
Finite-Word Hyperlanguages

Borzoo Bonakdarpour1[0000−0003−1800−5419] and
Sarai Sheinvald2[0000−0002−0524−7390]

1 Department of Computer Science and Engineering, Michigan State University, USA
2 Department of Software Engineering, ORT Braude College, Israel

Abstract. Formal languages are in the core of models of computation and their
behavior. A rich family of models for many classes of languages have been widely
studied. Hyperproperties lift conventional trace-based languages from a set of
execution traces to a set of sets of executions. Hyperproperties have been shown
to be a powerful formalism for expressing and reasoning about information-flow
security policies and important properties of cyber-physical systems. Although
there is an extensive body of work on formal-language representation of trace
properties, we currently lack such a general characterization for hyperproperties.
We introduce hyperlanguages over finite words and models for expressing them.
Essentially, these models express multiple words by using assignments to quan-
tified word variables. Relying on the standard models for regular languages,
we propose hyperregular expressions and finite-word hyperautomata (NFH), for
modeling the class of regular hyperlanguages. We demonstrate the ability of reg-
ular hyperlanguages to express hyperproperties for finite traces. We explore the
closure properties and the complexity of the fundamental decision problems such
as nonemptiness, universality, membership, and containment for various frag-
ments of NFH.

1 Introduction

Formal languages along with the models that express them are in the core of model-
ing, specification, and verification of computing systems. Execution traces are formally
described as words, and various families of automata are used for modeling systems of
different types. Regular languages are a classic formalism for finite traces and when the
traces are infinite, ω-regular languages are used.

There are well-known connections between specification logics and formal lan-
guages. For example, LTL [15] formulas can be translated to ω-regular expressions,
and CTL∗ [8] formulas can be expressed using tree automata. Accordingly, many ver-
ification techniques that exploit these relations have been developed. For instance, in
the automata-theoretic approach to verification [17, 18], the model-checking problem is
reduced to checking the nonemptiness of the product automaton of the model and the
complement of the specification.

Hyperproperties [6] generalize the traditional trace properties [2] to system prop-
erties, i.e., a set of sets of traces. A hyperproperty prescribes how the system should
behave in its entirety and not just based on its individual executions. Hyperproperties
have been shown to be a powerful tool for expressing and reasoning about information-
flow security policies [6] and important properties of cyber-physical systems [19] such

2 Borzoo Bonakdarpour and Sarai Sheinvald

as sensitivity and robustness, as well as consistency conditions in distributed comput-
ing such as linearizability [4]. While different types of logics have been suggested for
expressing hyperproperties, their formal-language counterparts and the models that ex-
press them are currently missing.

In this paper, we establish a formal-language theoretical framework for hyperlan-
guages, that are sets of sets of words, which we term hyperwords. Our framework is
based on an underlying standard automata model for formal languages, augmented with
quantified word variables that are assigned words from a set of words in the hyperlan-
guage. This formalism is in line with logics for hyperproperties (e.g., HyperLTL [5]
and HyperPCTL [1]). These logics express the behavior of infinite trace systems. How-
ever, a basic formal model for expressing general hyperproperties for finite words has
not been defined yet. Hyperlanguages based on finite words have many practical appli-
cations. For instance, path planning objectives for robotic systems often stipulate the
existence of one or more finite paths that stand out from all other paths.

To begin with the basics, we focus this paper on a regular type of hyperlanguages
of sets consisting of finite words, which we call regular hyperlanguages. The models
we introduce and study are based on the standard models for regular languages, namely
regular expressions and finite-word automata. We explain the idea with two examples.

Example 1. Consider the following hyperregular expression (HRE) over the alphabet
{a}.

r1 = ∀x.∃y.
(
{ax, ay}∗{#x, ay}∗

)
︸ ︷︷ ︸

r̂1

The HRE r1 uses two word variables x and y, which are assigned words from a hy-
perword. The HRE r1 contains an underlying regular expression r̂1, whose alphabet is
({a} ∪ {#}){x,y}, and whose (regular) language describes different word assignments
to x and y, where # is used for padding at the end if the words assigned to x and y are of
different lengths. In a word in the language of r̂1, the i’th letter describes both i’th let-
ters in the words assigned to x and y. For example, the word {ax, ay}{ax, ay}{#x, ay}
describes the assignment x 7→ aa, y 7→ aaa. The regular expression r̂1 requires that
the word assigned to y be longer than the word assigned to x. The quantification con-
dition ∀x.∃y of r1 requires that for every word in a hyperword S in the hyperlanguage
of r1, there exists a longer word in S. This holds iff S contains infinitely many words.
Therefore, the hyperlanguage of r1 is the set of all infinite hyperwords over {a}.

