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ABSTRACT
Although distributed systems are widely used nowadays,
their implementation and deployment is still a time-
consuming, error-prone, and hardly predictive task. In this
paper, we propose a methodology for producing automat-
ically efficient and correct-by-construction distributed im-
plementations by starting from a high-level model of the
application software in BIP. BIP (Behavior, Interaction, Pri-
ority) is a component-based framework with formal seman-
tics that rely on multi-party interactions for synchronizing
components and dynamic priorities for scheduling between
interactions.

Our methodology transforms arbitrary BIP models into
Send/Receive BIP models, directly implementable on
distributed execution platforms. The transformation con-
sists of (1) breaking atomicity of actions in atomic compo-
nents by replacing strong synchronizations with
asynchronous Send/Receive interactions; (2) inserting sev-
eral distributed controllers that coordinate execution of in-
teractions according to a user-defined partition, and (3) aug-
menting the model with a distributed algorithm for handling
conflicts between controllers. The obtained Send/Receive
BIP models are proven observationally equivalent to the ini-
tial models. Hence, all the functional properties are pre-
served by construction in the implementation. Moreover,
Send/Receive BIP models can be used to automatically de-
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rive distributed implementations. Currently, it is possible
to generate stand-alone C++ implementations using either
TCP sockets for conventional communication, or MPI im-
plementation, for deployment on multi-core platforms. This
method is fully implemented. We report concrete results
obtained under different scenarios (i.e., partitioning of in-
teractions and choice of algorithm for distributed conflict
resolution).
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1. INTRODUCTION
Analysis and design of computing systems often starts

with developing a high-level model of the system. Con-
structing models is beneficial, as designers can abstract away
implementation details and validate the model with respect
to a set of intended requirements through different tech-
niques such as formal verification, simulation, and testing.
However, deriving a correct implementation from a model
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Figure 1: A simple BIP model with conflicts.

is always challenging, since adding implementation details
involves many subtleties that can potentially introduce er-
rors to the resulting system. In the context of distributed
systems, these subtleties are amplified significantly because
of inherently concurrent, non-deterministic, and non-atomic
structure, as well as the occurrence of unanticipated phys-
ical and computational events such as faults. Thus, it is
highly advantageous if designers can somehow derive imple-
mentations in a systematic and ideally automated correct
fashion from high-level models. It is, nonetheless, unclear
how to transform an abstract model (where atomicity is as-
sumed through global state semantics and distribution de-
tails are omitted via employing high-level synchronization
primitives) into a real distributed implementation.

In this paper, we present a novel method for automatically
transforming high-level models in BIP [4] into distributed
implementations. The BIP (Behavior, Interaction, Priority)
language is based on a semantic model encompassing compo-
sition of heterogeneous components. The behavior of atomic
components is described as an automaton or Petri net ex-
tended by data and functions given in C++. Transitions of
the automaton or Petri net are labeled by port names and
functions computing data transformations when they are ex-
ecuted. If a transition of the Petri net can be executed, we
say that the associated port is enabled. BIP uses a compo-
sition operator for obtaining composite components from a
set of atomic components. The operator is parameterized
by a set of interactions between the composed components.
One such interaction type is rendezvous, which is enabled if
all of its participating ports are enabled. The execution of
interactions and local code of components are orchestrated
by a sequential scheduler.

In order to understand the subtleties of transforming a
BIP model into a distributed implementation, consider the
BIP model in Figure 1. In this model, atomic components
B1 · · ·B5 are synchronized by four rendezvous interactions
a1 · · · a4. In sequential models, interactions are executed
atomically by a single scheduler. To the contrary, introduc-
ing concurrency and distribution to this model requires the
implementation to deal with more complex issues:

• (Partial observability) Suppose interaction a1 (and,
hence, components B1 · · ·B3) is being executed. If
component B3 completes its computation before B1

and B2, and, ports p4 and p5 are enabled, then in-
teraction a2 is enabled. In such a case, a distributed
scheduler must be designed, so that concurrent execu-
tion of interactions does not introduce behaviors that
were not allowed by the high-level model.

• (Resolving conflicts) Suppose interactions a1 and a2

are enabled simultaneously. Since these interactions

share component B3, they cannot be executed concur-
rently. We call such interactions conflicting. Obvi-
ously, a distributed scheduler must ensure that execu-
tion of conflicting interactions is mutually exclusive.

• (Performance) On top of correctness issues, a real chal-
lenge is to ensure that a transformation does not add
considerable overhead to the implementation. After
all, one crucial goal of developing distributed and par-
allel systems is to exploit their computing power.

We address the issue of partial observability by break-
ing the atomicity of execution of interactions, so that a
component can execute unobservable actions once the cor-
responding interaction is being executed [3]. Resolving con-
flicts leads us to solving the committee coordination prob-
lem [7], where a set of professors organize themselves in
different committees and two committees that have a pro-
fessor in common cannot meet simultaneously. The original
distributed solution to the committee coordination problem
assigns one manager to each interaction [7]. Conflicts be-
tween interactions are resolved by reducing the problem to
the dining or drinking philosophers problems [6], where each
manager is mapped onto a philosopher. Bagrodia [1] pro-
poses an algorithm where message counts are used to solve
synchronization and exclusion is ensured by using a circu-
lating token. In a follow-up paper [2], Bagrodia modifies
the solution in [1] by using message counts to ensure syn-
chronization and reducing the conflict resolution problem to
dining or drinking philosophers. Also, Perez et al [11] pro-
pose another approach that essentially implements the same
idea using a lock-based synchronization mechanism.

As Bagrodia notes [2], a family of solutions to the com-
mittee coordination problem is possible, ranging over fully
centralized to fully decentralized ones, depending upon the
mapping of sets of committees to the managers. Thus, aug-
menting a transformation with different families of solutions
results in different distributed implementations of the initial
BIP model. We expect that each class of solutions exhibits
advantages and disadvantages and, hence, fits a specific type
of applications on a target architecture and platform. Al-
though the algorithms in [1, 2, 7] provide us with different
families of solutions, transforming a high-level model into a
concrete distributed implementation involves other details
that have not been taken into account. Examples include
preserving functional properties of the original model, com-
putations associated with interactions and components, data
transfer, level of concurrency, fairness, fault-tolerance, ef-
ficiency, and performance. These issues can significantly
change the dynamics and performance of a distributed im-
plementation and each deserves rigorous research beyond
the algorithms and preliminary simulations in [1, 2, 7]. We
believe we currently lack a deep understanding of the im-
pact of these issues and their correlation in transforming
high-level models into concrete distributed implementations.
For example, existing transformation methods are either not
flexible in generating different levels of distribution [5], inef-
ficient [8], or require the designer to explicitly specify com-
munication elements of the distributed implementation [12].

