

Regulating the value of η changes the FRR and the FAR values, but for a given biometric system, it is not possible
to decrease both these errors simultaneously. When a large number of genuine and impostor scores is available, one
could estimate the probability density functions of the two sets of scores in order to analytically derive the FAR and
FRR. Let p(s|genuine) and p(s|impostor) represent the probability density functions (or, probability distributions)
of the score s under the genuine and impostor conditions, respectively. Then for a particular threshold, η,

FAR(η) =

∫

∞

η

p(s|impostor)ds, (2)

FRR(η) =

∫ η

−∞

p(s|genuine)ds. (3)

If the match score represents a distance or dissimilarity value, then FAR(η) and FRR(η) may be expressed as
follows:

FAR(η) =

∫ η

−∞

p(s|impostor)ds, (4)

FRR(η) =

∫

∞

η

p(s|genuine)ds. (5)

Figure 2 illustrates the genuine and impostor distributions corresponding to a face biometric system. The similarity
scores, in this case, are taken from the NIST BSSR1 database and originate from a matcher identified as Face-G.

The FAR and FRR at various values of η can be summarized using a Detection Error Tradeoff (DET) curve
([48]) that plots the FRR against the FAR at various thresholds on a normal deviate scale and interpolates between
these points (Figure 3(a)). When a linear, logarithmic or semi-logarithmic scale is used to plot these error rates,
then the resulting graph is known as a Receiver Operating Characteristic (ROC) curve ([18]). In many instances, the
ROC curve plots the GAR (rather than the FRR) against the FAR (see Figure 3(b) and (c)). The primary difference
between the DET and ROC curves is the use of the normal deviate scale in the former.

It is important to note that the occurrence of false accepts and false rejects is not evenly distributed across the
users of a biometric system. There are inherent differences in the “recognizability” of different users. Doddington et al.
[15] identify four categories of biometric users based on these inherent differences. Although this categorization (more
popularly known as Doddington’s zoo) was originally made in the context of speaker recognition, it is applicable to
other biometric modalities as well.

1. Sheep represent users whose biometric feature sets are very distinctive and exhibit low intra-class variations.
Therefore, these users are expected to have low false accept and false reject errors.
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Fig. 2. The genuine and impostor distributions corresponding to the Face-G matcher in the NIST BSSR1 database. The
threshold, η, determines the FAR and FRR of the system. Note that given these two distributions, the FAR and the FRR
cannot be reduced simultaneously by adjusting the threshold.

2. Goats refer to users who are prone to false rejects. The biometric feature sets of such users typically exhibit large
intra-class variations.

3. Lambs are users whose biometric feature set overlaps extensively with those of other individuals. The biometric
feature sets of these users have low inter-class variations. Thus, a randomly chosen user (from the target popu-
lation) has a high probability of being accepted as a lamb than as a sheep. The false accept rate associated with
these users is typically high.

4. Wolves indicate individuals who are successful in manipulating their biometric trait (especially behavioral traits)
in order to impersonate legitimately enrolled users of a system. Therefore, these users can increase the false
accept rate of the system.

Doddington et al. [15] discuss the use of statistical testing procedures to detect the presence of goats, lambs
and wolves in a voice biometric system. A combination of the F-test, Kruskal Wallis test and Durbin test is used to
establish the occurrence of these categories of users in the 1998 NIST database of speech segments that was used in the
evaluation of speaker recognition algorithms (http://www.nist.gov/speech/tests/spk/1998/current plan.htm).

Besides the two types of errors (viz., false accept and false reject) indicated above, a biometric system can
encounter other types of failures as well. The Failure to Acquire (FTA) (also known as Failure to Capture (FTC))
rate denotes the proportion of times the biometric device fails to capture a sample when the biometric characteristic
is presented to it. This type of error typically occurs when the device is not able to locate a biometric signal of
sufficiently good quality (e.g., an extremely faint fingerprint or an occluded face image). The FTA rate is also
impacted by sensor wear and tear. Thus, periodic sensor maintenance is instrumental for the efficient functioning of
a biometric system. The Failure to Enroll (FTE) rate denotes the proportion of users that cannot be successfully
enrolled in a biometric system. User training may be necessary to ensure that an individual interacts with a biometric
system appropriately in order to facilitate the acquisition of good quality biometric data. This necessitates the design
of robust and efficient user interfaces that can assist an individual both during enrollment and recognition.

There is a tradeoff between the FTE rate and the perceived system accuracy as measured by FAR/FRR. FTE
errors typically occur when the system rejects poor quality inputs during enrollment; consequently, if the threshold
on quality is high, the system database contains only good quality templates and the perceived system accuracy
improves. Because of the interdependence among the failure rates and error rates, all these rates (i.e., FTE, FTC,
FAR, FRR) constitute important performance specifications of a biometric system, and should be reported during
system evaluation along with the target population using the system.