Example 2. Robotics applications are often concerned with finding the shortest path
that reaches a goal g, starting from an initial location i. The shortest path requirement
can be expressed by the following HRE over an alphabet Σ:

r2 = ∃x.∀y.{ix, iy}{ḡx, ḡy}∗
(
{gx, ḡy} | {gx, gy}

)
{#x, $y}∗

where ḡ ∈ Σ − {g} and $ ∈ Σ. That is, there exists a path x that is shorter than any
other path y in reaching g.

Although there is an ongoing line of research on model-checking hyperproper-
ties [11, 3, 7], the work on finite-trace hyperproperties is limited to [9], where the au-

Finite-Word Hyperlanguages 3

Property Result
Closure Complementation, Union, Intersection (Theorem 1)

Nonemptiness
∀∃∃ Undecidable (Theorem 2)
∃∗ / ∀∗ NL-complete (Theorem 2)
∃∗∀∗ PSPACE-complete (Theorem 2)

Universality
∃∀∀ Undecidable (Theorem 3)
∃∗ / ∀∗ PSPACE-complete (Theorem 3)
∀∗∃∗ EXPSPACE (Theorem 3)

Finite membership
NFH PSPACE (Theorem 4)

O(log(k)) ∀ NP-complete (Theorem 4)
Regular membership Decidable (Theorem 5)

Containment
NFH Undecidable (Theorem 6)

∃∗ ⊆ ∀∗ / ∀∗ ⊆ ∃∗ PSPACE-complete (Theorem 7)
∃∗∀∗ ⊆ ∀∗∃∗ EXPSPACE (Theorem 7)

Table 1. Summary of results on properties of hyperregular languages.

thors construct a finite-word representation for the class of regular k-safety hyperprop-
erties. We make the following contributions:

– Introduce regular hyperlanguages and HREs, and demonstrate the ability of HREs
to express important information-flow security policies such as different variations
of noninterference [13] and observational determinism [20].

– Present nondeterministic finite-word hyperautomata (NFH), an automata-based model
for expressing regular hyperlanguages.

– Conduct a comprehensive study of the properties of regular hyperlanguages (see
Table 1). We show that regular hyperlanguages are closed under union, intersec-
tion, and complementation. We further prove that the nonemptiness problem is in
general undecidable for NFH. However, for the alternation-free fragments (which
only allow one type of quantifier), as well as for the ∃∀ fragment (in which the quan-
tification condition is limited to a sequence of ∃ quantifiers followed by a sequence
of ∀ quantifiers), nonemptiness is decidable. We also study the universality, mem-
bership and containment problems. These results are aligned with the complexity
of HyperLTL model checking for tree-shaped and general Kripke structures [3].
This shows that the complexity results in [3] mainly stem from the nature of quan-
tification over finite words and depend on neither the full power of the temporal
operators nor the infinite nature of HyperLTL semantics.

2 Preliminaries

An alphabet is a nonempty finite set Σ of letters. A word over Σ is a finite sequence of
letters from Σ. The empty word is denoted by ε, and the set of all words is denoted by
Σ∗. A language is a subset ofΣ∗. We assume that the reader is familiar with the syntax
and semantics of regular expressions (RE). We use the standard notations {·, |, ∗} for
concatenation, union, and Kleene star, respectively, and denote the language of an RE
r by L(r). A language L is regular if there exists an RE r such that L(r) = L.

4 Borzoo Bonakdarpour and Sarai Sheinvald

Definition 1. A nondeterministic finite-word automaton (NFA) is a tuple
A = 〈Σ,Q,Q0, δ, F 〉, where Σ is an alphabet, Q is a nonempty finite set of states,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and δ ⊆ Q×Σ×Q
is a transition relation.

Given a word w = σ1σ2 · · ·σn over Σ, a run of A on w is a sequence of states
(q0, q1, . . . qn), such that q0 ∈ Q0, and for every 0 < i ≤ n, it holds that (qi−1, σi, qi) ∈
δ. The run is accepting if qn ∈ F . We say that A accepts w if there exists an accepting
run of A on w. The language of A, denoted L(A), is the set of all words that A accepts.
It holds that a language L is regular iff there exists an NFA A such that L(A) = L.

3 Hyperregular Expressions

Definition 2. A hyperword over Σ is a set of words over Σ and a hyperlanguage over
Σ is a set of hyperwords over Σ.