Contributions. With this motivation, in this paper, we
propose a generic framework for transforming high-level BIP
models into a distributed implementation that allow paral-
lelism between components as well as parallel execution of



non-conflicting interactions by embedding a solution to the
committee coordination problem. To the best of our knowl-
edge, this is the first instance of such a transformation (the
related work mentioned above only focus on impossibility
results, abstract algorithms, and in one instance [2] simu-
lation of an algorithm). Our method utilizes the following
sequence of transformations preserving observational equiv-
alence:

1. First, we transform the given BIP model into another
BIP model that (1) operates in partial-state semantics,
and (2) expresses multi-party interactions in terms of
asynchronous message passing (Send/Receive primi-
tives). Moreover, the target BIP model is structured
in three layers:

(a) The components layer consists of a transforma-
tion of behavioral components in the original
model.

(b) The interaction protocol detects enabledness of
interactions of the original model and executes
them after resolving conflicts either locally or by
the help of the third layer. This layer consists of
a set of components, each hosting a user-defined
subset of interactions from the original BIP model.

(c) The reservation protocol resolves conflicts
requested by the interaction protocol. The reser-
vation protocol implements a committee coordi-
nation algorithm and our design allows employing
any such algorithm. We, in particular, consider
three committee coordination algorithms: (1) a
fully centralized algorithm, (2) a token-based dis-
tributed algorithm, and (3) an algorithm based
on reduction to distributed dining philosophers.

2. Then, we transform the 3-layer BIP model into C++
code that employs TCP sockets for communication.

We also conduct a set of experiments to analyze the be-
havior and performance of the generated code using different
scenarios (i.e., different partitioning schemes and choice of
committee coordination algorithm). Our experiments clearly
show that each scenario is suitable for a different topology,
size of the distributed system, communication load, and of
course, the structure of the initial BIP model.

Organization. In Section 2, we present the global state
operational semantics of BIP. We describe our 3-layer model
in Section 3. Section 4 is dedicated to detailed description
of our BIP to BIP transformation. In Section 5, we show
the correctness of our transformation. Section 6 presents the
results of our experiments. Finally, in Section 7, we make
concluding remarks and discuss future work.

2. BASIC SEMANTIC MODELS OF BIP
In this section, we present operational global state seman-

tics of BIP. BIP is a component framework for constructing
systems by superposing three layers of modeling: Behav-
ior, Interaction, and Priority. Since the issue of priorities is
irrelevant to this paper, we omit it.
Atomic Components We define atomic components as
transition systems with a set of ports labeling individual
transitions. These ports are used for communication be-
tween different components.
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Figure 2: BIP composite component

Definition 1 (Atomic Component) An atomic compo-
nent B is a labeled transition system represented by a triple
(Q, P,→) where Q is a set of states, P is a set of communi-
cation ports, →⊆ Q×P ×Q is a set of possible transitions,
each labeled by some port.

For any pair of states q, q′ ∈ Q and a port p ∈ P , we write

q
p
→ q′, iff (q, p, q′) ∈→. When the communication port is

irrelevant, we simply write q → q′. Similarly, q
p
→ means

that there exists q′ ∈ Q such that q
p
→ q′. In this case, we

say that p is enabled in state q.
In practice, atomic components are extended with vari-

ables. Each variable may be bound to a port and modified
through interactions involving this port. We also associate
a guard and an update function to each transition. A guard
is a predicate on variables that must be true to allow the
execution of the transition. An update function is a local
computation triggered by the transition that modifies the
variables. Figure 2(a) shows an atomic component B, where
Q = {s, t}, P = {p, q, r}, and →= {(s, p, t), (t, q, s), (t, r, t)}.

Interaction For a given system built from a set of n atomic
components {Bi = (Qi, Pi,→i)}

n
i=1, we assume that their

respective sets of ports are pairwise disjoint, i.e., for any two
i 6= j from {1..n}, we have Pi ∩ Pj = ∅. We can therefore
define the set P =

Sn

i=1 Pi of all ports in the system. An
interaction is a set a ⊆ P of ports. When we write a =
{pi}i∈I , we suppose that for i ∈ I, pi ∈ Pi, where I ⊆ {1..n}.

Similar to atomic components, BIP extends interactions
by associating a guard and a transfer function to each of
them. Both the guard and the function are defined over
the variables that are bound to the ports of the interaction.
The guard must be true to allow the interaction. When the
interaction takes place, the associated transfer function is
called and modifies the variables.

Definition 2 (Composite Component) A composite
component (or simply component) is defined by a composi-
tion operator parameterized by a set of interactions γ ⊆ 2P .

B
def
= γ(B1, . . . , Bn), is a transition system (Q, γ,→), where

Q =
Nn

i=1 Qi and → is the least set of transitions satisfying
the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : qi
pi→i q′i ∀i 6∈ I : qi = q′i

(q1, . . . , qn)
a
→ (q′1, . . . , q

′

n)

The inference rule says that a composite component B =
γ(B1, . . . , Bn) can execute an interaction a ∈ γ, iff for each



port pi ∈ a, the corresponding atomic component Bi can ex-
ecute a transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged.
Figure 2(b) illustrates a composite component γ(B0, B1),
where each Bi is identical to component B in Figure 2(a)
and γ = {{p0, p1}, {r0, r1}, {q0}, {q1}}.

3. THE 3-LAYER ARCHITECTURE
In this section, we describe the overall architecture of our

BIP source-to-source transformation. Since we target a dis-
tributed setting, we assume concurrent execution of inter-
actions. However, if two interactions are simultaneously en-
abled, they cannot always run in parallel without breaking
semantics of the global state model. This leads to the notion
of structural conflicts between interactions.

Definition 3 Let γ(B1, . . . , Bn) be a BIP model. We say
that two interactions a1, a2 ∈ γ are conflicting iff either:

• they share a common port p; i.e., p ∈ a1 ∩ a2, or

• there exist an atomic component Bi = (Qi, Pi,→i), a
state q ∈ Qi, and two ports p1, p2 ∈ Pi such that (1)

p1 ∈ a1, (2) p2 ∈ a2, and (3) q
p1−→ ∧ q

p2−→.

As discussed in the introduction, handling conflicting in-
teractions in a BIP model running by a sequential scheduler
is quite straightforward. However, in a distributed setting,
detecting and avoiding conflicts are not trivial. Thus, our
target BIP model in a transformation should have the fol-
lowing three properties: (1) preserving the behavior of each
atomic component, (2) preserving the observational behav-
ior of interactions, and (3) resolving conflicts in a distributed
manner. Since several distributed algorithms exist in the lit-
erature for conflict resolution, we design our framework, so
that it provides appropriate interfaces with minimal restric-
tions. Moreover, we require that interactions in the target
model are of the form Send/Receive with one sender and
multiple receivers. Such interactions can be implemented us-
ing conventional communication primitives (e.g., TCP sock-
ets or MPI).

