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Abstract. In this paper, we concentrate on distributed algorithms for automated
synthesis of fault-tolerant programs in the high atomicity model, where all pro-
cesses can read and write all program variables in one atomic step. Although
there has recently been an increasing interest in using parallel and distributed
techniques in the model checking community, these technique have not been in-
vestigated in program synthesis. Developing such techniques is crucial as a means
to cope with the state explosion problem in the context of program synthesis and
transformation as well. We propose two distributed multithreaded algorithms for
adding two levels of fault-tolerance, namely failsafe and masking, to existing
fault-intolerant programs whose state space is distributed over a network or clus-
ter of workstations.

Keywords: Program transformation, Program synthesis, Distributed algorithms,
Fault-tolerance, Parallel synthesis.

1 Introduction

Automated program synthesis is the problem of designing an algorithmic method to
find a program that satisfies a set of required behaviors. Such automated method is de-
sirable, as it ensures that the synthesized program is correct-by-construction. Similar
to verification algorithms, synthesis algorithms often suffer from two factors of time
and space complexity. In order to overcome the time complexity problem, several ap-
proaches have been proposed in the literature to incrementally add properties to existing
programs [1–7]. These approaches (called local redesign) make it possible to start from
an existing program and, hence, reusing the previous efforts made for synthesizing them
effectively. As opposed to local redesign, the traditional synthesis algorithms (called
comprehensive redesign) [8,9] start from specification. Hence, for adding a newly iden-
tified property, one should synthesize a new program by starting from the conjunction
of the new property and the existing properties from scratch.

In order to overcome the space explosion problem, recently, an increasing interest
in parallel and distributed techniques has emerged in the model checking community
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(e.g., [10–16]). Such techniques parallelize enumerative or symbolic state space of a
given model over a network or cluster of workstations and run a distributed verifica-
tion algorithm over the parallelized state space. On the other hand, the space explosion
problem remains unaddressed in the context of automated program synthesis.

With this motivation, in this paper, we concentrate on the problem of designing dis-
tributed algorithms for automated program synthesis. More specifically, we parallelize
two synthesis algorithms (from [7]) for adding two levels of fault-tolerance, namely
failsafe and masking, to existing fault-intolerant programs. Intuitively, in the presence
of faults, a failsafe fault-tolerant program satisfies only its safety specification, but a
masking fault-tolerant program satisfies both its safety and liveness specifications. We
assume that programs are in the high atomicity model, where all processes can read and
write all program variables in one atomic step. We note that the aforementioned synthe-
sis algorithms solely add fault-tolerance to a fault-intolerant program in the sense that
they add no new behaviors to the input program in the absence of faults.

Similar to distributed model checking techniques, developing distributed synthe-
sis algorithms consists of two phases: (1) parallelizing the state space over a network
of workstations, and (2) designing a distributed algorithm that runs on each partition
of the state space. In this paper, we only focus on the second phase. In particular, we
assume that parallelization of state space is already done using one of the known enu-
merative techniques in the literature. Precisely, we use the state space parallelization
technique proposed by Garavel, Mateescu, and Smarandache [10] with some modifica-
tions tailored for the purpose of synthesis rather than model checking. Although there
exist more efficient ways for parallel construction of state space (e.g., using abstract
interpretation), we cannot trivially apply them as a means for synthesizing programs.
This is due to the fact that in synthesis (unlike model checking), we usually require
full information about the program being synthesized, as we need to manipulate a pro-
gram by removing or adding computations. Thus, we conservatively choose to develop
distributed algorithms that run over the detailed parallelized enumerative state space.

Since the essence of the proposed algorithm in [7] for synthesizing failsafe fault-
tolerant programs is calculating fixpoint of formulas, in this paper, we propose a dis-
tributed multithreaded algorithm for calculating smallest and largest fixpoints. Further-
more, since a masking fault-tolerant program recovers to its normal behavior after the
occurrence of faults, we also propose a distributed algorithm for synthesizing recovery
paths.
Contributions of the paper1. The main results of this paper are as follows. We
propose (i) a distributed multithreaded synthesis algorithm for adding failsafe fault-
tolerance, and (ii) a distributed multithreaded synthesis algorithm for adding masking
fault-tolerance to existing fault-intolerant programs. These algorithms involve design-
ing distributed techniques for fixpoint calculations and adding recovery computations
to a program. To the best of our knowledge, this paper is the first work that addresses
challenges and proposes solutions for designing distributed algorithms in the context

1 In this paper, since we focus on challenges of designing distributed synthesis algorithms, we
refer the reader to [1, 2, 5–7, 17] for examples and analysis of different aspects of addition of
fault-tolerance to fault-intolerant programs.
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of program synthesis and transformation. We believe that this study paves the way for
further research on designing distributed synthesis algorithms.
Organization of the paper. In Section 2, we present the preliminary concepts. In
Section 3, we formally state the problem of addition of fault-tolerance to existing fault-
intolerant programs. Then, we present our distributed synthesis algorithms for adding
failsafe and masking fault-tolerance in Section 4. Finally, we make the concluding re-
marks and discuss future work in Section 5.

2 Preliminaries

In this section, we present formal definitions of programs, specifications, faults, and
fault-tolerance. We specify programs in terms of their state space and their transitions.
The definition of specifications is adapted from Alpern and Schneider [18]. The defini-
tion of faults and fault-tolerance is adapted from Arora and Gouda [19].