The performance of a biometric system may also be summarized using other single-valued measures such as the
Equal Error Rate (EER) and the d-prime value. The EER refers to that point in a DET curve where the FAR equals
the FRR; a lower EER value, therefore, indicates better performance. The d-prime value (d′) measures the separation
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Fig. 3. The performance of a biometric system can be summarized using DET and ROC curves. In this example, the
performance curves are computed using the match scores of the Face-G matcher from the NIST BSSR1 database. The graph
in (a) shows a DET curve that plots FRR against FAR in the normal deviate scale. In (b) a ROC curve plots FRR against
FAR in the linear scale, while in (c) a ROC curve plots GAR against FAR in a semi-logarithmic scale.
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between the means of the genuine and impostor probability distributions in standard deviation units and is defined
as,

d′ =

√
2 | µgenuine − µimpostor |
√

σ2

genuine + σ2

impostor

,

where the µ’s and σ’s are the means and standard deviations, respectively, of the genuine and impostor distributions.
A higher d-prime value indicates better performance. If the genuine and impostor distributions indeed follow a normal
(Gaussian) distribution with equal variance (a very unlikely situation in the practical biometric domain), then d′

reduces to the normal deviate value [72].
In the case of identification, the input feature set is compared against all templates residing in the database

in order to determine the top match (i.e, the best match). The top match can be determined by examining the
match scores pertaining to all the comparisons and reporting the identity of the template corresponding to the
largest similarity score. The identification rate indicates the proportion of times a previously enrolled individual is
successfully mapped to the correct identity in the system. Here, we assume that the question being asked is, “Does
the top match correspond to the correct identity?” An alternate question could be, “Does any one of the top k

matches correspond to the correct identity?” (see [51]). The rank-k identification rate, Rk, indicates the proportion
of times the correct identity occurs in the top k matches as determined by the match score. Rank-k performance
can be summarized using the Cumulative Match Characteristic (CMC) curve ([51]) that plots Rk against k, for
k = 1, 2, . . .M with M being the number of enrolled users. The relationship between CMC and DET/ROC curves
has been discussed by [23] and [5].

The biometric of choice for a particular application is primarily dictated by the error rates and failure rates
discussed above. Other factors such as the cost of the system, throughput rate, user acceptance, ease of use, robustness
of the sensor, etc. also determine the suitability of a biometric system for an application.

4 Biometric characteristics

A number of biometric characteristics are being used in various applications. Each biometric has its pros and cons
and, therefore, the choice of a biometric trait for a particular application depends on a variety of issues besides its
matching performance. Jain et al. [29] have identified seven factors that determine the suitability of a physical or a
behavioral trait to be used in a biometric application.

1. Universality: Every individual accessing the application should possess the trait.
2. Uniqueness: The given trait should be sufficiently different across individuals comprising the population.
3. Permanence: The biometric trait of an individual should be sufficiently invariant over a period of time with

respect to the matching algorithm. A trait that changes significantly over time is not a useful biometric.
4. Measurability: It should be possible to acquire and digitize the biometric trait using suitable devices that do

not cause undue inconvenience to the individual. Furthermore, the acquired raw data should be amenable to
processing in order to extract representative feature sets.

5. Performance: The recognition accuracy and the resources required to achieve that accuracy should meet the
constraints imposed by the application.

6. Acceptability: Individuals in the target population that will utilize the application should be willing to present
their biometric trait to the system.

7. Circumvention: This refers to the ease with which the trait of an individual can be imitated using artifacts
(e.g., fake fingers), in the case of physical traits, and mimicry, in the case of behavioral traits.

No single biometric is expected to effectively meet all the requirements (e.g., accuracy, practicality, cost) imposed
by all applications (e.g., Digital Rights Management (DRM), access control, welfare distribution). In other words,
no biometric is ideal but a number of them are admissible. The relevance of a specific biometric to an application
is established depending upon the nature and requirements of the application, and the properties of the biometric
characteristic. A brief introduction to some of the commonly used biometric characteristics is given below:

1. Face: Face recognition is a non-intrusive method, and facial attributes are probably the most common biometric
features used by humans to recognize one another. The applications of facial recognition range from a static,
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controlled “mug-shot” authentication to a dynamic, uncontrolled face identification in a cluttered background.
The most popular approaches to face recognition [43] are based on either (i) the location and shape of facial
attributes, such as the eyes, eyebrows, nose, lips, and chin and their spatial relationships, or (ii) the overall
(global) analysis of the face image that represents a face as a weighted combination of a number of canonical
faces. While the authentication performance of the face recognition systems that are commercially available is
reasonable [60], they impose a number of restrictions on how the facial images are obtained, often requiring a
fixed and simple background with controlled illumination. These systems also have difficulty in matching face
images captured from two different views, under different illumination conditions, and at different times. It is
questionable whether the face itself, without any contextual information, is a sufficient basis for recognizing
a person from a large number of identities with an extremely high level of confidence. In order that a facial
recognition system works well in practice, it should automatically (i) detect whether a face is present in the
acquired image; (ii) locate the face if there is one; and (iii) recognize the face from a general viewpoint (i.e., from
any pose).