Before formally defining hyperregular expressions, we explain the idea behind them.
A hyperregular expression (HRE) overΣ uses a set of word variablesX = {x1, x2, . . . , xk}.
When expressing a hyperword S, these variables are assigned words from S. An HRE
r is composed of a quantification condition α over X , and an underlying RE r̂, which
represents word assignments to X . An HRE r defines a hyperlanguage L(r). The con-
dition α defines the assignments that should be in L(r̂). For example, α = ∃x1.∀x2
requires that there exists a word w1 ∈ S (assigned to x1), such that for every word
w2 ∈ S (assigned to x2), the word that represents the assignment x1 7→ w1, x2 7→ w2,
is in L(r̂). The hyperword S is in L(r) iff S meets these conditions.

We represent an assignment v : X → S as a word assignment wv , which is a word
over the alphabet (Σ∪{#})X (that is, assignments fromX toΣ∪{#}), where the i’th
letter of wv represents the k i’th letters of the words v(x1), . . . , v(xk) (in case that the
words are not of equal length, we “pad” the end of the shorter words with # symbols).
We represent these k i’th letters as an assignment denoted {σ1x1 , σ2x2 , . . . , σkxk

},
where xj is assigned σj . For example, the assignment v(x1) = aa and v(x2) = abb is
represented by the word assignment wv = {ax1

, ax2
}{ax1

, bx2
}{#x1

, bx2
}.

Definition 3. A hyperregular expression is a tuple r = 〈X,Σ, α, r̂〉, whereα = Q1x1 · · ·Qkxk,
where Qi ∈ {∃,∀} for every i ∈ [1, k], and where r̂ is an RE over Σ̂ = (Σ ∪ {#})X .

Let S be a hyperword and let v : X → S be an assignment of the word variables of
r to words in S. We denote by v[x 7→ w] the assignment obtained from v by assigning
the word w ∈ S to x ∈ X . We represent v by wv . We now define the membership
condition of a hyperword S in the hyperlanguage of r. We first define a relation ` for
S, r̂, a quantification condition α, and an assignment v : X → S, as follows.

– For α = ε, define S `v (α, r̂) if wv ∈ L(r̂).
– For α = ∃x.α′, define S `v (α, r̂) if there exists w ∈ S s.t. S `v[x7→w] (α′, r̂).
– For α = ∀x.α′, define S `v (α, r̂) if S `v[x7→w] (α′, r̂) for every w ∈ S .3

3 In case that α begins with ∀, membership holds vacuously with an empty hyperword. We
restrict the discussion to nonempty hyperwords.

Finite-Word Hyperlanguages 5

Since all variables are under the scope of α, membership is independent of v, and so if
S ` (α, r̂), we denote S ∈ L(r). The hyperlanguage of r is L(r) = {S | S ∈ L(r)}.
Definition 4. We call a hyperlanguage L a regular hyperlanguage if there exists an
HRE r such that L(r) = L.

Application of HRE in Information-flow Security

Noninterference [13] requires high-secret commands be removable without affecting
observations of users holding low clearances:

ϕni = ∀x.∃y{lx, lλy}∗,

where l denotes a low state and lλ denotes a low state such that all high commands are
replaced by a dummy value λ.

Observational determinism [20] requires that if two executions of a system start
with low-security-equivalent events, they should remain low equivalent:

ϕod = ∀x.∀y.
(
{lx, ly}+ | {l̄x, l̄y}{$x, $y}∗ | {lx, l̄y}{$x, $y}∗ | {l̄x, ly}{$x, $y}∗

)
where l denotes a low event, l̄ ∈ Σ \ {l}, and $ ∈ Σ. We note that similar policies such
as Boudol and Castellani’s noninterference [12] can be formulated in the same fashion.
4

Generalized noninterference (GNI) [14] allows nondeterminism in the low-observable
behavior, but requires that low-security outputs may not be altered by the injection of
high-security inputs:

ϕgni = ∀x.∀y.∃z.
(
{hx, ly, hlz} | {h̄x, ly, h̄lz} | {hx, l̄y, hl̄z} | {h̄x, l̄y, h̄l̄z}

)∗
where h denotes the high-security input, l denotes the low-security output, l̄ ∈ Σ \ {l},
and h̄ ∈ Σ \ {h}.

Declassification [16] relaxes noninterference by allowing leaking information when
necessary. Some programs must reveal secret information to fulfill functional require-
ments. For example, a password checker must reveal whether the entered password is
correct or not:

ϕdc = ∀x.∀y.{lix, liy}{pwx, pwy}{lox, loy}+

where li denotes low-input state, pw denotes that the password is correct, and lo denotes
low-output states. We note that for brevity, ϕdc does not include behaviors where the
first two events are not low or, in the second event, the password is not valid.

Termination-sensitive noninterference requires that for two executions that start
from low-observable states, information leaks are not permitted by the termination be-
havior of the program (here, l denotes a low state and $ ∈ Σ):

ϕtsni = ∀x.∀y.
(
{lx, ly}{$x, $y}∗{lx, ly} | {l̄x, l̄y}{$x, $y}∗ |

{lx, l̄y}{$x, $y}∗ | {l̄x, ly}{$x, $y}∗
)

4 This policy states that every two executions that start from bisimilar states (in terms of memory
low-observability), should remain bisimilarly low-observable.