2.1 Programs and Specifications

A program p is specified by a tuple 〈Sp, δp〉, where Sp is the finite state space of p
and δp is a finite set of transitions (i.e., a subset of Sp × Sp). A sequence of states,
σ = 〈s0, s1, ...〉, is a computation of p where si ∈ Sp for all i ∈

�
≥0 iff the following

two conditions are satisfied: (1) if σ is infinite then ∀j > 0 : (sj−1, sj) ∈ δp, and
(2) if σ is finite and terminates in state sn then there does not exist state s such that
(sn, s) ∈ δp, and the condition ∀j | 0 < j ≤ n : (sj−1, sj)∈ δp holds. A computation
prefix of p is a finite sequence of states 〈s0, s1, ..., sk〉, where k is a positive integer and
∀j | 0 < j ≤ k : (sj−1, sj)∈ δp. Note that when it is clear from the context, we use p
and δp interchangeably.

A state predicate of p is any subset of Sp. A state predicate S is closed in program
p iff ∀(s0, s1) ∈ p : (s0 ∈ S ⇒ s1 ∈ S). The projection of program p on a state
predicate S (denoted p | S) consists of transitions {(s0, s1) | (s0, s1) ∈ p ∧ s0, s1 ∈ S},
i.e., transitions of p that start in S and end in S.

A specification Σ is a set of infinite sequences of states. Given a program p, a state
predicate S, and a specification Σ, we say that p satisfies Σ from S (denoted p |=S Σ)
iff (1) S is closed in p, and (2) every computation of p that starts in a state where S is
true is in Σ. If p |=S Σ and S 6={}, we say that S is an invariant of p for Σ.

We say that a finite computation α maintains Σ iff there exists a computation suffix
β such that αβ is in Σ. We say that program p maintains (does not violate) Σ from S
iff (1) S is closed in p, and (2) every computation prefix α of p that starts in a state in S
maintains Σ. Note that the definition of maintains focuses on finite sequences of states,
whereas the definition of satisfies characterizes infinite sequences of states.
Notation. Whenever the specification is clear from the context, we will omit it; thus,
“S is an invariant of p” abbreviates “S is an invariant of p for Σ”.

In this paper, we only consider suffix-closed and fusion-closed specifications. Suffix
closure of a set means that if a state sequence σ is in that set then so are all the suffixes
of σ. Fusion closure of a set means that if state sequences 〈α, s, γ〉 and 〈β, s, δ〉 are in
that set then so are the state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where α and β are finite
prefixes of state sequences, γ and δ are suffixes of state sequences, and s is a program
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state. Intuitively, fusion closure of the specification means that an implementation of
the specification must execute its next transition only based on its current state, i.e., the
history of a computation does not affect the next move of the program.

Furthermore, following Alpern and Schneider [18], we let the specification be a
conjunction of a safety specification and a liveness specification. For a suffix-closed
and fusion-closed specification, the safety specification can be represented as a set Σbt

of bad transitions [20] that must not occur in program computations (i.e., the safety
specification is a subset of Sp × Sp). Now, let Σ be a specification. Throughout the
paper, we let Σbt be the specification whose computations, say σ = 〈s0, s1, · · · 〉, is in
Σ and for all i ≥ 0, (si, si+1) 6∈ Σbt, i.e., the specification in which safety is never
violated. In our algorithms, we do not explicitly specify the liveness specification; the
transformed fault-tolerant program satisfies the liveness specification iff the input fault-
intolerant program satisfies the liveness specification.

2.2 Faults and Fault-Tolerance

The faults that a program p is subject to are systematically represented by a set f of tran-
sitions, i.e., a subset of Sp × Sp where Sp is the state space of p. A sequence of states
〈s0, s1, ...〉 is a computation of p in the presence of f iff (1) ∀j > 0 : ((sj−1, sj) ∈
δp ∪ f ), (2) if the sequence is finite and terminates in sl then there exists no program
transition originating at sl, and (3) ∃n ≥ 0 : (∀j > n : (sj−1, sj)∈δp). We note that the
last condition (bounded fault model) is only necessary for masking fault-tolerance (de-
fined below) where recovery to the invariant is required. This constraint is not necessary
for failsafe fault-tolerance.

We use p[]f to denote the transitions obtained by taking the union of the transitions
in p and the transitions in f . We say that a state predicate T is an f -span (read as fault-
span) of p from S iff the following two conditions are satisfied: (1) S ⊆ T , and (2) T is
closed in p[]f . Observe that for all computations of p that start at states where S is true,
T is a boundary in the state space of p up to which (but not beyond which) the state of
p may be perturbed by the occurrence of the transitions in f .

We now describe what we mean by levels of fault-tolerance. We identify the fault-
tolerance level of a program based on its behavior in the presence of faults. We say
that p is failsafe f -tolerant to Σbt from S iff (i) p |=S Σbt, and (ii) there exists a state
predicate T such that T is an f -span of p from S and p[]f maintains Σbt from T . We
say that p is masking f -tolerant to Σbt from S iff (i) p |=S Σbt, and (ii) there exists a
state predicate T such that (1) T is an f -span of p from S, (2) p[]f maintains Σbt from
T , and (3) every computation of p[]f that starts from a state in T has a state in S.