Definition 4 We say that BSR = γSR(BSR
1 , . . . , BSR

n ) is a
Send/Receive BIP composite component iff we can partition
the set of ports in BSR into three sets Ps, Pr, Pu that are
respectively the set of send-ports, receive-ports, and unary
interaction ports, such that:

• Each interaction a ∈ γSR, is either a Send/Receive
interaction a = (s, r1, r2, . . . , rk) with s ∈ Ps and ri ∈
Pr, or, a unary interaction a = {p} with p ∈ Pu.

• If s is a port in Ps, then there exists one and only
one Send/Receive interaction (s, r1, r2, . . . , rk) ∈ γSR

where all ports r1, . . . , rk are receive-ports. We say
that r1, r2, . . . , rk are the receive-ports associated to s.

• If (s, r1, . . . , rk) is a Send/Receive interaction in γSR

and s is enabled at some global state of BSR, then all
its associated receive-ports r1, . . . , rk are also enabled
at that state.

We design our target BIP model based on the three tasks
identified above, where we incorporate one layer for each
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Figure 3: 3-layer model of Figure 1.

task. We use the high-level BIP model in Figure 1 as a
running example throughout the paper to describe the con-
cepts of our transformation. We assume that interaction a1

is in conflict with only interaction a2, and, interactions a2,
a3, and a4 are in pairwise conflict. Our 3-layer architecture
consists of the following layers.

Components Layer. Atomic components in the high-
level model are placed in this layer with the following ad-
ditional ports per component. The send-port o that shares
the list of enabled ports in the component with the upper
layer. Also, for each port p in the original component, we
include a receive-port p through which the component is no-
tified to execute the transition labeled by p once the upper
layers resolve conflicts and decide on which components can
execute on what port. The bottom layer in Figure 3 includes
components illustrated in Figure 1.

Interaction Protocol. This layer consists of a set of
components each hosting a set of interactions in the high-
level model. Conflicts between interactions included in the
same component are resolved by that component locally. For
instance, interactions a1 and a2 (resp. a3 and a4) of Figure
1 are grouped into component IP1 (resp. component IP2)
in Figure 3. Thus, the conflict between a1 and a2 (resp. a3

and a4) is handled locally in IP1 (resp. IP2). To the con-
trary, the conflicts between a2 and either a3 or a4 have to
be resolved using an external algorithm that solves the com-
mittee coordination problem. Such an algorithm forms the
top layer of our model. The interaction protocol also eval-
uates the guard of each interaction and executes the code
associated with an interaction that is selected locally or by
the upper layer. The interface between this layer and the
component layer provides ports for receiving enabled ports
from each component (i.e., port o) and notifying the com-
ponents on permitted port for execution.

Reservation Protocol. This layer accommodates an
algorithm that solves the committee coordination problem.
For instance, the external conflicts between interactions a2

and a3, and, interactions a2 and a4 are resolved by the cen-
tral component RP1 in Figure 3. We emphasize that the
structure of components in this layer solely depends upon
the augmented conflict resolution algorithm. Incorporating
a centralized algorithm results in one component RP1 as
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illustrated in Figure 3. Other algorithms (as will be dis-
cussed in Subsection 4.3), such as ones that use a circulat-
ing token [1] or dining philosophers [2, 7] result in different
structures. The interface between this layer and the Interac-
tion Protocol involves ports for receiving request to reserve
an interaction (labeled r) and responding by either success
(labeled ok) or failure (labeled f).

4. TRANSFORMING BIP INTO
3-LAYER BIP

In this section, we describe our technique for transforming
a high-level BIP model into a 3-layer BIP model in detail.
Construction of the three layers are described in Subsections
4.1, 4.2, and 4.3 respectively. Finally, we describe cross-layer
interactions in Subsection 4.4.

4.1 Transformation of Atomic Components
We now present how we transform an atomic component

B from a given BIP model into a Send/Receive atomic com-
ponent BSR that is capable of communicating with the In-
teraction Protocol in the 3-layer model. As mentioned in
Section 3, BSR sends offers to the Interaction Protocol that
are acknowledged by a response. An offer includes the set of
enabled ports of BSR at the current state through which the
component is ready to interact. Enabled ports are specified
by a set of Boolean variables. These variables are modi-
fied by a port update function. The function evaluates each
variable when reaching a new state. When the upper layers
select an interaction involving BSR for execution, BSR is no-
tified by a response sent on the port chosen. We also include
a participation number variable n in BSR, which counts the
number of interactions that BSR has participated in.

Since each response triggers an internal computation, fol-
lowing [3], we split each state s into two states, namely, s
itself and a busy state ⊥s. Intuitively, reaching ⊥s marks
the beginning of an unobservable internal computation. We
are now ready to define the transformation from B into BSR.

Definition 5 Let B = (Q, P,→) be an atomic component.
The corresponding Send/Receive atomic component is BSR =
(QSR, P SR,→SR) with the additional variables X, such that:

• QSR = Q ∪ Q⊥, where Q⊥ = {⊥s |s ∈ Q}.

• P SR = P ∪ {o}, where the set of variables X =
{xp}p∈P ∪{n} are associated to offer port o. The port
update function ft modifies X as follows: it sets xp to

true if t
p

−→, to false otherwise, and increments n.

• For each transition (s, p, t) ∈→, we include the follow-
ing two transitions in →SR: (⊥s, o, s) and (s, p,⊥t) .
The transition (s, p,⊥t) triggers the function ft.
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Figure 5: A simple Petri net

Figure 4 illustrates transformation of the component in
Figure 2(a) into its corresponding Send/Receive component.

4.2 Interaction Protocol
Given a high-level BIP model B = γ(B0 · · ·Bn), one pa-

rameter to our transformation is a partition of interactions
γ1, . . . , γm. Partitioning of interactions is a means for the
designer to enforce load-balancing and improving the per-
formance of the given model when running in a distributed
fashion. It also determines whether or not a conflict between
interactions can be resolved locally. We associate each class
γj of interactions to an Interaction Protocol component IP j

that is responsible for (1) detecting enabledness by collect-
ing offers from the Components Layer, (2) selecting a set of
non-conflicting interactions (either locally or by the help of
the Reservation Protocol), and (3) executing the selected in-
teractions in γi by notifying the corresponding atomic com-
ponents. For instance, in Figure 3, we have two classes:
γ1 = {a1, a2} (hosted by component IP1) and γ2 = {a3, a4}
(hosted by component IP2). In this section, for simplicity
of reasoning about correctness, we construct the behavior of
an IP component by a Petri net.