6 Borzoo Bonakdarpour and Sarai Sheinvald

{𝑎𝑥, 𝑎𝑦}

{#𝑥, 𝑎𝑦}∀𝑥∃𝑦

𝑎𝑥, 𝑎𝑦 ,

{𝑏𝑥, 𝑏𝑦}

∀𝑥∀𝑦

{#𝑥, 𝑎𝑦}

{𝑏𝑥, #𝑦}
{𝑏𝑥, #𝑦}

{#𝑥, 𝑏𝑦}{#𝑥, 𝑏𝑦}

Fig. 1. The NFH A1 (left) and A2 (right).

4 Nondeterminsitic Finite-Word Hyperautomata

We now present a model for regular hyperlanguages, namely finite-word hyperautomata.
A hyperautomaton is composed of a setX of word variables, a quantification condition,
and an underlying finite-word automaton that accepts representations of assignments to
X .

Definition 5. A nondeterministic finite-word hyperautomaton (NFH) is a tuple
A = 〈Σ,X,Q,Q0, F, δ, α〉, where Σ,X and α are as in Definition 3, and where
〈Σ̂,Q,Q0, F, δ〉 forms an underlying NFA over Σ̂ = (Σ ∪ {#})X .

The acceptance condition for NFH, as for HRE, is defined with respect to a hyper-
word S, the NFHA, the quantification condition α, and an assignment v : X → S. For
the base case of α = ε, we define S `v (α,A) if Â accepts wv . The cases where α is of
the type ∃x.α′ and ∀x.α′ are defined similarly as for HRE, and if S ` (α,A), we say
that A accepts S.

Definition 6. Let A be an NFH. The hyperlanguage of A, denoted L(A), is the set of
all hyperwords that A accepts.

Example 3. Consider the NFH A1 in Figure 1 (left), whose alphabet is Σ = {a, b},
over two word variables x and y. The NFH A1 contains an underlying standard NFA
Â1. For two words w1, w2 that are assigned to x and y, respectively, Â1 requires that
(1) w1, w2 agree on their a (and, consequently, on their b) positions, and (2) once one
of the words has ended (denoted by #), the other must only contain b letters. Since the
quantification condition of A1 is ∀x1.∀x2, in a hyperword S that is accepted by A1,
every two words agree on their a positions. As a result, all the words in S must agree on
their a positions. The hyperlanguage of A1 is then all hyperwords in which all words
agree on their a positions.

Example 4. The NFH A2 of Figure 1 (right) depicts the translation of the HRE of Ex-
ample 1 to an NFH.

Since regular expressions are equivalent to NFA, we can translate the underlying
regular expression r̂ of an HRE r to an equivalent NFA, and vice versa – translate the
underlying NFA Â of an NFAA to a regular expression. It is then easy to see that every
HRE has an equivalent NFH over the same set of variables with the same quantification
condition.

Finite-Word Hyperlanguages 7

We consider several fragments of NFH, which limit the structure of the quantifi-
cation condition α. HRE∀ is the fragment in which α contains only ∀ quantifiers, and
similarly, in HRE∃, α contains only ∃ quantifiers. In the fragment HRE∃∀, α is of the
form ∃x1 · · · ∃xi∀xi+1 · · · ∀xk.

5 Properties of Regular Hyperlanguages

5.1 Closure Properties

We now consider closure properties of regular hyperlanguages. We show, via construc-
tions on NFH, that regular hyperlanguages are closed under all the Boolean operations.

Theorem 1. Regular hyperlanguages are closed under union, intersection, and com-
plementation.

proof sketch. Complementing an NFH A amounts to dualizing its quantification con-
dition by replacing ∃ with ∀ and vice versa, and complementing Â via the standard
construction for NFA. Since complementing Â is exponential in its state space, A is
exponential in the size of A.

Now, let A1 and A2 be two NFH over Σ, with the variables X and Y , respectively.
The NFH A∩ for L(A1) ∩ L(A2) is based on the product construction of Â1 and
Â2. The quantification condition of A∩ is α1 · α2. The underlying NFA Â∩ advances
simultaneously on both A1 and A2: when Â1 and Â2 run on word assignments w1

and w2, respectively, Â∩ runs on a word assignment w1 ∪ w2, which represents both
assignments w1 and w2, and accepts only if both Â1 and Â2 accept. To run on both
assignments simultaneously, every letter in A∩ is of the type f1 ∪ f2, where f1 : X →
(Σ∪{#}) is a letter in Σ̂1, and f2 : Y → (Σ∪{#}) is a letter in Σ̂2. This construction
is polynomial in the sizes of A1 and A2.

