Chapter 4: Network Layer

- Introduction (forwarding and routing)
- Review of queueing theory
- Routing algorithms
 - Link state, Distance Vector
- Router design and operation
- IP: Internet Protocol
 - IPv4 (datagram format, addressing, ICMP, NAT)
 - IPv6
- Routing in the Internet
 - Autonomous Systems
 - Routing protocols (RIP, OSPF, BGP)

Interplay between routing, forwarding
Routing Algorithm classification

Static or dynamic?

Static:
- routes change slowly over time
- manual configuration

Dynamic:
- routes change more quickly
- periodic updates in response to link cost changes

Global or decentralized information?

Global:
- all routers have complete topology, link cost info
- “link state” algorithms

Decentralized:
- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- “distance vector” algorithms

Graph abstraction

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Remark: Real network routing algorithms typically use DIRECTED graphs.
Graph abstraction: costs

- \(c(x, x') = \text{cost of link } (x, x') \)

 e.g., \(c(w, z) = 5 \)

- cost could be
 - 1 (hop count)
 - inversely related to bandwidth,
 - inversely related to congestion,
 - count of packets in queue,
 - some combination of above

Cost of path \((x_1, x_2, x_3, ..., x_p)\) = \(c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)\)

Question: What’s the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path from source to destination.

Principle of Optimality

- If node B lies on an optimal path from node A to node C, then an optimal path from node B to node C also lies along the same path. Why does this property hold?
Principal of Optimality

- The result is that the set of optimal routes from all sources to a given destination form a sink tree rooted at the destination.

- In general, is the sink tree unique?

A Link-State Routing Algorithm

Dijkstra’s algorithm
- In-memory graph of network
 - network topology, link costs known to all nodes
 - accomplished by flooding “link state advertisements”
 - all nodes have same info
 - computes least cost paths from one node (source) to all other nodes
 - gives forwarding table for that node
 - iterative: after k iterations, know least cost path to k destinations

Notation:
- $c(x,y)$: link cost from node x to y: ∞ if not direct neighbors
- $D(v)$: current value of cost of path from source to dest. v
- $p(v)$: predecessor node along path from source to v
- M: set of nodes whose least cost path definitively known
Basic Idea

- Find the shortest paths from a given source node to all other nodes
- Proceeds in stages - build the sink tree one branch at a time.
- By the kth stage, the shortest paths to the k nodes closest to the source have been determined (and added to set M)
- At (k + 1)st stage, that node not already in M that has the shortest path from the source is added to M
- As nodes are added to M, their path from the source is defined.

Dijsktra’s Algorithm

```
1 Initialization:
2   M = {u}
3   for all nodes v
4      if v adjacent to u
5         then D(v) = c(u,v)
6         else D(v) = ∞
7
8   Loop
9      find w not in M such that D(w) is a minimum
10     add w to M
11     update D(v) for all v adjacent to w and not in M:
12        D(v) = min( D(v), D(w) + c(w,v) )
13        /* new cost to v is either old cost to v or known shortest path cost to w plus cost from w to v */
14     until all nodes in M
```
Dijkstra’s algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>M</th>
<th>D(V)p(v)</th>
<th>D(W)p(w)</th>
<th>D(X)p(x)</th>
<th>D(Y)p(y)</th>
<th>D(Z)p(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resulting shortest-path tree from u:

Resulting forwarding table in u:

<table>
<thead>
<tr>
<th>destination</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>(u,v)</td>
</tr>
<tr>
<td>x</td>
<td>(u,x)</td>
</tr>
<tr>
<td>y</td>
<td>(u,x)</td>
</tr>
<tr>
<td>w</td>
<td>(u,x)</td>
</tr>
<tr>
<td>z</td>
<td>(u,x)</td>
</tr>
</tbody>
</table>
Bellman-Ford Algorithm

- Proceeds in stages.
- Find the shortest paths from a given source subject to the constraint that the paths contain at most one link.
- Next, find all that contain two links.
- ...and so on.