Definition 6 A 1-Safe Petri net is defined by a triple S =
(L, P, T ) where L is a set of places, P is a set of ports, and
T ⊆ 2L × P × 2L is a set of transitions. A transition τ is
a triple (•τ, p, τ•), where •τ is the set of input places of τ
and τ• is the set of output places of τ .

We represent a Petri net as an oriented bipartite graph
G = (L ∪ T, E). Places are represented by circular vertices
and transitions are represented by rectangular vertices. The
set of oriented edges E is the union of the edges {(l, τ) ∈
L × T | l ∈ •τ} and the edges {(τ, l) ∈ T × L | l ∈ τ•}.

We depict the state of a Petri net by marking its places
with tokens. We say that a place is marked if it contains a
token. A transition τ can be executed if all its input places in
•τ contain a token. Upon the execution of τ , tokens in input
places •τ are removed and output places in τ• are marked.
Formally, let −→S be the set of triples (m, p, m′), such that
∃τ = (•τ, p, τ•) ∈ T , where •τ ⊆ m and m′ = (m\•τ) ∪ τ•.
The behavior of a Petri net S can be defined by a labeled
transition system (2L, P,−→S).

Figure 5 shows an example of a Petri net in two successive
markings. It has five places {p1, . . . , p5} and three transi-
tions {t1, t2, t3}. The places containing a token are depicted
with gray background. The left Petri net is obtained by exe-
cuting transition t1. The right Petri net shows the resulting
state of the left Petri net when transition t2 is fired.

Since components of the interaction protocol deal with
interactions of the original model, they need to be aware of
conflicts in the original model as defined in Definition 3. We
distinguish two types of conflicting interactions according to
a given partition:



• External: Two interactions are externally conflicting if
they conflict and they belong to different classes of the
partition. External conflicts are referred to the Reser-
vation Protocol. For instance, in Figure 3, interaction
a2 is in external conflict with interactions a3 and a4.

• Internal: Two interactions are internally conflicting if
they conflict, but they belong to the same class of the
partition. Internal conflicts are resolved by the Inter-
action Protocol within the component that hosts them.
For instance, in Figure 3, interaction a1 is in internal
conflict with interaction a2. If component IP1 chooses
interaction a1 over a2, no further action is required.
Note, however, that if IP1 chooses a2, then it has to
request its reservation from RP1, as it is in conflict
with a3 and a4 externally.

The Petri net that defines the behavior of an Interaction
Protocol component IPj handling a class γj of interactions
is constructed as follows. We refer to Figure 6 as a concrete
example for construction of the Petri net of component IP1

in Figure 3.

Places. We include three types of places:

• For each component Bi involved in interactions of γj ,
we include waiting and received places wi and rcv i, re-
spectively. IPj waits in a waiting place until it receives
an offer from the corresponding component. When an
offer from component Bi is received (along with the
fresh values of the Boolean variables associated to the
ports of the sender), IPj moves from wi to rcv i. In Fig-
ure 6, since components B1 · · ·B4 are involved in inter-
actions hosted by IP1 (i.e., a1 and a2), we include wait-
ing places w1 · · ·w4 and received places rcv1 · · · rcv4.

• For each port p involved in interactions of γj , we in-
clude a sending place sndp. The response to an offer
with xp = true is sent from this place to port p of
the component that has made the offer. In Figure
6, places sndp1 · · · sndp5 correspond to ports p1 · · · p5

respectively, as they form interactions hosted by IP1

(i.e., a1 and a2).

• For each interaction a ∈ γj that is in external conflict
with another interaction, we include an engaged place
ea and a free place fra. In Figure 6, only interaction
a2 is in external conflict, for which we add places ea2

and fra2
.

Variables and ports. For each port p involved in inter-
actions of γj , we include a Boolean variable xp. The value of
this variable is equal to the value of the same variable in the
most recent offer received from the corresponding compo-
nent. Also, for each component Bi involved in interactions
of γj , we include an integer ni that stores participation num-
ber of Bi. The set of ports of IPj is the following:

• For each component Bi involved in interactions of γj ,
we include an offer port oi. Each port oi updates the
values of variables ni and xp for each port p exported
by Bi. In Figure 6, ports o1 · · · o4 represent offer ports
for components B1 · · ·B4.

• For each port p involved in interactions of γj , we in-
clude a response port p. In Figure 6, ports p1 · · · p5

w1 w3w2 w4

rcv1 rcv3rcv2 rcv4

fra2

ea2

sndp1 sndp3 sndp4sndp2 sndp5

w1 w3w2 w4

fra2

o1 o2 o3 o4

o4

a1

ra2

oka2
fa2

p1 p2 p3 p4 p5

o1 o2 o3 o4

ra2
oka2 fa2

a1

p1 p2 p3 p4 p5

Waiting

Received

Engaged

Sending

Waiting

Free

Figure 6: Component IP1 in Figure 3.

correspond to the ports that form interactions a1 and
a2.

• For each interaction a ∈ γj that is in external con-
flict, we include reservation ports ra, oka, and fa. If
a = {pi}i∈I , the port ra is associated to the variables
{ni}i∈I , where I is the set of components involved in
interaction a. In Figure 6, ports ra2 , oka2 , and fa2

represent the external conflict of a2 with interactions
a3 and a4.

• For each interaction a ∈ γj that is not in external
conflict, we include a unary port a. In Figure 6, we
include unary port a1, as a1 is only in internal conflict
with a2.

Transitions. IPj performs two tasks: (1) receiving offers
from components in the lower layer and responding to them,
and (2) requesting reservation of an interaction from the
Reservation Protocol in case of an external conflict. The
following set of transitions of IPj performs these two tasks:

• In order to receive offers from a component Bi, we in-
clude transition (wi, oi, rcv i). If Bi participates in an
interaction not handled by IPj , we also include transi-
tion (rcv i, oi, rcv i) to receive new offers when Bi takes
part in such an interaction. Transitions labeled by
o1 · · · o4 in Figure 6 are of this type.

• Requesting reservation of an interaction a ∈ γj that
is in external conflict is accomplished by transition
({rcv i}i∈I ∪{fra}, ra, {rcv i}i∈I ∪{ea}), where I is the
set of components involved in interaction a. This tran-
sition is guarded by the predicate

V

i∈I xpi which en-
sures enabledness of a. Notice that this transition is
enabled when the token for each participating compo-
nent is in its corresponding receive place rcv i. Execu-
tion of this transition results in moving the token from
a free place to an engaged place. In Figure 6, transition
ra2 is of this type, and is guarded by xp4 ∧ xp5 .