Similarly, the NFH A∪ for L(A1) ∪ L(A2) is based on the union construction of
Â1 and Â2. The quantification condition of A∪ is again α1 · α2. The underlying NFA
Â∪ advances either on A1 or A2. For every word word assignemt w read by Â1, the
NFH Â∪ reads w∪w′, for every w′ ∈ Σ̂∗2 , and dually, for every word w read by Â2, the
NFH Â∪ reads w′ ∪ w, for every w′ ∈ Σ̂∗1 . The state space of A∪ is linear in the state
spaces of A1,A2. However, the size of the alphabet of A∪ may be exponentially larger
than that of A1 and A2.

5.2 Decision Procedures

We now turn to study several decision problems for the various fragments of NFH.
Throughout this section,A is an NFH 〈Σ,X,Q,Q0, δ, F, α〉, where X = {x1, . . . xk}.

Nonemptiness. The nonemptiness problem is to decide, given an NFH A, whether
L(A) = ∅. In [10], a reduction from the Post correspondence problem is used for prov-
ing the undecidability of HyperLTL satisfiability. A roughly similar reduction shows
that the nonemptiness problem for NFH is, in general, undecidable. However, nonempti-
ness is decidable for the fragments we consider, with varying complexities.

8 Borzoo Bonakdarpour and Sarai Sheinvald

For the alternation-free fragments, we show that a simple reachability test on their
underlying automata suffices to verify nonemptiness.

For NFH∃∀, we show that the problem is decidable, by checking the nonemptiness
of an exponentially larger equi-empty NFA. To summarize, we have the following.

Theorem 2. The nonemptiness problem for

1. NFH∃ and NFH∀ is NL-complete,
2. NFH∃∀ is PSPACE-complete, and
3. NFH is undecidable.

proof sketch. NFH∀ and NFH∃. The lower bound follows from the NL-hardness of
NFA nonemptiness. For the upper bounds, an NFH∃ A∃ is nonempty iff Â∃ accepts
some word assignment wv . Indeed, any hyperword that contains the words in v is ac-
cepted by A∃. We can therefore run a restricted reachability test on Â∃, that considers
only consecutive transitions in which for every x ∈ X , a letter σx never follows #x,
which guarantees a run on a legal word assignment.

We can show that an NFH∀ A∀ is nonempty iff A∀ accepts a hyperword of size
1. Accordingly, A∀ is nonempty iff Â accepts a word that represents an assignment
that assigns all variables the same word. We thus restrict the transitions of Â∀ to fixed
functions, and check the nonemptiness of the restricted NFA.

NFH∃∀. We begin with a PSPACE upper bound. Let A be an NFH∃∀ with m ex-
istential quantifiers, and let S ∈ L(A). Then, there exist w1, . . . , wm ∈ S, such that
for every assignment v : X → S in which v(xi) = wi for every 1 ≤ i ≤ m, we
have that Â accepts wv . In particular, Â accepts every assignment that agrees with v
on x1, . . . xm, and assigns only words from {w1, . . . , wm}. Therefore, Â accepts the
hyperword {w1, . . . , wm}. That is, A is nonempty iff it accepts a hyperword of size at
most m. We can construct an NFA A based on Â that is nonempty iff Â accepts all
appropriate assignments of a hyperword of size m. The size of A is exponential in the
size of Â, and the result follows from the NL upper bound for NFA nonemptiness.

Next, we prove the lower-bound for NFH∃∀ by a reduction from a polynomial ver-
sion of the corridor tiling problem, defined as follows. We are given a finite set T of
tiles, two relations V ⊆ T × T and H ⊆ T × T , an initial tile t0, a final tile tf , and
a bound n > 0. We have to decide whether there is some m > 0 and a tiling of a
n×m-grid such that (1) The tile t0 is in the bottom left corner and the tile tf is in the
top right corner, (2) Every pair of horizontal neighbors is in H , and (3) Every pair of
vertical neighbors is in V . When n is given in unary notation, the problem is known to
be PSPACE-complete.

Given an instanceC of the tiling problem, we construct an NFH∃∀ A that is nonempty
iff C has a solution. We encode a solution to C as a word wsol = w1 · w2 · wm$ over
Σ = T ∪ {1, 2, . . . n, $}, where the word wi, of the form 1 · t1,i · 2 · t2,i, . . . n · tn,i,
describes the contents of row i. To check that wsol indeed encodes a solution, we need
to make sure that: (1) w1 begins with t0 and wm ends with tf$, (2) Every wi is of the
correct form, (3) Within every wi, it holds that (tj,i, tj+1,i) ∈ H , and (4) For wi, wi+1,
it holds that (tj,i, tj,i+1) ∈ V for every j ∈ [1, n].