2. Fingerprint: Humans have used fingerprints for personal identification for many decades. The matching (i.e.,
identification) accuracy using fingerprints has been shown to be very high [76, 45]. A fingerprint is the pattern
of ridges and valleys on the surface of a fingertip whose formation is determined during the first seven months
of fetal development. It has been empirically determined that the fingerprints of identical twins are different and
so are the prints on each finger of the same person [46]. Today, most fingerprint scanners cost less than US $50
when ordered in large quantities and the marginal cost of embedding a fingerprint-based biometric in a system
(e.g., laptop computer) has become affordable in a large number of applications. The accuracy of the currently
available fingerprint recognition systems is adequate for authentication systems in several applications, particu-
larly forensics. Multiple fingerprints of a person (e.g., ten-prints used in IAFIS) provide additional information
to allow for large-scale identification involving millions of identities. One problem with large-scale fingerprint
recognition systems is that they require a huge amount of computational resources, especially when operating in
the identification mode. Finally, fingerprints of a small fraction of the population may be unsuitable for automatic
identification because of genetic factors, aging, environmental or occupational reasons (e.g., manual workers may
have a large number of cuts and bruises on their fingerprints that keep changing).

3. Hand geometry: Hand geometry recognition systems are based on a number of measurements taken from
the human hand, including its shape, size of palm, and the lengths and widths of the fingers [79]. Commercial
hand geometry-based authentication systems have been installed in hundreds of locations around the world. The
technique is very simple, relatively easy to use, and inexpensive. Environmental factors such as dry weather or
individual anomalies such as dry skin do not appear to adversely affect the authentication accuracy of hand
geometry-based systems. However, the geometry of the hand is not known to be very distinctive and hand
geometry-based recognition systems cannot be scaled up for systems requiring identification of an individual from
a large population. Furthermore, hand geometry information may not be invariant during the growth period of
children. In addition, an individual’s jewelry (e.g., rings) or limitations in dexterity (e.g., from arthritis), may
pose challenges in extracting the correct hand geometry information. The physical size of a hand geometry-based
system is large, and it cannot be embedded in certain devices like laptops. There are authentication systems
available that are based on measurements of only a few fingers (typically, index and middle) instead of the entire
hand. These devices are smaller than those used for hand geometry, but still much larger than those used for
procuring certain other traits (e.g., fingerprint, face, voice).

4. Palmprint: The palms of the human hands contain pattern of ridges and valleys much like the fingerprints.
The area of the palm is much larger than the area of a finger and, as a result, palmprints are expected to be
even more distinctive than the fingerprints [78, 39]. Since palmprint scanners need to capture a large area, they
are bulkier and more expensive than the fingerprint sensors. Human palms also contain additional distinctive
features such as principal lines and wrinkles that can be captured even with a lower resolution scanner, which
would be cheaper [17]. Finally, when using a high-resolution palmprint scanner, all the features of the hand such
as geometry, ridge and valley features (e.g., minutiae and singular points such as deltas), principal lines, and
wrinkles may be combined to build a highly accurate biometric system.

5. Iris: The iris is the annular region of the eye bounded by the pupil and the sclera (white of the eye) on either side.
The visual texture of the iris is formed during fetal development and stabilizes during the first two years of life (the
pigmentation, however, continues changing over an extended period of time [75]). The complex iris texture carries
very distinctive information useful for personal recognition [13]. The accuracy and speed of currently deployed
iris-based recognition systems is promising and support the feasibility of large-scale identification systems based
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on iris information. Each iris is distinctive and even the irises of identical twins are different. It is possible to
detect contact lenses printed with a fake iris (see [12]). The hippus movement of the eye may also be used as a
measure of liveness for this biometric. Although early iris-based recognition systems required considerable user
participation and were expensive, the newer systems have become more user-friendly and cost-effective [54, 20].
While iris systems have a very low False Accept Rate (FAR) compared to other biometric traits, the False Reject
Rate (FRR) of these systems can be rather high [28].

6. Keystroke: It is hypothesized that each person types on a keyboard in a characteristic way. This biometric is not
expected to be unique to each individual but it may be expected to offer sufficient discriminatory information to
permit identity verification [50]. Keystroke dynamics is a behavioral biometric; one may expect to observe large
intra-class variations in a person’s typing patterns due to changes in emotional state, position of the user with
respect to the keyboard, type of keyboard used, etc. The keystrokes of a person could be monitored unobtrusively
as that person is keying in information. This biometric permits “continuous verification” of an individual’s identity
over a session after the person logs in using a stronger biometric such as fingerprint or iris.