3 Problem Statement

In this section, we reiterate the problem statement from [7]. However, it is important to
note that in this paper, we solve the same problem in a distributed fashion. Given are
a program p with invariant S, a set of faults f , and safety specification Σbt such that
p |=S Σbt. Our goal is to find a program p′ with invariant S′ such that p′ is f -tolerant
to Σbt from S′.
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As mentioned in the introduction, our synthesis methods obtain p′ from p by adding
fault-tolerance alone to p, i.e., p does not introduce new behaviors to p when no faults
have occurred. Observe that if S ′ (respectively, p′ | S′) contains states (respectively,
transitions) that are not in S (respectively, p′ | S) then, in the absence of faults, p′ may
include computations that start outside S (respectively, p′ | S). Since we require that
p′ |=S′ Σbt, it would imply that p′ is using a new way to satisfy Σbt in the absence of
faults. Therefore, we require that S ′ ⊆ S and (p′ | S′) ⊆ (p | S′). Thus, the synthesis
problem is as follows (we instantiate this problem for failsafe and masking f -tolerance
in the obvious way):
Problem Statement 3.1. Given p, S, f , and Σbt such that p |=S Σbt. Identify p′ and
S′ such that:

(C1) S
′

⊆ S,
(C2) (p′ | S′) ⊆ (p | S′), and
(C3) p′ is f -tolerant to Σbt from S′. �

In [7], Kulkarni and Arora introduce centralized polynomial time (in the state space
of p) sound and complete synthesis algorithms, where the program can atomically read
and write all program variables. Based on these algorithms, in Section 4, we present
distributed algorithms for synthesizing failsafe and masking fault-tolerant programs.

4 Distributed Automated Addition of Fault-Tolerance

In this section, we present our distributed algorithms for adding fault-tolerance to ex-
isting fault-intolerant programs. Similar to distributed model checking techniques, de-
veloping distributed synthesis algorithms consists of two phases: (1) parallelizing the
state space over a network of workstations, and (2) designing a distributed algorithm
that runs on each portion of the state space. In this paper, we only focus on the second
phase. In particular, we assume that parallelization of state space is already done using
the construction technique due to Garavel, Mateescu, and Smarandache [10]. However,
we make some modifications tailored for the purpose of synthesis rather than model
checking.

4.1 Parallel Construction of State Space

In order to represent a program p with state space Sp and invariant S on N machines
(numbered from 0 to N − 1), we use the notion of partitioned programs. More specif-
ically, the state space Sp is partitioned to S0

p · · ·S
N−1
p , where Sp = ∪N−1

i=0 Si
p and

Si
p ∩ Sj

p = {} for all 0 ≤ i 6= j < N (i.e., the state space is partitioned into N
classes, one class per machine). Likewise, state predicates are partitioned in the same
fashion. For instance, machine i contains Si and T i partitions of the invariant S and
the fault-span T . From now on, we call S the global invariant and each S i the local in-
variant with respect to machine i. The same concept applies to any other state predicate
such as the fault-span T , i.e., T is the global fault-span and T i is the local fault-span
with respect to machine i.

The set p of transitions is partitioned to p0 · · · pN−1, where p = ∪N−1
i=0 pi, and

(s0, s1) ∈ pi iff (s0 ∈ Si
p ∨ s1 ∈ Si

p) for all 0 ≤ i < N (i.e., if the source and target
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of a transition belong to different machines, the transition is stored in both the source
and target machines). We call such transitions cross transitions. Likewise, f and Σbt

are partitioned in the same fashion. From now on, we call p the global set of program
transitions and each pi the local set of program transitions with respect to machine i.
The same concept applies to any other set of transitions such as the set of faults f and
the set of bad transitions Σbt.
Remark 4.1. We choose to store cross transitions in both source and target machines
due to two reasons: (1) as we shall see in Subsections 4.2 and 4.3, such duplication
decreases the number of potential broadcast messages considerably, and (2) it allows
us to efficiently do both forward and backward reachability analysis at the same time.
In fact, this deviation from distributed model checking techniques is due to the nature
synthesis as compared to verification.
Assumption 4.2. In our synthesis algorithms, we assume that the input fault-intolerant
program is already partitioned over a network using a reasonable static partition func-
tion h : Sp → [0, N − 1] using the above parallelization method. In other words, ma-
chine i contains a state s iff h(s) = i. We also assume that all the synthesis processes
over the network have a replica of h.
Revised problem statement. With this setting, we revise the Problem Statement
3.1 as follows. Given are a partition function h, a partitioned program p0 · · · pN−1

with state space S0
p · · ·S

N−1
p , local invariants S0 · · ·SN−1, a partitioned class of faults

f0 · · · fN−1, and safety specification Σ0
bt · · ·Σ

N−1
bt such that p |=S Σbt. Our goal is to

design distributed algorithms that synthesize a program p′ with invariant S′ such that p′

is failsafe/masking f -tolerant to Σbt from S′.

4.2 Distributed Addition of Failsafe Fault-Tolerance

In order to synthesize a failsafe fault-tolerant program, we transform p into p′ such
that transitions of Σbt occur in no computation prefixes of p′. Towards this end, we
parallelize the proposed centralized algorithm in [7] for adding failsafe fault-tolerance.
Algorithm sketch. The essence of adding failsafe fault-tolerance consists of two parts:
(1) a smallest fixpoint calculation for identifying the set of states from where safety may
be violated, and (2) a largest fixpoint calculation for computing the invariant of the fail-
safe program. Our algorithm consists of a set of distributed processes each running on
one machine across the network. Each process consists of two threads, namely, Dis-
tributed Add failsafe (cf. Figure 1) and MessageHandler (cf. Figure 2). Briefly, the
thread Distributed Add failsafe is in charge of initiating local fixpoint calculations and
managing synchronization points of the algorithm. The thread MessageHandler is re-
sponsible for handling messages sent by other synthesis processes across the network
and invoking appropriate procedures. The thread Distributed Add failsafe consists of
three main parts, namely, Lines 1-4 which is a smallest fixpoint computation, Lines 5-8
which is a largest fixpoint computation, and Lines 9-10 where we check the emptiness
of the synthesized program (to declare failure or success). It also invokes three proce-
dures, namely, FindLocalUnsafeStates, RemoveLocalDeadlocks, and EnsureClo-
sure.
Assumption 4.3. Throughout the paper, we assume that procedure invocations are
atomic.
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thread Distributed Add failsafe(pi, f i, Σi
bt : set of transitions,