Verifying conditions (1)− (3) above is easy via an NFA of size O(n|H|). The main
obstacle is condition (4). We describe an NFH∃∀ A = 〈T∪{0, 1, . . . n, $}, {y1, y2, y3, x1,

Finite-Word Hyperlanguages 9

. . . xlog(n)}, Q, {q0}, δ, F, α = ∃y1∃y2∃y3∀x1 . . . ∀xlog(n)〉 that is nonempty iff there
exists a word that satisfies conditions (1) − (4). The NFH A only proceeds on letters
whose assignments to y1, y1, y3 is r, 0, 1, respectively, where r ∈ T ∪ {1, . . . n, $}.
Then A requires the existence of the words 0|wsol| and 1|wsol| (the 0 word and 1 word,
henceforth).Amakes sure that the word assigned to y1 matches a correct solution w.r.t.
conditions (1) − (3) above. Now, we need to make sure that for every position j in
a row, the tile in position j in the next row matches the current one w.r.t. V . We can
use a state qj to remember the tile in position j, and compare it to the tile in the next
occurrence of j. To avoid checking all positions simultaneously (which would require
exponentially many states), we use log(n) copies of the 0 and 1 words to encode j. The
log(n) ∀ conditions make sure that every position within 1− n is checked.

We limit the checks to words in which x1, . . . xlog(n) are the 0 or 1 words, by having
Â accept every word in which some x variable is not assigned 0 or 1. This accepts all
cases in which the word assigned to y1 is also assigned to one of the x variables.

To check that x1, . . . xlog(n) are the 0 or 1 words, Â checks that the letter assign-
ments to these variables remain constant throughout the run. In these cases, upon read-
ing the first letter, Â remembers the value j that is encoded by the assignments to
x1, . . . xlog(n) in a state, and makes sure that throughout the run, the tile that occurs in
the assignment to y1 in position j in the current row matches the tile in position j in the
next row.

We construct a similar reduction for the case that the number of ∀ quantifiers is
fixed: instead of encoding the position by log(n) bits, we can directly specify the posi-
tion by a word of the form j∗, for every j ∈ [1, n], and we construct a matching NFH∃∀
over O(n) variables under ∃, and a single variable under ∀.

Universality. The universality problem is to decide whether a given NFHA accepts ev-
ery hyperword over Σ. Notice that A is universal iff A is empty. Since complementing
an NFH involves an exponential blow-up, we conclude the following from the results
in Section 5.2, combined with the PSPACE lower bound for the universality of NFA.

Theorem 3. The universality problem for

1. NFH is undecidable,
2. NFH∃ and NFH∀ is PSPACE-complete, and
3. NFH∀∃ is in EXPSPACE.

Membership. We turn to study the membership problem for NFH: given an NFH A
and a hyperword S, is S ∈ L(A)? When S is finite, so is the set of assignments from X
to S, and so the problem is decidable. We call this case the finite membership problem.

Theorem 4. – The finite membership problem for NFH is in PSPACE.
– The finite membership problem for NFH withO(log(k)) ∀ quantifiers is NP-complete.

Proof. We can decide the membership of a finite hyperword S in L(A) by iterating
over all relevant assignments from X to S, and for every such assignment v, checking

10 Borzoo Bonakdarpour and Sarai Sheinvald

on-the-fly whether wv ∈ L(Â). The space size of this algorithm is polynomial in k and
logarithmic in |A| and in |S|.

When the number of ∀ quantifiers in A is |O(log(k))|, we can iterate over all as-
signments to the ∀ variables in polynomial time, while guessing assignments to the
variables under ∃. Thus, membership in this case is in NP.

We show NP-hardness for this case by a reduction from the Hamiltonian cycle prob-
lem. Given a graph G = 〈V,E〉 where V = {v1, . . . , vn} and |E| = m, we construct
an NFH∃ A over {0, 1} with n states, n variables, δ of size m, and a hyperword S of
size n, as follows. S = {w1, . . . , wn}, where wi = 0i−1 · 1 · 0n−i. The structure of Â
is identical to that of G, and we set Q0 = F = {v1}. For every (vi, vj) ∈ E, we have
(vi, fi, vj) ∈ δ, where fi(xi) = 1 and fi(xj) = 0 for every xj 6= xi. Intuitively, the
i’th letter in an accepting run of Â marks traversing vi. Assigning wj to xi means that
the j’th step of the run traverses vi. Since the words in w make sure that every v ∈ V is
traversed exactly once, and are all of length n, we have that A accepts S iff there exists
some ordering of the words in S that matches a Hamiltonian cycle in G.
Note: For a hyperword of size≥ 2, the size of δ must be exponential in the number k′ of
∀ quantifiers, to account for all the assignments to these variables. Thus, if k = O(k′),
an algorithm that uses a space of size k is in fact logarithmic in the size of A.