• For the case where the Reservation Protocol responds
positively, we include the transition
({rcv i}i∈I ∪ {ea}, oka, {sndpi}i∈I ∪ {fra}). Upon ex-
ecution of this transition, the token from the engaged
place moves to the free place and the tokens from re-
ceived move to sending places for informing the cor-
responding components. Transition oka2 in Figure 6



occurs when interaction a2 is successfully reserved by
the Reservation Protocol.

• For the case where the Reservation Protocol responds
negatively, we include the transition (ea, fa, fra). Upon
execution of this transition, the token moves from the
engaged place to the free place. Transition fa2 in Fig-
ure 6 occurs when the Reservation Protocol fails to
reserve interaction a2 for component IP1.

• For each interaction a = {pi}i∈I in γj that has only in-
ternal conflicts, let A be the set of interactions that are
in internal conflict with a, but are externally conflict-
ing with other interactions. We include the transition
({rcv i}i∈I∪{fra′}a′∈A, a, {sndpi}i∈I∪{fra′}a′∈A). This
transition is guarded by the predicate

V

i∈I
xpi and

moves the tokens from receiving to sending places. To-
kens from fra′ places ensure that no internally conflict-
ing interaction requested a reservation. The transition
labeled by a1 in Figure 6 falls in this category.

• Finally, for each component Bi exporting p, we include
the transitions (sndp, p, wi). This transition notifies
component Bi to execute the transition labeled by port
p. These are transitions labeled by p1 · · · p5 in Figure
6.

4.3 Reservation Protocol
As discussed earlier, the main task of the Reservation Pro-

tocol is to ensure that externally conflicting interactions are
executed mutually exclusive. The Reservation Protocol can
be implemented using any algorithm that solves the com-
mittee coordination problem. Our design of Reservation
Protocol allows employing any such algorithm with minimal
restrictions.

We adapt a variation of the idea of the message-count
technique from [2] as a minimal restriction to ensure that
our design makes progress (see Lemma 2) and it does not
interfere with exclusion algorithms. This technique is based
on counting the number of times that a component inter-
acts. Each component keeps a counter n which indicates
the current number of participation of the component in
interactions. The Reservation Protocol ensures that each
participation number is used only once. That is, each com-
ponent takes part in only one interaction per transition. To
this end, in the Reservation Protocol, for each component
Bi, we keep a variable Ni which stores the latest number
of participation of Bi. Whenever a reserve message ra for
interaction a = {pi}i∈I is received by the Reservation Pro-
tocol, the message provides a set of participation numbers
({na

i }i∈I) for all components involved in a. If for each com-
ponent Bi, the participation number na

i is greater than Ni,
then the Reservation Protocol acknowledges successful reser-
vation through port oka and the participation numbers in
the Reservation Protocol are set to values sent by the inter-
action protocol. On the contrary, if there exists a component
whose participation number is less than or equal to what
Reservation Protocol has recorded, then the corresponding
component has already participated for this number and the
Reservation Protocol replies failure via port fa.

Now, since the structure and behavior of the Reservation
Protocol components depend on the employed algorithm, we
only specify an abstract set of minimal restrictions of this
layer as follows:
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Figure 7: A centralized Reservation Protocol for
Figure 3.

• For each component Bi, the Reservation Protocol main-
tains a variable Ni indicating the last participation
number reserved for Bi.

• For each interaction a = {pi}i∈I handled by the reser-
vation protocol, we include three ports: ra, oka and fa.
The receive-port ra accepts reservation requests con-
taining fresh values of variables na

i . The send-ports
oka and fa accept or reject the latest reservation re-
quest, and Ni variables are updated in case of positive
response.

• Each ra message should be acknowledged by exactly
one oka or fa message.

• Each component of the Reservation Protocol should
respect the message-count properties described above.

4.3.1 Centralized Implementation
Figure 7 shows a centralized Reservation Protocol for the

model in Figure 3. In fact, the component in Figure 7 is
the component RP1 in Figure 3. A reservation request,
for instance, ra2 , contains fresh variables na2

3 and na2
4 (cor-

responding to components B3 and B4). The token rep-
resenting interaction a2 is then moved from place waita2

to place treata2 . From this state, the Reservation Pro-
tocol can still receive a request for reserving a3 and a4

since waita3 and waita4 still contain a token. This is where
message-counts play their role. The guard of transition oka2

is (na2
3 > N3)∧ (na2

4 > N4) where Ni is the last known used
participation number for Bi. Note that since execution of
transitions are atomic in BIP, if transition oka2 is fired, it
modifies variables Ni atomically (i.e., before any other tran-
sition can take place). We denote this implementation by
RP .

4.3.2 Token Ring Implementation
Another example of a Reservation Protocol is inspired by

the token-based algorithm due to Bagrodia [1], where we add
one reservation component per externally conflicting inter-
action. Figure 8 shows the respective components for the
model presented in Figure 3. Exclusion is ensured using a
circulating token carrying Ni variables; i.e., the component
that owns the token compares the value of the received ni

variables with the Ni variables from the token. If they are
greater, an ok message is sent to the component that han-
dles that interaction and the Ni values on the token are
updated. Otherwise, a fail message is sent. Subsequently,
the reservation component releases the token via port ST ,
which is received by the next component via port RT . Ob-
viously, this algorithm allows a better level of distribution
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Figure 8: Token-based Reservation Protocol for the
BIP models in Figures 1 and 3.

at the reservation layer. We denote this implementation by
TR.

4.3.3 Implementation Based on Dining Philosophers
A third choice of Reservation Protocol algorithm is an

adaption of the hygienic solution to the dining philosophers
problem presented in [2,7]. Its Send/Receive BIP implemen-
tation is presented in Figure 9. Similar to token ring, each
externally conflicting interaction is handled by a separate
component. If two interactions are conflicting, the two cor-
responding components share a fork carrying Ni variables
corresponding to the atomic components causing the con-
flict. In order to positively respond to a reservation request,
a component has to fetch all forks shared with its neighbors.
Then, it compares participation numbers received from the
reservation request with the numbers in forks and responds
accordingly. After such a response, the forks become dirty.
Finally, the component sends the forks if it is asked to do
so. We denote this implementation by DP .

4.4 Cross-Layer Interactions
In this subsection, we define the interactions of our 3-layer

model. Following Definition 4, we construct Send/Receive
interactions by specifying which one is the sender. Given a
BIP model γ(B1 · · ·Bn), a partition γ1 · · · γm, and the ob-
tained Send/Receive components BSR

1 · · ·BSR
n , interaction

protocol components IP1 · · · IPm, and Reservation Protocol
components RP1 · · ·RPk, we construct the Send/Receive in-
teractions γSR according to Definition 4 as follows:

• For each component Bi, γSR contains a multicast con-
nector formed by all ports oi, where Bi is the sender.

• For each Interaction Protocol component IPj and port
p in IPj , we include a binary interaction, such that
port p of IP j is the sender, and, port p of the cor-
responding component in the components layer is the
receiver.