7. Signature: The way a person signs her name is known to be a characteristic of that individual [52, 42]. Although
signatures require contact with the writing instrument and an effort on the part of the user, they have been
accepted in government, legal, and commercial transactions as a method of authentication. With the proliferation
of PDAs and Tablet PCs, on-line signature may emerge as the biometric of choice in these devices. Signature
is a behavioral biometric that changes over a period of time and is influenced by the physical and emotional
conditions of the signatories. Signatures of some people vary substantially: even successive impressions of their
signature are significantly different. Further, professional forgers may be able to reproduce signatures that fool
the signature verification system [25].

8. Voice: Voice is a combination of physical and behavioral biometric characteristics [7]. The physical features of an
individual’s voice are based on the shape and size of the appendages (e.g., vocal tracts, mouth, nasal cavities, and
lips) that are used in the synthesis of the sound. These physical characteristics of human speech are invariant for
an individual, but the behavioral aspect of the speech changes over time due to age, medical conditions (such as
common cold), emotional state, etc. Voice is also not very distinctive and may not be appropriate for large-scale
identification. A text-dependent voice recognition system is based on the utterance of a fixed predetermined
phrase. A text-independent voice recognition system recognizes the speaker independent of what she speaks. A
text-independent system is more difficult to design than a text-dependent system but offers more protection
against fraud. A disadvantage of voice-based recognition is that speech features are sensitive to a number of
factors such as background noise. Speaker recognition is most appropriate in telephone-based applications but
the voice signal is typically degraded in quality by the communication channel.

9. Gait: Gait refers to the manner in which a person walks, and is one of the few biometric traits that can be
used to recognize people at a distance. Therefore, this trait is very appropriate in surveillance scenarios where
the identity of an individual can be surreptitiously established. Most gait recognition algorithms attempt to
extract the human silhouette in order to derive the spatio-temporal attributes of a moving individual. Hence, the
selection of a good model to represent the human body is pivotal to the efficient functioning of a gait recognition
system. Some algorithms use the optic flow associated with a set of dynamically extracted moving points on the
human body to describe the gait of an individual [55]. Gait-based systems also offer the possibility of tracking
an individual over an extended period of time. However, the gait of an individual is affected by several factors
including the choice of footwear, nature of clothing, affliction of the legs, walking surface, etc.

Most biometric systems that are presently in use, typically use a single biometric trait to establish identity
(i.e., they are unibiometric systems). For example, the Schiphol Privium scheme at Amsterdam’s Schipol airport
employs iris scan smart cards to speed up the immigration process; the Ben Gurion International Airport at Tel Aviv
employs automated hand geometry-based identification kiosks to enable Israeli citizens and frequent international
travelers to rapidly negotiate the passport inspection process; some financial institutions in Japan have installed
palm-vein authentication systems in their ATMs to validate the identity of a customer conducting a transaction;
customers phoning in to schedule product shipments through Union Pacific’s railcar system are authenticated by
a speaker recognition software. With the proliferation of biometric-based solutions in civilian and law enforcement
applications, it is important that the vulnerabilities and limitations of these systems are clearly understood. Some
of the challenges commonly encountered by biometric systems are listed below.

1. Noise in sensed data: The biometric data being presented to the system may be contaminated by noise due to
imperfect acquisition conditions or subtle variations in the biometric itself. For example, a scar can change a
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subject’s fingerprint while the common cold can alter the voice characteristics of a speaker. Similarly, unfavorable
illumination conditions may significantly affect the face and iris attributes of a person. Noisy data can result in
an individual being incorrectly labeled as an impostor thereby increasing the False Reject Rate (FRR) of the
system.

2. Non-universality: The biometric system may not be able to acquire meaningful biometric data from a subset
of individuals resulting in a failure-to-enroll (FTE) error. For example, a fingerprint system may fail to image
the friction ridge structure of some individuals due to the poor quality of their fingerprints. Similarly, an iris
recognition system may be unable to obtain the iris information of a subject with long eyelashes, drooping eyelids
or certain pathological conditions of the eye5. Exception processing will be necessary in order to accommodate
such users into the authentication system.

3. Upper bound on identification accuracy: The matching performance of a unibiometric system cannot be continu-
ously improved by tuning the feature extraction and matching modules. There is an implicit upper bound on the
number of distinguishable patterns (i.e., the number of distinct biometric feature sets) that can be represented
using a template. The capacity of a template is constrained by the variations observed in the feature set of each
subject (i.e., intra-class variations) and the variations between feature sets of different subjects (i.e., inter-class
variations). Golfarelli et al. [22] state that the number of distinguishable patterns in two of the most commonly
used representations of hand geometry and face are only of the order of 105 and 103, respectively. Table 1 lists
the error rates associated with four biometric modalities - fingerprints, face, voice, iris - as suggested by recent
public tests. These statistics suggest that there is a tremendous scope for performance improvement especially
in the context of large-scale authentication systems.