Si
p, Si : state predicate, N : int, h: partition function, bLeaderi: Boolean)

{

cbSnti, cbRcvdi := 0; nsi := {}; (1)
msi := {s0 | ∃s1 ∈ Si

p : (s0, s1) ∈ f i ∧ (s0, s1) ∈ Σi
bt}; (2)

msi := FindLocalUnsafeStates(Si
p, msi, f i); (3)

→ BLKRECEIVE (Trm dtct); cbSnti , cbRcvdi := 0; (4)
mti := {(s0, s1) | s1 ∈ (msi ∪ nsi) ∨ (s0, s1) ∈ Σi

bt}; (5)
Si := Si − msi ; pi := pi − mti; (6)
S′i, p′i := RemoveLocalDeadlocks(Si, pi); (7)

→ BLKRECEIVE (Trm dtct); (8)
if (S′i 6= {}) then return p′ := ∪N−1

i=0
p′i, S′ := ∪N−1

i=0
S′i; (9)

elseif (bLeader i) then SEND((i + 1) mod N , Empt inv(0)); (10)
}

procedure FindLocalUnsafeStates(Si
p, msi : state predicate, f i: set of transitions)

// Returns the set of states from where safety may be violated by faults alone
{

while (∃s0, s1 : (s1 ∈ msi ∧ (s0, s1) ∈ f i)) (11)
if h(s0) = i then msi := msi ∪ {s0}; (12)
else SEND(h(s0 ), New ms(s0, s1)); cbSnti := cbSnti + 1; (13)

return msi ; (14)
}
procedure RemoveLocalDeadlocks(Si : state predicate, pi : set of transitions)
// Returns the largest subset of Si such that computations of p within that subset are infinite
{

while (∃s1 ∈ Si : (∀s2 | (∃s0 | (s0, s2) ∈ pi) : (s1, s2) 6∈pi)) (15)
Si := Si − {s1}; (16)
pi := EnsureClosure(pi, Si, s1); (17)

return Si, pi (18)
}

procedure EnsureClosure(pi: set of transitions, Si: state predicate, s1 : state)
{

while (∃s0 : ((s0, s1) ∈ pi ∧ h(s0) 6= i)) (19)
SEND(h(s0 ), New ds(s0, s1)); cbSnti := cbSnti + 1; (20)
pi := pi − {(s0, s1)}; (21)

return pi − {(s0, s1) | s0∈Si} (22)
}

Fig. 1. Distributed algorithm for adding failsafe fault-tolerance.

We now describe our algorithm in detail. First, the thread Distributed Add failsafe
finds the set msi of states from where a single fault transition violates the safety (Line
2). Next, we invoke the procedure FindLocalUnsafeStates where we find the set of
states from where faults alone may violate the safety (Line 3). We find this set by
calculating the smallest fixpoint of backward reachable states, given the initial set msi

(Lines 11-12). In this calculation, if we find a fault transition, say (s0, s1), where s1 ∈
msi, but s0 resides in a machine other than i (i.e., h(s0) 6= i), we send a New ms
message to process h(s0) indicating that s0 is a state from where faults alone may
violate the safety specification (Line 13).
Notation: At the receiver’s side, we denote messages by msg j(params), where msg
is the name of message, j is the sender process, and params is a list of parameters sent
along with the message. All messages (except Trm dtct) are handled in the thread
MessageHandler. At the sender’s side, we omit the sender’s subscript.
The receiver of a New ms message (cf. Lines 1-2 in Figure 2) adds s0 to its local
msi (Line 1) and invokes the procedure FindLocalUnsafeStates (Line 2) so that by
taking s0 into account, new states from where faults alone may violate the safety spec-
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ification are explored. The set nsi consists of states that are in msj . Notice that every
time a process sends (respectively, receives) such messages, it increments the variable
cbSnt

i (respectively, cbRcvd
i). We shall use these variables for termination detection

as a means to synchronize processes at certain points.

The next phase of the algorithm is removing the states of global ms from the global
invariant. To this end, we need to have a synchronization mechanism to ensure that cal-
culation of msi is completed for all i ∈ [0..N −1]. In particular, we use the termination
detection technique proposed by Mattern [21]. More specifically, in Line 4, the thread
Distributed Add failsafe waits to receive a Trm dtctmessage indicating that all pro-
cesses are finished by calculating their local msi and all communication channels are
empty. The arrows (→) in Figure 1 mark the synchronization barriers. We will describe
the termination detection technique later in this subsection.