• For each interaction a that is in external conflict, γSR

contains an interaction between ra ports, such that
the Interaction Protocol is the sender and Reservation
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Figure 9: Dining philosophers-based Reservation
Protocol for the BIP models in Figures 1 and 3.

Protocol is the receiver. Likewise, γSR contains inter-
actions between oka and fa ports.

Note that these interactions do not depend on the Reser-
vation Protocol. The entire model obtained is denoted BSR

RP ,
BSR

TR or BSR
DP following the embedded Reservation Protocol.

The interactions between the three layers of our running ex-
ample are presented in Figure 3. The send-ports are graph-
ically denoted by triangles and receive-ports by bullets.

5. CORRECTNESS
In Subsection 5.1, we show that our 3-layer model meets

the constraints of the Send/Receive model specified in Sec-
tion 3. In Subsection 5.2, we prove that a BIP model is
observationally equivalent with the BIP model obtained by
the transformation of Section 4. Finally, we prove the cor-
rectness of models embedding different implementations of
Reservation Protocol in Subsection 5.3.

5.1 Compliance with Send-Receive Models

Proposition 1 Given a BIP model B, the model BSR ob-
tained by transformation of Section 4 meets the constraints
of Definition 4.

Proof. The send-ports and receive-ports are clearly de-
termined in subsection 4.4 and respect the syntax presented
in the two first points of definition 4. We now prove the
third point, that is whenever a send-port is enabled, all its
associated receive-ports are enabled.

Between the Interaction Protocol and Reservation Pro-
tocol layers, for reserve, ok and fail interactions related to
a ∈ γ it is sufficient to consider places fra and ea in the In-
teraction Protocol layer, waita and treata in the Reservation



Protocol layer. Initially the configuration is (fra, waita)
from which only the send-port ra in Interaction Protocol
might be enabled, and the receive-port ra is enabled. If
the ra interaction takes place, we reach the configuration
(ea, treata), in which only send-ports oka and fa in Reserva-
tion Protocol might be enabled, and the associated receive-
ports in Interaction Protocol are enabled. Then if either ok
or fail interaction takes place we switch back to the initial
configuration.

Between components and Interaction Protocol layers, for
all interactions involving component Bi, it is sufficient to
consider only the places wi, ri and sp for each port p ex-
ported by Bi in the Interaction Protocol. Whenever one of
the places wi or ri is enabled in each Interaction Protocol
component, the property holds for the oi interaction. In this
configuration, no place sp might be active since it would re-
quire one of the token from a wi or a ri, thus no send port
p is enabled.

If there is an Interaction Protocol component such that
the token associated to Bi is an a place sp, it comes either
from an a or an oka labeled-transition. In the first case, no
other interaction involving Bi can take place, otherwise it
would be externally conflicting with a. In the second case
according to the Reservation Protocol, the oka was given
for the current participation number in the component Bi

and no other interaction using this number will be granted.
Thus in all cases, there is only one active place sp with p
exported by Bi. The response can then take place and let
the components continue their execution. �

5.2 Observational Equivalence between
Original and Transformed BIP Models

We recall the definition of observational equivalence of
two transition systems A = (QA, P ∪ {β},→A) and B =
(QB , P ∪ {β},→B). It is based on the usual definition of
weak bisimilarity [10], where β-transitions are considered
unobservable. The same definition is trivially extended for
atomic and composite BIP components.

Definition 7 (Weak Simulation) A weak simulation
over A and B, denoted A ⊂ B, is a relation R ⊆ QA × QB,
such that we have ∀(q, r) ∈ R, a ∈ P : q

a
→A q′ =⇒ ∃r′ :

(q′, r′) ∈ R ∧ r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R : q
β
→A q′ =⇒

∃r′ : (q′, r′) ∈ R ∧ r
β∗

→B r′

A weak bisimulation over A and B is a relation R such
that R and R−1 are both weak simulations. We say that A
and B are observationally equivalent and we write A ∼ B
if for each state of A there is a weakly bisimilar state of B
and conversely. In this subsection, our goal is to show that
B and BSR are observationally equivalent. We consider the
correspondence between actions of B and BSR as follows.
For each interaction a ∈ γ, where γ is the set of interactions
of B, we associate either the binary interaction oka or the
unary interaction a, depending upon existence of an external
conflict. All other interactions (offer, response, reserve, fail)
are unobservable and denoted β.

We proceed as follows to complete the proof of observa-
tional equivalence. Amongst unobservable actions β, we dis-
tinguish between β1 actions, that are communication inter-
actions between the components layer and the Interaction
Protocol (namely offer and response), and β2 actions that
are communications between the Interaction Protocol and

and Reservation Protocol (namely reserve and fail). We de-
note qSR a state of BSR and q a state of B. A state of BSR

from where no β1 action is possible is called a stable state, in
the sense that any β action from this state does not change
the state of the component layer.

Lemma 1 From any state qSR, there exists a unique stable

state [q]SR such that qSR β∗

1−→ [q]SR.

Proof. The state [q]SR exists since each Send/Receive
component BSR

i can do at most two β1 transitions: receive
a response and send an offer. Since two β1 transitions in-
volving two different components are independent (i.e do not
change the same variable or the same place), the ordering
of β1 action does not change the final state. Thus [q]SR is
unique. �

We now show a property of the participation numbers. Let
B.n mean ‘the variable n that belongs to component B’.

Lemma 2 When BSR is in a stable state, for each couple
(i, j), such that Bi is involved in interactions handled by
IP j, we have Bi.ni = IPj .ni > RP .Ni.

Proof. When in stable state, all offers have been sent,
thus the participation numbers in Interaction Protocol cor-
respond to those in components Bi.ni = IPj .ni.

Initially, for each component Bi, RP.Ni = 0 and BSR
i .ni =

1 thus the property holds. The Ni variables in Reservation
Protocol are updated on a ok transition, using values pro-
vided by the Interaction Protocol, that is by the compo-
nents. We show that after each oka transition, the property
still holds. For each component BSR

i participant in a, it
holds that BSR

i .ni = RP.Ni after the offer. Then, the re-
sponse transitions increments participation numbers in com-
ponents such that in the next stable state BSR

i .ni > RP.Ni.
For components Bi′ not participating in a, by induction we
have BSR

i .ni′ > RP.Ni′ and only participation numbers in
components can be incremented. �

Since we need to take into account participation num-
bers ni, we introduce an intermediate centralized model Bn.
This new model is a copy of B that includes in each atomic
component an additional variable ni which is incremented
whenever a transition is executed. As B and Bn have iden-
tical set of states and transitions labeled by the same ports,
they are observationally equivalent. (They are even strongly
bisimilar.)