4. Spoof attacks: Behavioral traits such as voice [19] and signature [25] are vulnerable to spoof attacks by an
impostor attempting to mimic the traits corresponding to legitimately enrolled subjects. Physical traits such as
fingerprints can also be spoofed by inscribing ridge-like structures on synthetic material such as gelatine and
play-doh [49, 63]. Targeted spoof attacks can undermine the security afforded by the biometric system and,
consequently, mitigate its benefits [64].

Some of the limitations of a unibiometric system can be addressed by designing a system that consolidates multiple
sources of biometric information. This can be accomplished by fusing, for example, multiple biometric systems
utilizing different traits, or multiple feature extraction and matching algorithms operating on the same biometric.
Such systems, known as multibiometric systems [68, 32, 27], can improve the matching accuracy of a biometric system
while increasing population coverage and deterring spoof attacks. In this chapter, the various sources of biometric
information that can be fused as well as the different levels of fusion that are possible are discussed.

Table 1. The false accept and false reject error rates (FAR and FRR) associated with the fingerprint, face, voice and iris
modalities. The accuracy estimates of biometric systems depend on a number of test conditions including the sensor employed,
acquisition protocol used, subject disposition, number of subjects, number of biometric samples per subject, demographic
profile of test subjects, subject habituation, time lapse between data acquisition, etc.

Biometric

Trait

Test Test Conditions False

Reject

Rate

False

Accept

Rate

Fingerprint FVC 2004 [45] Exaggerated skin dis-
tortion, rotation

2% 2%

Fingerprint FpVTE 2003 [76] US Government oper-
ational data

0.1% 1%

Face FRVT 2002 [60] Varied lighting, out-
door/indoor, time

10% 1%

Voice NIST 2004 [62] Text independent,
multi-lingual

5-10% 2-5%

Iris ITIRT 2005 [28] Indoor environment,
multiple visits

0.99% 0.94%

5 http://news.bbc.co.uk/2/hi/uk news/politics/3693375.stm
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5 Multibiometric Systems

Evidence accumulation and information fusion is an active area of research in several different fields including weather
forecasting [57], UAV coordination [74], object tracking [3], robot navigation [1], land-mine detection [24], etc. The
notion of problem solving by combining the decisions rendered by multiple “experts” (or algorithms) in a cooperative
framework has received substantial attention in the literature. Indeed, information fusion has a long history and the
theory of multiple classifier systems (MCS) has been rigorously studied [40, 37, 77, 21].

In the realm of biometrics, the consolidation of evidence presented by multiple biometric sources is an effective
way of enhancing the recognition accuracy of an authentication system. For example, the Integrated Automated
Fingerprint Identification System (IAFIS) maintained by the FBI integrates the information presented by multiple
fingers to determine a match in the master file. Some of the earliest multimodal6 biometric systems reported in the
literature combined the face (image/video) and voice (audio) traits of individuals [10, 6]. Besides enhancing matching
accuracy, the other advantages of multibiometric systems over traditional unibiometric systems are enumerated below
[68].

1. Multibiometric systems address the issue of non-universality (i.e., limited population coverage) encountered by
unibiometric systems. If a subject’s dry finger prevents her from successfully enrolling into a fingerprint system,
then the availability of another biometric trait, say iris, can aid in the inclusion of the individual in the biometric
system. A certain degree of flexibility is achieved when a user enrolls into the system using several different traits
(e.g., face, voice, fingerprint, iris, hand) while only a subset of these traits (e.g., face and voice) is requested
during authentication based on the nature of the application under consideration and the convenience of the
user.

2. Multibiometric systems can facilitate the filtering or indexing of large-scale biometric databases. For example, in
a bimodal system consisting of face and fingerprint, the face feature set may be used to compute an index value
for extracting a candidate list of potential identities from a large database of subjects. The fingerprint modality
can then determine the final identity from this limited candidate list.

3. It becomes increasingly difficult (if not impossible) for an impostor to spoof multiple biometric traits of a
legitimately enrolled individual. If each sub-system indicates the probability that a particular trait is a ‘spoof’,
then appropriate fusion schemes can be employed to determine if the user, in fact, is an impostor. Furthermore, by
asking the user to present a random subset of traits at the point of acquisition, a multibiometric system facilitates
a challenge-response type of mechanism, thereby ensuring that the system is interacting with a live user. Note
that a challenge-response mechanism can be initiated in unibiometric systems also (e.g., system prompts “Please
say 1-2-5-7”, “Blink twice and move your eyes to the right”, “Change your facial expression by smiling”, etc.).