After calculating the global set ms, we remove this set from the invariant to ensure
that no computation of p′ that starts from a state in S ′ violates the safety specification.
We also remove the transitions of the set mti from pi, where mti consists of transitions
whose target states are in msi or directly violate the safety specification (Line 6). No-
tice that this removal may create deadlock states (i.e., states from where there exist no
outgoing transitions). Thus, the thread Distributed Add failsafe invokes the procedure
RemoveLocalDeadlocks (Line 7) to remove deadlock states which is in turn calcu-
lating the largest fixpoint of backward reachable states, given the initial set S i. In other
words, it keeps removing deadlock states until it reaches a fixpoint (Lines 15-16). In
this calculation, since removal of a deadlock state, say s1, may create transitions, say
(s0, s1), such that (s0, s1) violates the closure of invariant, we invoke the procedure
EnsureClosure (Line 17) to ensure that no such transitions exist in the final synthe-
sized program. Furthermore, if we encounter a program transition, say (s0, s1), where
s1 is a deadlock state and s0 resides in a machine other than i (i.e., h(s0) 6= i), then
we send a New ds message to process h(s0) indicating that s0 might be a deadlock
state (Line 20). Upon receipt of such a message (cf. Line 3 in Figure 2), the receiver
removes the transition (s0, s1) to maintain consistency of transitions and then invokes
the procedure RemoveLocalDeadlocks (cf. Line 4 in Figure 2) to remove possible
new deadlock states due to removal of (s0, s1). Similar to the calculation of ms, our
algorithm ensures completion of calculation of the largest fixpoint S ′ using the same
termination detection technique (cf. Line 8 in Figure 1).

At this point, each process has synthesized a local set of program transitions p′i

with a local invariant S ′i. The union of these portions is the final synthesized program,
i.e., p′ = ∪N−1

i=0 p′i and S′ = ∪N−1
i=0 S′i. However, since invariant predicates cannot be

empty, if S′ turns out to be equal to the empty set, the algorithm declares failure. To test
the emptiness of S′, a pre-specified leader process identified by the variable bLeader
initiates an emptiness polling of the global invariant S ′ as follows. For this polling (and
also termination detection), we consider a unidirectional virtual ring which connects
every machine i to its successor machine (i + 1) mod N . Note that this virtual ring is
independent of the fully connected topology of the network. Now, if the local invariant
of the leader is equal to the empty set then it sends an Empt inv(0) message to its
first neighbor on the virtual ring (process (i + 1) mod N ) indicating that its own local
invariant is equal to the empty set (cf. Line 10 in Figure 1). If the local invariant of the
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((i + 1) mod N)th process is equal to the empty set as well, it increments the value
of k (the integer received along with the message Empt inv) by one and sends the
same message to the next process on the ring (cf. Line 5 in Figure 2). Otherwise, it
does not change the value of k and sends an Empt inv(k) message to the next process
(Line 6). Upon the completion of one round of sending the Empt inv messages, the
leader finally finds out whether the global invariant S ′ is equal to the empty set or
not (Lines 8-10). If the global invariant S ′ is indeed equal to the empty set then the
leader declares failure (Line 8). Otherwise, it calculates and returns p′ and S′ (Line 10).
Notice that Lines 9 and 10 in Figures 1 and 2 respectively describes that the output
of the distributed algorithm is indeed a program which is the union of all local sets of
transitions and local invariants.

Termination detection. In order to detect the termination of the fixpoint calculations,
we use a virtual ring-based algorithm inspired by Mattern [21]. According to the gen-
eral definition, global termination is reached when all local computations are complete
(i.e., each machine i has calculated a local fixpoint) and all communication channels
are empty (i.e., all sent transitions have been received). The core of the termination de-
tection algorithm is as follows. Every time the leader process finishes its local fixpoint
calculations, it checks whether global termination has been reached by generating two
successive waves of Report rcv (respectively, Report snd) messages on the vir-
tual ring to collect the number of messages received (respectively, sent) by all machines.
A message Report rcvj(k) (respectively, Report sndj(k)) received by machine i
indicates that k messages have been received (respectively, sent) by the machines from
the leader up to j = (i − 1) mod N . Each machine i counts the messages it has re-
ceived and sent using two integer variables cbRcvd

i and cbSnt
i, and adds their values

to the numbers carried by Report rcv and Report snd messages (Lines 11, 13,
and 14). Upon receipt of the Report sndj(k) message ending the second wave, the
leader machine checks whether the total number k of messages sent is equal to the total
number nbTotal of messages received (the result of the Report rcv wave). If this is
the case, it informs the other machines that termination has been reached, by sending
a broadcast Trm dtct message. Otherwise, the leader concludes that termination has
not been reached yet and will generate a new termination detection wave later (Line
15).

Theorem 4.4. The algorithm Distributed Add failsafe is sound and complete.
Proof. Since the output of our algorithm is identical to the output of the centralized
algorithm by Kulkarni and Arora [7], the proof of soundness and completeness imme-
diately follows. ut

Performance of parallelized addition of failsafe. Distributing the synthesis algo-
rithm is aimed at reducing the space complexity and time complexity. Of these, similar
to the goals for distributed model checking, reducing the space complexity is a higher
priority. We expect that our approach would assist in this case. In particular, if N ma-
chines are used to perform synthesis then each of them is expected to have (1/N)th

number of states and at most (2/N)th number of transitions (because a transition may
be stored in up to two machines). Regarding time complexity, in each phase, a ma-
chine performs some local computation that results a set of queries (e.g., New ms,
New ds, etc.) for other machines. Now, consider the role of the two threads Dis-
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thread MessageHandler()
{

msg := RECEIVE();
case msg is
New msj(s0, s1): msi := msi ∪ {s0}; nsi := nsi ∪ {s1}; cbRcvdi := cbRcvdi + 1; (1)

msi := FindLocalUnsafeStates(Si
p, msi, f i); (2)