When S is infinite, it may still be finitely represented, allowing for algorithmic
membership testing. We now address the problem of deciding whether a regular lan-
guage L (given as an NFA) is accepted by an NFH. We call this the regular membership
problem for NFH. We show that this problem is decidable for the entire class of NFH.

Theorem 5. The regular membership problem for NFH is decidable.

Proof. Let A = 〈Σ,P, P0, ρ, F 〉 be an NFA with n states. We first extend the alphabet
of A to Σ ∪ {#}, and extend its language to L(A) · {#}∗. We describe a recursive
procedure (iterating over α) for deciding whether L(A) ∈ L(A).

For the case that k = 1, if α = ∃x1, then L(A) ∈ L(A) iff L(A) ∩ L(Â) 6= ∅.
Otherwise, if α = ∀x1, then L(A) ∈ L(A) iff L(A) /∈ L(A), where A is the NFH for
L(A). The quantification condition for A is ∃x1, conforming to the base case.

For k > 1, we construct a sequence of NFHA1,A2, . . . ,Ak. If Q1 = ∃ then we set
A1 = A, and otherwise we setA1 = A. LetAi = 〈Σ, {xi, . . . xk}, Qi, Q0

i , δi,Fi, αi〉.
If αi starts with ∃, then we construct Ai+1 as follows.

The variables of Ai+1 are {xi+1, . . . , xk}, and αi+1 = Qi+1xi+1 · · ·Qkxk, for
αi = Qixi · · ·Qkxk. The set of states of Ai+1 is Qi × P , and the set of initial states

is Q0
i × P0. The set of accepting states is Fi × F . For every (q

f−→ q′) ∈ δi and every

(p
f(xi)−−−→ p′) ∈ ρ, we have ((q, p)

f\{σixi
}

−−−−−−→ (q′, p′)) ∈ δi+1. Then, Âi+1 accepts a
word assignment wv iff there exists a word u ∈ L(A), such that Âi accepts wv∪{xi 7→u}.

Let v : {xi, . . . , xk} → L(A). Then L(A) `v (αi,Ai) iff there exists w ∈ L(A)
such that L(A) `v[xi 7→w] (αi+1,Ai). For an assignment v′ : {xi+1, . . . , xk} → L(A),
it holds that wv′ is accepted by Âi+1 iff there exists w ∈ L(A) such that wv ∈ L(Âi),
where v = v′ ∪ {xi 7→ w}. Therefore, we have that L(A) `v[xi→w] (αi,Ai) iff
L(A) `v′ (αi+1,Ai+1), that is, L(A) ∈ L(Ai) iff L(A) ∈ L(Ai+1).

Finite-Word Hyperlanguages 11

If αi starts with ∀, then we have that L(A) ∈ L(Ai) iff L(A) /∈ L(Ai). We con-
struct Ai for L(Ai) as described in Theorem 1. The quantification condition of Ai
begins with ∃xi. We then construct Ai+1 w.r.t. Ai, and check for non-membership.

Every ∀ quantifier requires complementation, which is exponential in n.Therefore,

in the worst case, the complexity of this algorithm isO(22
...|Q||A|

), where the tower is of
height k. If the number of ∀ quantifiers is fixed, then the complexity isO(|Q||A|k).

Containment. The containment problem is to decide, given NFH A1 and A2, whether
L(A1) ⊆ L(A2). Since we can reduce the nonemptiness problem to the containment
problem, we have the following as a result of Theorem 2.

Theorem 6. The containment problem for NFH is undecidable.

However, the containment problem is decidable for various fragments of NFH.

Theorem 7. The containment problem of NFH∃ ⊆ NFH∀ and NFH∀ ⊆ NFH∃ is
PSPACE-complete. The containment problem of NFH∃∀ ⊆ NFH∀∃ is in EXPSPACE

Proof. A lower bound for all cases follows from the PSPACE-hardness of the contain-
ment problem for NFA. For the upper bound, for two NFH A1 and A2, we have that
L(A1) ⊆ L(A2) iff L(A1)∩L(A2) = ∅. We can compute an NFHA = A1∩A2 (The-
orem 1), and check its nonemptiness. Complementing A2 is exponential in its number
of states, and the intersection construction is polynomial.

If A1 ∈ NFH∃ and A2 ∈ NFH∀ or vice versa, then A is an NFH∃ or NFH∀,
respectively, whose nonemptiness can be decided in space that is logarithmic in |A|.