4. Multibiometric systems also effectively address the problem of noisy data. When the biometric signal acquired
from a single trait is corrupted with noise, the availability of other (less noisy) traits may aid in the reliable
determination of identity. Some systems take into account the quality of the individual biometric signals during
the fusion process. This is especially important when recognition has to take place in adverse conditions where
certain biometric traits cannot be reliably extracted. For example, in the presence of ambient acoustic noise,
when an individual’s voice characteristics cannot be accurately measured, the facial characteristics may be used
by the multibiometric system to perform authentication. Estimating the quality of the acquired data is in itself
a challenging problem but, when appropriately done, can reap significant benefits in a multibiometric system.

5. These systems also help in the continuous monitoring or tracking of an individual in situations when a single trait
is not sufficient. Consider a biometric system that uses a 2D camera to procure the face and gait information of
a person walking down a crowded aisle. Depending upon the distance and pose of the subject with respect to
the camera, both these characteristics may or may not be simultaneously available. Therefore, either (or both)
of these traits can be used depending upon the location of the individual with respect to the acquisition system
thereby permitting the continuous monitoring of the individual.

6. A multibiometric system may also be viewed as a fault tolerant system which continues to operate even when
certain biometric sources become unreliable due to sensor or software malfunction, or deliberate user manipu-
lation. The notion of fault tolerance is especially useful in large-scale authentication systems involving a large
number of subjects (such as a border control application).

6 See Section 6 for a description of the terminology.
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The design of a multibiometric system is defined by several different factors including (a) the Human Computer
Interface (HCI) used to acquire biometric information from an individual7; (b) the tradeoff between the additional
cost incurred in introducing multiple biometric sources and the perceived improvement in matching accuracy; (c) the
sources of biometric information used to provide evidence; (d) the level of fusion, i.e, the type of information to be
fused; and (e) the fusion methodology adopted.

6 Taxonomy of Multibiometric Systems

A multibiometric system relies on the evidence presented by multiple sources of biometric information. Based on
the nature of these sources, a multibiometric system can be classified into one of the following six categories [68]:
multi-sensor, multi-algorithm, multi-instance, multi-sample, multimodal and hybrid.

1. Multi-sensor systems:
Multi-sensor systems employ multiple sensors to capture a single biometric trait of an individual. For example, a
face recognition system may deploy multiple 2D cameras to acquire the face image of a subject [41]; an infrared
sensor may be used in conjunction with a visible-light sensor to acquire the subsurface information of a person’s
face [38, 9, 71]; a multispectral camera may be used to acquire images of the iris, face or finger [69, 58]; or an
optical as well as a capacitive sensor may be used to image the fingerprint of a subject [47]. The use of multiple
sensors, in some instances, can result in the acquisition of complementary information that can enhance the
recognition ability of the system. For example, based on the nature of illumination due to ambient lighting, the
infrared and visible-light images of a person’s face can present different levels of information resulting in enhanced
matching accuracy. Similarly, the performance of a 2D face matching system can be improved by utilizing the
shape information presented by 3D range images.

2. Multi-algorithm systems:
In some cases, invoking multiple feature extraction and/or matching algorithms on the same biometric data can
result in improved matching performance. Multi-algorithm systems consolidate the output of multiple feature
extraction algorithms, or that of multiple matchers operating on the same feature set. These systems do not
necessitate the deployment of new sensors and, hence, are cost-effective compared to other types of multibiometric
systems. But on the other hand, the introduction of new feature extraction and matching modules can increase
the computational complexity of these systems. Ross et al. [67] describe a fingerprint recognition system that
utilizes minutiae as well as texture information to represent and match fingerprint images. The inclusion of the
texture-based algorithm introduces additional processing time associated with the application of Gabor filters
on the input fingerprint image. However, the performance of the hybrid matcher is shown to exceed that of
the individual matchers. Lu et al. [44] discuss a face recognition system that combines three different feature
extraction schemes (Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Linear
Discriminant Analysis (LDA)). The authors postulate that the use of different feature sets makes the system
robust to a variety of intra-class variations normally associated with the face biometric. Experimental results
indicate that combining multiple face classifiers can enhance the identification rate of the biometric system.

3. Multi-instance systems:
These systems use multiple instances of the same body trait and have also been referred to as multi-unit systems
in the literature. For example, the left and right index fingers, or the left and right irises of an individual, may be
used to verify an individual’s identity [61, 34]. The US-VISIT border security program presently uses the left- and
right-index fingers of visitors to validate their travel documents at the port of entry. FBI’s IAFIS combines the
evidence of all ten fingers to determine a matching identity in the database. These systems can be cost-effective
if a single sensor is used to acquire the multi-unit data in a sequential fashion (e.g., US-VISIT). However, in some
instances, it may be desirable to obtain the multi-unit data simultaneously (e.g., IAFIS) thereby demanding the
design of an effective (and possibly more expensive) acquisition device.