New dsj(s0, s1): pi := pi − {(s0, s1)}; cbRcvdi := cbRcvdi + 1; (3)
S′i, p′i := RemoveLocalDeadlocks(Si, pi); (4)

Empt invj(k): if (¬bLeader ∧ Si = {}) then
SEND((i + 1) mod N , Empt inv(k + 1)); return {}; (5)

elseif (¬bLeader ∧ Si 6= {}) then
SEND((i + 1) mod N, Empt inv(k)); (6)
return p′i , S′i; (7)

if (bLeader ∧ (k = N − 1)) then
declare no failsafe program p′ exists; (8)
exit; (9)

else return p′ := ∪N−1

i=0
p′i, S′ := ∪N−1

i=0
S′i; (10)

Report rcvj(k): if (¬bLeader i) then
SEND((i + 1) mod N , Report rcv(k + cbRcvdi)); (11)

else nbTotal := k; (12)
SEND((i + 1) mod N , Report snd(cbSnt)i); (13)

Report sndj(k): if (¬bLeader i) then
SEND((i + 1) mod N , Report snd(k + cbSnt i)); (14)

elseif (nbTotal = k) then
SEND([(i + 1) mod N..(i + N − 1) mod N ], Trm dtct); (15)

New fs(s0): T i
1

:= T i
1
− {s0}; cbRcvdi := cbRcvdi + 1; (16)

T i
1

:=ConstructLocalFaultSpan(T i
1
, T i

2
− T i

1
, f i); (17)

Search pathj(X): ri := {}; cbRcvdi := cbRcvdi + 1; (18)
For each s0 ∈ X :

if (∃s1 : (Rank(s1) 6= ∞)) ∧

(s0, s1) 6∈ mti) then
ri := ri ∪ {(s0, s1, Rank(s1) + 1)}; (19)

SEND(j, New path(ri)); cbSnti := cbSnti + 1; (20)
New pathj(r

i): qi := {}; cbRcvdi := cbRcvdi + 1; (21)
For each (s0, s1, a) s.t. ((s0, s1, a) ∈ ri ∧ s0 ∈ (T i

2
− T i

1
):

if (s0, s1) 6∈ pi then
pi := pi ∪ (s0, s1); qi := qi ∪ (s0, s1); (22)
Rank(s0) := a; (23)
T i
1
, T i

2
:= T i

1
∪ {s0}, T i

2
− {s0}; (24)

pi
1
, T i

1
:= ConstructLocalRecoveryPaths(Si

1
, T i

2
, pi

1
, mti); (25)

SEND(j, Confirm trns(qi)); cbSnti := cbSnti + 1; (26)
Confirm trnsj(q

i): pi := pi ∪ qi ; cbRcvdi := cbRcvdi + 1; (27)
SEND(j, Commit); cbSnti := cbSnti + 1; (28)

Commitj : cbRcvdi := cbRcvdi + 1; (29)
Wait to receive Commit message from all providers; (30)
SEND(i + 1 mod N , Token); cbSnt i := cbSnti + 1; (31)

Tokenj : cbRcvdi := cbRcvdi + 1; (32)
SEND([(i + 1) mod N..(i + N − 1) mod N ],

Search path(T i
2
− T i

1
)); cbSnti := cbSnti + 1; (33)

}

Fig. 2. The message handler thread.

tributed Add failsafe and MessageHandler. The thread MessageHandler provides
a new list of tasks (received from other machines) that should be performed by Dis-
tributed Add failsafe. Since Distributed Add failsafe begins with a list of tasks (based
on its local states and transitions) and MessageHandler continues to provide new
tasks based on requests received from others, we expect that the list of tasks that Dis-
tributed Add failsafe needs to perform will typically be nonempty at all times. In other
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words, communication cost will not be in the critical path for the synthesis. Therefore,
we expect that the distributed synthesis algorithm will be able to provide significant
benefits regarding time complexity as well.

4.3 Distributed Addition of Masking Fault-Tolerance

In order to synthesize a masking program, we should generate a program p′ with in-
variant S′ and fault-span T ′, such that p′ never violates its safety specification and if
faults perturb the state of p′ to a state in T ′, it recovers to S′ within a finite num-
ber of recovery steps. Similar to the distributed algorithm for adding failsafe fault-
tolerance, our algorithm for adding masking fault-tolerance consists of two threads
Distributed Add masking (cf. Figure 3) and MessageHandler (cf. Figure 2).

Our first estimate of a masking program is a failsafe program. Hence, we let our
first estimate Si

1 be the local invariant of its failsafe fault-tolerant program (cf. Line
2 in Figure 3). Likewise, we estimate the local fault-span to be T i

1 where T i
1 includes

all the states in the local state space minus the states from where safety of p′ may be
violated (Line 3). Next, we compute the local set of transitions pi

1, local fault-span T i
1,

and local invariant Si
1 in a loop (Lines 5-15). This loop consists of three main steps for

constructing recovery paths, calculating fault-span, and calculating invariant as follows:

1. In order to compute the local set of transitions pi
1, we construct recovery paths from

each state in the fault-span to a state in the invariant. To this end, we identify two
types of recovery paths: (1) recovery paths consist of only local program transitions,
and (2) recovery paths consist of both local program transitions as well as cross
transitions. We note that since these transitions originate outside the invariant, they
do not violate the second constraint of the problem statement (i.e., in the absence
of faults, no new computation is introduced to fault-tolerant program).
Recovery paths through local transitions. The thread Distributed Add masking
invokes the procedure ConstructLocalRecoveryPaths (Line 6), which identifies
layers of states in the local fault-span corresponding to the number of steps of re-
covery paths, in a loop (Lines 21-25). In the beginning of the loop it assigns a rank
to each state which is equal to the number of recovery steps from that state to a
state in the local invariant. In this setting, the rank of states in the local invariant
are zero. In the first iteration of the loop, we identify the set of states from where
one-step recovery to the local invariant is possible while maintaining the safety, i.e.,
X i