Bellman-Ford

- Variables:
 - $c(x,y)$ = link cost
 - h = max number of links in path at current stage
 - $D^h(y)$ = cost of least-cost path from source to node y under the constraint of no more than h links
Algorithm

- Let s be the source node
- Initialize $D^0(n) = \infty$ for all $n \neq s$
- For each successive $h > 0$,
 \[D^{h+1}(n) = \min_j [D^h(j) + c(j,n)] \]

When does the algorithm halt?

Bellman-Ford Example

Source = u

<table>
<thead>
<tr>
<th>h</th>
<th>$D^h(v)$</th>
<th>$D^h(w)$</th>
<th>$D^h(x)$</th>
<th>$D^h(y)$</th>
<th>$D^h(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison

- Both Dijkstra’s algorithm and the Bellman-Ford algorithm converge to shortest path solutions under static conditions.

- Complexity?

- Suitability for distributed implementation?

Distance Vector Protocol

- \(D_x(y) \) = estimate of least cost from \(x \) to \(y \)
- Node \(x \) knows cost to each neighbor \(v \): \(c(x,v) \)
- Node \(x \) maintains distance vector \(D_x = [D_x(y): y \in N] \)
- Node \(x \) also maintains its neighbors’ distance vectors
 - For each neighbor \(v \), \(x \) maintains \(D_v = [D_v(y): y \in N] \)
Distance Vector Protocol

Bellman-Ford Equation

Define

\[D_x(y) := \text{cost of least-cost path from source } x \text{ to } y \]

Then

\[D_x(y) = \min_v \{ c(x,v) + D_v(y) \} \]

where \(\min \) is taken over all neighbors \(v \) of \(x \)

Distance vector protocol

Basic idea:

- From time to time, each node sends its own distance vector estimate to neighbors
- Asynchronous
- When a node \(x \) receives new DV estimate from neighbor, it updates its own DV using B-F equation:

\[D_x(y) \leftarrow \min_v \{ c(x,v) + D_v(y) \} \quad \text{for each node } y \in N \]

- Under normal conditions, the estimates \(D_x(y) \) converge to the actual least cost \(d_x(y) \)
Distance Vector Algorithm

Iterative, asynchronous:
- each local iteration caused by:
 - local link cost change
 - DV update message from neighbor

Distributed:
- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

Each node:
- wait for (change in local link cost or msg from neighbor)
- recompute estimates
- if DV to any dest has changed, notify neighbors

Distance Vector Example

(a) Diagram

(b) Table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>I</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>24</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>36</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>18</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>D</td>
<td>40</td>
<td>27</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>7</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>F</td>
<td>23</td>
<td>20</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>31</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>H</td>
<td>17</td>
<td>20</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>I</td>
<td>21</td>
<td>0</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>J</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>24</td>
<td>22</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>29</td>
<td>33</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

New estimated delay from J

\[
\begin{array}{cccc}
\text{Line} & A & \text{J} & H & K \\
8 & A & 8 & A & 20 & A \\
20 & A & 20 & H & 17 & I \\
30 & I & 18 & H & 12 & H \\
10 & I & 10 & I & 6 & K \\
15 & K & 15 & K & \\
\end{array}
\]

Vectors received from J's four neighbors

(c) Table
Comparison of LS and DV algorithms

Message complexity
- **LS**: with n nodes, E links, $O(nE)$ msgs sent
- **DV**: exchange between neighbors only
 - convergence time varies

Robustness: what happens if router malfunctions?
- **LS**:
 - node can advertise incorrect link cost
 - each node computes only its own table

- **DV**:
 - DV node can advertise incorrect path cost
 - each node’s table used by others
 - error propagates through network

Speed of Convergence
- **LS**: $O(n^2)$ algorithm requires $O(nE)$ msgs
 - may have oscillations

- **DV**: convergence time varies
 - routing loops possible
 - “count-to-infinity” problem