4. Multi-sample systems:
A single sensor may be used to acquire multiple samples of the same biometric trait in order to account for the
variations that can occur in the trait, or to obtain a more complete representation of the underlying trait. A
face system, for example, may capture (and store) the frontal profile of a person’s face along with the left and
right profiles in order to account for variations in the facial pose. Similarly, a fingerprint system equipped with

7 This is an important consideration for multi-modal and multi-unit systems (see Section 6).
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a small size sensor may acquire multiple dab prints of an individual’s finger in order to obtain images of various
regions of the fingerprint. A mosaicing scheme may then be used to stitch the multiple impressions and create
a composite image. One of the key issues in a multi-sample system is determining the number of samples that
have to be acquired from an individual. It is important that the procured samples represent the variability as
well as the typicality of the individual’s biometric data. To this end, the desired relationship between the samples
has to be established before-hand in order to optimize the benefits of the integration strategy. For example, a
face recognition system utilizing both the frontal- and side-profile images of an individual may stipulate that the
side-profile image should be a three-quarter view of the face [26, 56]. Alternately, given a set of biometric samples,
the system should be able to automatically select the “optimal” subset that would best represent the individual’s
variability. Uludag et al. [73] discuss two such schemes in the context of fingerprint recognition. The first method,
called DEND, employs a clustering strategy to choose a template set that best represents the intra-class variations,
while the second method, called MDIST, selects templates that exhibit maximum similarity with the rest of the
impressions.

5. Multimodal systems:
Multimodal systems establish identity based on the evidence of multiple biometric traits. For example, some of
the earliest multimodal biometric systems utilized face and voice features to establish the identity of an individual
[6, 11, 2]. Physically uncorrelated traits (e.g., fingerprint and iris) are expected to result in better improvement
in performance than correlated traits (e.g., voice and lip movement). The cost of deploying these systems is
substantially more due to the requirement of new sensors and, consequently, the development of appropriate
user interfaces. The identification accuracy can be significantly improved by utilizing an increasing number of
traits although the curse-of-dimensionality phenomenon would impose a bound on this number. The curse-of-
dimensionality limits the number of attributes (or features) used in a pattern classification system when only a
small number of training samples is available [16]. The number of traits used in a specific application will also be
restricted by practical considerations such as the cost of deployment, enrollment time, throughput time, expected
error rate, user habituation issues, etc.

6. Hybrid systems:
Chang et al. [8] use the term hybrid to describe systems that integrate a subset of the five scenarios discussed
above. For example, Brunelli et al. [6] discuss an arrangement in which two speaker recognition algorithms are
combined with three face recognition algorithms at the match score and rank levels via a HyperBF network.
Thus, the system is multi-algorithmic as well as multimodal in its design. Similarly, the NIST BSSR1 dataset [53]
has match scores pertaining to two different face matchers operating on the frontal face image of an individual
(multi-algorithm), and a fingerprint matcher operating on the left- and right-index fingers of the same individual
(multi-instance).

It is also possible to combine biometric information with non-biometric entities such as tokens in order to enhance
the matching performance. For example, [35] discuss a dual factor authenticator that combines a pseudo random
number (present in a token) with a facial feature set in order to produce a set of user-specific compact codes known as
BioCode. The pseudo random number and the facial feature sets are fixed in length and an iterated inner product is
used to generate the BioCode. When an individual’s biometric information is suspected to be compromised, then the
token containing the random data is replaced, thereby revoking the previous authenticator. The use of biometric and
non-biometric authenticators in tandem is a powerful way of enhancing security. However, some of the inconveniences
associated with traditional authenticators remain (such as “Where did I leave my token?”).

Another category of multibiometric systems combine primary biometric identifiers (such as face and fingerprint)
with soft biometric attributes (such as gender, height, weight, eye color, etc.). Soft biometric traits cannot be used
to distinguish individuals reliably since the same attribute is likely to be shared by several different people in
the target population. However, when used in conjunction with primary biometric traits, the performance of the
authentication system can be significantly enhanced [30]. Soft biometric attributes also help in filtering (or indexing)
large biometric databases by limiting the number of entries to be searched in the database. For example, if it is
determined (automatically or manually) that the subject is an “Asian Male”, then the system can constrain its
search to only those identities in the database labeled with these attributes. Alternately, soft biometric traits can be
used in surveillance applications to decide if at all primary biometric information has to be acquired from a certain
individual. Automated techniques to estimate soft biometric characteristics is an ongoing area of research and is
likely to benefit law enforcement and border control biometric applications.
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7 Levels of fusion

In a biometric system, the amount of available information gets compressed as one progresses along the various
modules of the system. Based on the type of information available in a certain module, different levels of fusion can be
defined. Sanderson and Paliwal [70] categorize the various levels of fusion into two broad categories: pre-classification
or fusion before matching and post-classification or fusion after matching (see Figure 4). Such a categorization is
necessary since the amount of information available for fusion reduces drastically once the matcher has been invoked.
Pre-classification fusion schemes typically require the development of new matching techniques (since the matchers
used by the individual sources may no longer be relevant) thereby introducing additional challenges. Pre-classification
schemes include fusion at the sensor (or raw data) and the feature levels while post-classification schemes include
fusion at the match score, rank and decision levels.