1 = {s0 | s0 ∈ (T i
1 − Si

1) ∧ ∃s1 ∈ Si
1 : (s0, s1) 6∈ mti}. Thus, we add the

transitions, say (s0, s1) where s0 ∈ X i
1 and s1 ∈ Si, to the set of local program

transitions. In the second iteration of the loop, we identify the set of states from
where two-step recovery is possible. Indeed, this is equivalent to identifying the set
of states from where one-step recovery is possible from T i

1−X i
1 to the set X i

1∪Si
1.

Continuing thus inductively, we identify layers of states from where multi-step re-
covery is possible. Finally, we reach a point where we identify the set X i

1 of states
from where recovery to the local invariant using local transitions is possible and the
set T i

1 − X i
1 of states from where such recovery is not possible.

Recovery paths through cross transitions. After constructing local recovery
paths, the leader process initiates a wave of communication among all processes
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thread Distributed Add masking(pi, f i, Σi
bt : set of transitions,

Si
p, Si : state predicate, N : int, h: partition function, bLeaderi: Boolean)

{

Compute msi and mti as in Distributed Add failsafe; (1)
Let Si

1
be the local invariant of the failsafe version of p; (2)

T i
1

:= Si
p − msi ; ∀s ∈ (T i

1
− Si

1
) : Rank(s) := ∞; (3)

pi
1

:= pi; (4)
repeat

T i
2
, Si

2
:= T i

1
, Si

1
; cbSnti , cbRcvdi := 0 (5)

pi
1
, T i

1
:= ConstructLocalRecoveryPaths(Si

1
, T i

1
, pi, mti); (6)

→ BLKRECEIVE (Trm dtct); cbSnti , cbRcvdi := 0; (7)
if (bLeader) then

SEND([(i + 1) mod N..(i + N − 1) mod N ], Search path(T i
2
− T i

1
)); (8)

cbSnti := cbSnti + 1; (9)
→ BLKRECEIVE (Trm dtct); cbSnti , cbRcvdi := 0; (10)

T i
1

:= ConstructLocalFaultSpan(T i
1
, T i

2
− T i

1
, f i); (11)

→ BLKRECEIVE (Trm dtct); cbSnti , cbRcvdi := 0; (12)
Si

1
:= RemoveLocalDeadlocks(Si

1
∩ T i

1
, pi

1
); (13)

→ BLKRECEIVE (Trm dtct); (14)
if (Si

1
={} ∨ T i

1
={}) then break; (15)

until (T i
1

= T i
2

∧ Si
1

= Si
2
)

→ BLKRECEIVE (Trm dtct); (16)
T ′i, S′i := T i

1
, S′i; (17)

if (bLeader i ∧ (S′i ={})) then
SEND((i + 1) mod N , Empt inv(0)); (18)

if (bLeader i ∧ (T ′i ={})) then
SEND((i + 1) mod N , Empt fs(0)); (19)

}

procedure ConstructLocalRecoveryPaths(Si, T i : state predicate, pi, mti: set of transitions)
Xi

1
:= Si; j = 0; Xi

2
:= {}; (20)

repeat
∀s ∈ (Xi

1
− Xi

2
) : Rank(s) := j; (21)

Xi
2

:= Xi
1

; j := j + 1; (22)
ri := {(s0, s1) | s0 ∈ (T i

1
− Xi

1
) ∧ s1 ∈ Xi

1
} − mti; (23)

pi := pi | Si ∪ ri; (24)
Xi

1
:= Xi

1
∪ {s0 | ∃s1 : (s0, s1) ∈ ri}; (25)

until (Xi
1

= Xi
2
)

return pi, Xi; (26)
}

procedure ConstructLocalFaultSpan(T i
1
, T i

2
: state predicate, f i : set of transitions)

// Returns the largest subset of T i
1

that is closed in f

{
while (∃s0, s1 : ((s0 ∈ T i

1
) ∧ (s1 ∈ T i

2
) ∧ (s0, s1) ∈ f i))

T i
1

:= T i
1
− {s0}; (27)

For each s1 ∈ T i
2

:
if (∃s0 : ((s0, s1) ∈ f i ∧ h(s0) 6= i))

SEND(h(s0), New fs(s0)); cbSnti := cbSnti + 1; (28)
return T i

1
; (29)

}

Fig. 3. Distributed algorithm for adding masking tolerance.

to identify the set of states from where local recovery is not possible, but recovery
through cross transitions is possible. More specifically, the leader process sends a
Search path message to all other processes (Line 8 in Figure 3). Let us call the
process which sends a Search path the requester process. Upon receipt of this
message along with the set X of states from where local recovery is not possible
(Line 18 in Figure 2), each process offers a recovery cross transition, say (s0, s1),
provided (s0, s1) 6∈ mti and there exists a recovery path from s1 (i.e., Rank(s1) 6=