Lemma 3 B ∼ Bn.

Proof. We say that two states (q, qn) of B and Bn are
equivalent if they have the same control states. This defines
a bisimulation. � We are now ready to state and prove
our central result.

Proposition 2 BSR ∼ Bn.

Proof. We define a relation R between the states QSR of
BSR and the states Q of Bn as follows: R = {(qSR, q) | ∀i ∈
I : [q]SR

i = qi} where qi denotes the state of Bn
i at state q

and [q]SR
i denotes the state of BSR

i at state [q]SR. The three
next assertions prove that R is a weak bisimulation:

(i) If (qSR, q) ∈ R and qSR β
−→ rSR then (rSR, q) ∈ R.
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Figure 10: Proof of observational equivalence

(ii) If (qSR, q) ∈ R and qSR a
−→ rSR then ∃r ∈ Q : q

a
−→ r

and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q
a

−→ r then ∃rSR ∈ QSR : qSR β∗a
−→

rSR and (rSR, r) ∈ R.

(i) If qSR β
−→ rSR, either β is a β1 action and [q]SR = [r]SR,

either β is a β2 action which does not change the state of
component layer and does not enable any send-port.

(ii) The action a in BSR is either a unary interaction a
or a binary interaction oka. In both cases, a = {pi}i∈I has
been detected to be enabled in IPj by the tokens in received
places and the guard of the a or ra transition in Interaction
Protocol, with the participation numbers ni. We show that
a is also enabled at state [q]SR:

• If a has only local conflicts, no move involving Bi can
take place in another interaction protocol, and no β1

move involving Bi can take place in IPj since a is
enabled.

• If a is externally conflicting, no move involving Bi has
taken place in another interaction protocol (otherwise
oka would not have been enabled), nor in IPj since the
fra place is empty.

At stable state [q]SR, the lemma 2 ensures that IPj .ni =
BSR

i .ni. Following the definition of R, we have Bi.ni =
BSR

i .ni when Bn is at state q. Thus a is enabled with the
same participation numbers at state q and in IPj at state

qSR and [q]SR, which implies q
a

−→.
Since the β1 actions needed to reach the state [q]SR did not

interfere with action a, we can replay them from rSR to reach
a state r′

SR
, as shown on figure 10. The state r′

SR
is not

stable because of response and offers that can take place in
each component participant in Bi. Executing these actions
brings the system in state [r′]SR which is clearly equivalent
to r, and by point (i) we have (rSR, r) ∈ R.

(iii) In figure 10, we show the different actions and states
involved in this part. From qSR, we reach [q]SR by doing β1

actions. Then we execute all possible fail interactions (that
are β2 actions), so that all fra places are empty, to reach
a state [q′]SR. At this state, if a has only local conflicts,
the interaction a is enabled, else the sequence ra oka can be
executed since lemma 2 ensures that guard of oka is true.
In both cases, the interaction corresponding to a brings the
system in state rSR. From this state, the responses corre-
sponding to each port of a are enabled, and the next stable
state [r]SR is equivalent to r, thus (rSR, r) ∈ R. �

5.3 Interoperability of Reservation Protocol
As mentioned in Subsection 4.3, the centralized imple-

mentation RP of the Reservation Protocol can be seen as

a specification. We also proposed two other implementa-
tions, respectively, token-ring TR and dining philosophers
DP . However, these implementations are not observation-
ally equivalent to the centralized implementation. More pre-
cisely, the centralized version defines the most liberal imple-
mentation: if two reservation requests a1 and a2 are re-
ceived, the protocol may or may not acknowledge them, in
a specific order. This general behavior is not implemented
neither by the token ring nor by the dining philosophers im-
plementations. In the case of token ring, the response may
depend on the order the token travels through the compo-
nents. In the case of dining philosophers, the order may
depend on places and the current status of forks.

Nevertheless, we can prove an observational equivalence
if we consider weaker versions of the above implementa-
tions. More precisely, for the token ring protocol, consider
the weaker version TR(w) which allows to release the token
or provide a fail answer regardless of the values of counters.
Likewise, for the dining philosophers protocol, consider the
weaker version DP (w), where forks can always be sent to
neighbors, regardless of their status and the values of coun-
ters. Clearly, a weakened Reservation Protocol is not desir-
able for a concrete implementation since they do not enforce
progress. But, they play a technical role in proving the cor-
rectness of our approach. The following proposition estab-
lishes the relation between the different implementations of
the Reservation Protocol.

Proposition 3 (i) RP ∼ TR(w) ∼ DP (w)

(ii) TR ⊂ TR(w), DP ⊂ DP (w).

Let us denote by BSR
X the 3-layer model obtained from the

initial system B and embedding algorithm X in the Reser-
vation Protocol. Also, let us denote Tr(B) the set of all
possible traces of observable actions allowed by an execu-
tion of B. The following proposition states the correctness
of our implementation.

Proposition 4 (i) B ∼ BSR ∼ BSR

TR(w) ∼ BSR

DP(w)

(ii) Tr(B) ⊇ Tr(BSR
TR) and Tr(B) ⊇ Tr(BSR

DP ).

Proof. (i) The leftmost equivalence is is a consequence
of lemma 3 and proposition 2. The other equivalences come
from proposition 3 and the fact that observational equiv-
alence is a congruence with respect to parallel composi-
tion. (ii) The trace inclusions follows from the simulations

TR ⊂ TR(w) respectively DP ⊂ DP (w)
�

6. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments.

Our implementation automatically generates C++ code
from the 3-layer BIP model developed in Sections 3 and 4,
where Send/Receive interactions are implemented by TCP
sockets primitives. Code generation involves generating a
stand-alone executable for each Send/Receive component in
each layer of the 3-layer BIP model. The code of each com-
ponent simulates its automaton or Petri net using the tech-
nique presented in [5].

In the following, we denote each experiment scenario by
(i, X), where i is the number of interaction partitions and
X is the choice among the three Reservation Protocols de-
scribed in Subsection 4.3 (i.e., RP , TR, or DP). For the case
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Figure 11: Partial BIP model for diffusing compu-
tations.

where partitioning of interactions results in having no exter-
nal conflicts and, hence, requiring no reservation component,
we use the symbol ‘−’ to denote an empty Reservation Pro-
tocol. All experiments in this section are conducted on five
quad-Xeon 2.6 GHz machines with 6GB RAM running un-
der Debian Linux and connected via a 100Mbps Ethernet
network. Our aim is to show that different conflict resolu-
tion algorithms and partitioning may result in significantly
different performance.