Biometric Fusion

Before matching After matching

Sensor 
Level

Feature 
Level

Dynamic 
Classifier 
Selection

Classifier 
Fusion

Match Score 
Level

Rank 
Level

Decision 
Level

Fig. 4. Fusion can be accomplished at various levels in a biometric system. Most multibiometric systems fuse information at
the match score level or the decision level. More recently researchers have begun to fuse information at the sensor and feature
levels. In biometric systems operating in the identification mode, fusion can be done at the rank level.

8 Summary

Rapid advancements in the field of communications, computer networking and transportation, coupled with height-
ened concerns about identity fraud and national security, has resulted in a pronounced need for reliable and efficient
identity management schemes in a myriad of applications. The process of identity management in the context of a
specific application involves the creation, maintenance and obliteration of identities while ensuring that an impostor
does not fraudulently gain privileges associated with a legitimately enrolled individual. Traditional authentication
techniques based on passwords and tokens are limited in their ability to address issues such as negative recogni-
tion and non-repudiation. The advent of biometrics has served to address some of the shortcomings of traditional
authentication methods. Biometric systems use the physical and behavioral characteristics of an individual such as
fingerprint, face, hand geometry, iris, gait and voice to establish identity. A broad spectrum of establishments can
engage the services of a biometric system including travel and transportation, financial institutions, health care, law
enforcement agencies and various government sectors.

The deployment of biometrics in civilian and government applications has raised questions related to the privacy
accorded to an enrolled individual [14]. Specifically, questions such as (i) “Will biometric data be used to track people
covertly thereby violating their right to privacy?”, (ii) “Can the medical condition of a person be surreptitiously
elicited from the raw biometric data?”, (iii) “Will the acquired biometric data be used only for the intended purpose,
or will it be used for previously unexpressed functions, hence resulting in functionality creep?”, (iv) “Will various
biometric databases be linked in order to deduce an individual’s social and financial profile?”, and (v) “What are the
consequences of compromising a user’s biometric data?”, have advocated societal concerns about the use of biometric
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solutions in large-scale applications. The promotion of Privacy-Enhancing Technologies (PETs) can assuage some
of the legitimate concerns associated with biometric-enabled technology [65, 36]. For example, the use of personal
smart cards to store and process the biometric template of an individual can mitigate public concerns related
to placing biometric information in a centralized database. Apart from technological solutions to address privacy
concerns, government regulations are also required in order to prevent the inappropriate transmission, exchange and
processing of biometric data.

The matching performance of a biometric system is affected by several factors including noisy data, large intra-
class variations, and improper user interaction [4]. There is an implicit upper bound on the matching accuracy of
any biometric system. Jain et al. [31] suggest three primary reasons for this inherent constraint:

1. Information limitation: The magnitude of discriminatory information available in a biometric trait is naturally
restricted. For example, hand geometry measurements can distinguish fewer identities than, say, fingerprints [59].

2. Representation limitation: The ideal representation scheme for a particular biometric trait should be designed
to retain all invariant and discriminatory information in the sensed measurements. Practical feature extraction
systems, typically based on simplistic models of biometric data, fail to capture the richness of information in a
realistic biometric input resulting in the inclusion of redundant or spurious features, and the exclusion of salient
features. Consequently, a significant fraction of legitimate feature space cannot be handled by the biometric
system resulting in authentication errors (FAR and FRR).

3. Matcher limitation: Given a particular representation scheme, the design of an ideal matcher should perfectly
model the invariant relationship between different patterns (i.e, biometric samples) originating from the same
class (i.e, identity). In practice, however, a matcher may not correctly model the invariance (e.g., due to non-
availability of sufficient number of training samples) resulting in poor matcher accuracy.

Multibiometrics is expected to alleviate some of the limitations of unibiometric systems by consolidating the
evidence presented by multiple biometric sources. This integration of evidence is known as information fusion and,
if appropriately done, can enhance the matching accuracy of a recognition system. Thus, a properly designed multi-
biometric system can improve matching accuracy, increase population coverage and deter spoofing activities. With
biometrics already being chosen to deliver crucial societal functions, it is only a matter of time before multibiometric
systems begin to impact the way we perform identity management in the 21st century.
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