Distributed Synthesis of Fault-Tolerant Programs in the High Atomicity Model 13

∞), for each state s0 ∈ X (Line 19). Let us call such processes the providers.
Each provider sends a New path message carrying the set ri of cross recovery
transitions along with the rank of state s0 to the requester (Line 20). Obviously, if
the requester accepts the provider’s transitions, the rank of s0 will be Rank(s1)+1.
Upon receipt of this message (Line 21 in Figure 2), the requester adds the new re-
covery cross transitions, say (s0, s1), to its set of local program transitions (Line 22)
and sets the rank of source states s0 (Line 23). These states should be added to the
local fault-span (Line 24). Next, it invokes the procedure ConstructLocalRecov-
eryPaths to add new possible local recovery transitions by taking the newly added
recovery cross transitions into account (Line 25). Then, it sends a Confirm trns
message to the providers of the cross transitions so that the set of cross transitions
of providers and the requester processes are consistent (Line 26). Obviously, if the
requester receives other offers for a cross transition originated at s0, say (s0, s1)
with rank a, where the current rank of s0 is greater than a, then the requester can
replace its current cross transition with (s0, s1). However, we do not illustrate such
implementation details in the algorithms.
Finally, upon the receipt of a Confirm trns message, the providers add the set
qi of cross transitions (selected by the requester) to their set of local program tran-
sitions as well (Line 27). At this point, providers send a Commit message to the
requester (Line 28) indicating that the changes are committed. Upon receipt of
Commit message from all providers (Lines 29-30), the requester sends a Token
message to the next process on the virtual ring (Line 31) so that it starts identifying
the cross recovery transitions in the same fashion (Line 33). We continue doing this
until no cross transition is added across the network.
Notice that in both types of recovery paths, we do not introduce cycles to the fault-
span, as we do not add transitions from a state with a lower rank to a state with
higher rank. Hence, after occurrence of faults, recovery within a finite number of
steps is guaranteed. We synchronize the completion of construction of recovery
paths in Line 7.

2. Since there may exist states from where recovery to the invariant is not possible, we
need to recompute the local fault-span by removing the states from where closure of
fault-span is violated through fault transitions. To this end, we invoke the procedure
ConstructFaultspan which is a largest fixpoint calculation (Line 11 in Figure 3)
to calculate the largest fault-span which is closed in p[]f . Since this removal may
cause other states in the local fault-span of other processes to violate the closure of
the global fault-span, we send a New fs message to such processes to indicate this
fact (Line 28). Note that in order to synchronize the completion of calculation of
local fault-spans, here as well, we need a barrier synchronization (Line 12).

3. Due to the removal of some states in step 2, we recompute the local invariant by
invoking the procedure RemoveLocalDeadlocks. Notice that since S i

1 must be a
subset of T i

1, this invocation is parameterized by Si
1 ∩ T i

1 (Line 13). At this point,
if both Si

1 and T i
1 are nonempty, we jump back to step 1 and we keep repeating the

loop until a fixpoint is reached, i.e., (T i
1 = T i

2 ∧ Si
1 = Si

2).

Upon the termination of the repeat-until loop, recovery without violation of the
safety specification from T ′

1 to S′
1 is provided. At this point, if there exist processes
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i and j such that S′i and T ′j are both nonempty then we have a solution to the syn-
thesis problem. Thus, similar to addition of failsafe, we run an emptiness poll among
the processes (Lines 18-21). To this end, we send a Empt fs(0), which is similar to
Empt inv, except the message handler tests the emptiness of the local fault-span rather
than local invariant. We skip including this message in Figure 2.

We note that, in this paper, we have modified the recovery mechanism of the cen-
tralized algorithm in [7]. This is due to the fact that in that algorithm the authors add all
possible transitions, i.e., the set p1|S1 ∪ {(s0, s1) | s0 ∈ T1 −S1 ∧ s1 ∈ T1}, and then
remove non-progress cycles. However, since the size of this set in worst case is in the
square order of the size of the state space, it implies that in worst case, each machine i
must store a set whose size is in the square order of the state space which obviously does
not make sense. Hence, instead of adding all possible transitions and removing cycles,
we construct recovery paths in a more space-efficient way in a stepwise manner using
the notion of layered fault-span (cf. the Procedure ConstructLocalRecoveryPaths).
Theorem 4.5. The algorithm Distributed Add masking is sound. ut

5 Conclusion and Future Work

In this paper, we focused on the problem of automated addition of fault-tolerance to
existing fault-intolerant programs where the state space of the fault-intolerant program
is distributed over a network or cluster of workstations. We addressed this problem in
the high atomicity model where all processes of the program are able to read and write
all program variables in one atomic step. We presented two distributed multithreaded
algorithms for adding failsafe and masking fault-tolerance to a given fault-intolerant
program. To this end, we parallelized calculation of smallest and largest fixpoints of a
given formula and also addition of safe recovery paths.

As future work, we plan to implement the algorithms proposed in this paper in our
tool FTSyn. This implementation will enable us to synthesize fault-tolerant programs
with large state space. We also plan to study the problem of designing distributed algo-
rithms for adding fault-tolerance to distributed [6] and real-time [2] programs.

We are currently investigating the possibility of reducing the number of synchro-
nization points in our algorithms. Such synchronization barriers (implemented by ter-
mination detection mechanisms) decrease the level of parallelism and, hence, efficiency
of distributed algorithms. This study seems to be more crucial for distributed addition of
masking fault-tolerance, as it needs four synchronization points in each iteration of its
main loop. There are also open questions on how to reduce the number of cross transi-
tions and, hence, message passing overhead through designing static partition functions
tailored for synthesis purposes rather than reusing the ones designed for model checking
techniques.
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