For our experiments, we model a simplified version of
Dijkstra-Scholten termination detection algorithm for dif-
fusing computations [9] in BIP. Diffusing computation is the
task of propagating a message across a distributed system;
i.e., a wave that starts from an initial node and diffuse to
all processes in a distributed system. Diffusing computation
has numerous applications such as traditional distributed
deadlock detection and reprogramming of modern sensor
networks. One challenge in diffusing computation is to de-
tect its termination. In our version, we consider a torus
(wrapped around grid) topology for a set of distributed pro-
cesses, where a spanning tree throughout the distributed
system already exists; each process has a unique parent and
the root process is its own parent. Termination detection
is achieved in two phases: (1) the root of the spanning tree
possesses a message and initiates a propagation wave, so that
each process sends the message to its children, and (2) once
the first wave of messages reaches the leaves of the tree, a
completion wave starts, where a parent is complete once all
its children are complete. In this setting, when the root is
complete, termination is detected.

Our BIP model has n×m atomic components (see Figure
11 for a partial model). Each component participates in two
types of interactions: (1) four binary rendezvous interactions
(e.g., I0 · · · I3) to propagate the message to its children (as in
a torus topology, each node has four neighbors and, hence,
potentially four children), and (2) one 5-ary rendezvous in-
teraction (e.g., I) for the completion wave, as each parent
has to wait for all its children to complete.

Our first set of experiments is on a 6 × 4 torus. We ap-
ply different partitioning scenarios as illustrated in Figure
12. Figure 13(a) shows the time needed for 100 rounds of
detecting termination of diffusing communication for each
scenario. In the first two scenarios, the interactions are par-
titioned, so that all conflicts are internal and, hence, resolved
locally by the Interaction Protocol. In case of (2,−), all
interactions of the propagation wave are grouped into one

(24, [RP, TR, DP ])(1,−) (2,−) (2, [RP, TR, DP ]) (4, [RP, TR, DP ])

Figure 12: Different scenarios for diffusing compu-
tations.

component of the Interaction Protocol and all interactions
related to the completion wave are grouped into the second
component. Such grouping does not allow parallel execution
of interactions. This is the main reason that the performance
of (1,−) and (2,−) are the worst in Figure 13(a).

Next, we group all interactions involved in components
1 · · · 12 into one component and the rest in a second com-
ponent of the Interaction Protocol. This constitutes exper-
iments (2,RP), (2,TR), and (2,DP). Such partitioning al-
lows more parallelism during propagation and completion
waves, as an interaction in the first partition can be exe-
cuted in parallel with an interaction in the second parti-
tion1. This is why the performance of (2,RP/TR/DP) is
better than (1,−) and (2,−). Now, since almost all prop-
agation interactions conflict with each other and so do all
completion interactions, in case of the dining philosophers
algorithm, the conflict graph is not dense. Hence, a small
of number decisions can be made in a local neighborhood
of philosophers. It follows that the performance of (2,TR)
is quite competitive with (2,DP). It can also be seen that
(2,RP) performs as good as (2,TR) and (2,DP). This is
due to the fact that there exist only two partitions, which
results in a low number of reservation requests.

Figure 13(a) also shows the same type of experiments with
4 and 24 partitions. Similar to the case of two partitions,
the performance of TR and RP for 4 and 24 partitions com-
pete with each other. However, RP and TR outperform DP .
This is due to the fact that in case of DP , each philosopher
needs to acquire 4 forks, which requires considerable commu-
nication. On the other hand, TR does not require as much
communication, as the only task it has to do is releasing
and acquiring the token. Moreover, the level of parallelism
in DP in case of a 6×4 torus is not high enough to overcome
the communication volume.

In the next experiment, following the lesson learned from
the tradeoff between communication volume and parallelism,
we design a scenario where we exploit the fact that each
reservation component in DP resolves conflict through com-
municating with its neighboring components. This is not the
case in TR. Thus, we consider a 20 × 20 torus. As can be
seen in Figure 13(b), the performance of DP is significantly
better than TR. This is solely because when we have a large
number of components, in TR, the token has to travel a long
way in order to allow parallel execution of interactions. On
the contrary, in DP , the Reservation Protocol components
act in their local neighborhood and although more commu-
nication is needed, it allows better concurrency and, hence,
higher simultaneous execution of interactions. We expect
that by increasing the size of the torus, DP outperforms
RP as well.

1Execution of each interaction involves 10ms suspension of
the corresponding component in the Interaction Protocol to
perform and I/O command.
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Figure 13: Performance of termination detection in
diffusing computation in different scenarios.

We conclude this section by stating the main lesson learned
from our experiments:

Different partitioning schemes and choice of com-
mittee coordination algorithm for distributed con-
flict resolution suit different topologies and set-
tings although they serve a common purpose. De-
signers of distributed applications should have ac-
cess to a library of algorithms and choose the best
according to parameters of the application.

7. CONCLUSION
We focused on developing a generic framework for auto-

mated transformation of high-level BIP models in terms of a
set of components glued by rendezvous interactions into dis-
tributed implementations. In a distributed setting, imple-
mentation of a multi-party rendezvous results in solving the
committee coordination problem [7], where a set of professors
are organized in a set of committees and two committees can
meet concurrently only if they have no professor in common;
i.e., they are not conflicting. Our transformation consists of
two steps. First, it takes as input a BIP model and gener-
ates another BIP model which contains components glued
by Send/Receive interactions in the following three layers:
(1) the components layer consists of a transformation of be-
havioral atomic components in the original model, (2) the
Interaction Protocol detects enabledness of interactions of
the original model and executes them after resolving con-
flicts either locally or by the help of the third layer, and (3)
the Reservation Protocol resolves conflicts in a distributed
fashion. The Reservation Protocol implements a commit-
tee coordination algorithm and our design allows employing
any such algorithm. The second step of our transformation
takes the intermediate three-layer BIP model as input and
generates C++ executables using TCP sockets for communi-
cation. We reported the lessons learned through conducting
several experiments using different algorithms in the Reser-
vation Protocol and partitioning schemes. As predicated,
there is no silver bullet to automate code generation of dis-
tributed applications. Hence, designers must have access to
a formal framework and a rich library of algorithms such as
the ones presented in this paper to develop correct and yet
efficient distributed applications automatically.

For future work, we are considering several research di-
rections. An important extension is to allow the Reserva-
tion Protocol to incorporate different algorithms for conflict
resolution simultaneously, so that each set of conflicting in-
teractions within the same system is handled by the most

appropriate algorithm. In this context, we are also planning
to explore other algorithms, such as solutions to distributed
graph matching and distributed independent set for better
understanding of tradeoffs between parallelism, load balanc-
ing, and network traffic. Another important line of research
is to study the overhead of our transformation where com-
munication cost is crucial such as in peer-to-peer and large
sensor networks. Finally, given the recent advances in the
multi-core technology, we plan to customize our transforma-
tion for multi-core platforms.
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