The quantification condition of an NFH for the intersection may be any interleaving
of the quantification conditions of the two intersected NFH. (Theorem 1). Therefore,
for the rest of the fragments, we can construct the intersection such thatA is an NFH∃∀.
The exponential blow-up in complementing A2, along with The PSPACE upper bound
of Theorem 2 gives an EXPSPACE upper bound for the rest of the cases.

6 Discussion and Future Work

We have introduced and studied hyperlanguages and a framework for their modeling,
focusing on the basic class of regular hyperlanguages, modeled by HRE and NFH. We
have shown that regular hyperlanguages are closed under set operations and are capa-
ble of expressing important hyperproperties for information-flow security policies over
finite traces. We have also investigated fundamental decision procedures for various
fragments of NFH. Some gaps, such as the precise lower bound for the universality and
containment problems for NFH∃∀, are left open.

Since our framework does not limit the type of underlying model, it can be lifted
to handle hyperwords consisting of infinite words, with an underlying model designed
for such languages, such as nondeterministic Büchi automata, which model ω-regular
languages. Just as Büchi automata can express LTL, such a model can express the entire
logic of HyperLTL [5].

12 Borzoo Bonakdarpour and Sarai Sheinvald

As future work, we plan on studying non-regular hyperlanguages (e.g., context-
free), and object hyperlanguages (e.g., trees). Another direction is designing learning
algorithms for hyperlanguages, by exploiting known canonical forms for the underlying
models, and basing on existing learning algorithms for them. The main challenge would
be handling learning sets and a mechanism for learning word variables and quantifiers.

References

1. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: A temporal logic for probabilistic hyperprop-
erties. In: QEST. pp. 20–35 (2018)

2. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters pp. 181–185
(1985)

3. B. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties. In: CSF.
pp. 162–174 (2018)

4. Bonakdarpour, B., Sánchez, C., Schneider, G.: Monitoring hyperproperties by combining
static analysis and runtime verification. In: ISoLA. pp. 8–27 (2018)

5. Clarkson, M., Finkbeiner, B., Koleini, M., Micinski, K., Rabe, M., Sánchez, C.: Temporal
logics for hyperproperties. In: POST. pp. 265–284 (2014)

6. Clarkson, M., Schneider, F.: Hyperproperties. Journal of Computer Security pp. 1157–1210
(2010)

7. Coenen, N., Finkbeiner, B., C. Sánchez, C., Tentrup, L.: Verifying hyperliveness. In: CAV.
pp. 121–139 (2019)

8. Emerson, E.A., Halpern, J.: “sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM pp. 151–178 (1986)

9. Finkbeiner, B., Haas, L., Torfah, H.: Canonical representations of k-safety hyperproperties.
In: CSF 2019. pp. 17–31 (2019)

10. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: CONCUR. pp. 13:1–13:14 (2016)
11. Finkbeiner, B., Rabe, M., Sánchez, C.: Algorithms for model checking HyperLTL and Hy-

perCTL*. In: CAV. pp. 30–48 (2015)
12. G. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread. In: TCS

2002. pp. 109–130 (2002)
13. Goguen, J., Meseguer, J.: Security policies and security models. In: IEEE Symp. on Security

and Privacy. pp. 11–20 (1982)
14. McCullough, D.: Noninterference and the composability of security properties. In: Proceed-

ings of the 1988 IEEE Symposium on Security and Privacy. pp. 177–186 (1988)
15. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57 (1977)
16. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In:

CSFW. pp. 200–214 (2000)
17. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logic of programs. Journal

of Computer and System Sciences pp. 183–221 (1986)
18. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computation

pp. 1–37 (1994)
19. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyperproperties

for cyber-physical systems. ACM Transactions on Embedded Computing systems (TECS)
pp. 92:1–92:23 (2019)

20. Zdancewic, S., Myers, A.: Observational determinism for concurrent program security. In:
CSFW. p. 29 (2003)

Finite-Word Hyperlanguages 13

Appendix
A Proofs

We present several terms and notations which we use throughout the following proofs.
Recall that we represent an assignment v : X → S as a word assignment wv . Con-
versely, a word w over (Σ ∪ {#})X represents an assignment vw : X → Σ∗, where
vw(xi) is formed by concatenating the letters of Σ that are assigned to xi in the letters
of w We denote the set of all such words {vw(x1), . . . , vw(xk)} by S(w). Since we only
allow padding at the end of a word, if a padding occurs in the middle of w, then w does
not represent a legal assignment. Notice that this occurs iff w contains two consecutive
letters wiwi+1 such that wi(x) = # and wi+1(x) 6= # for some x ∈ X . We call w
legal if vw represents a legal assignment from X to Σ∗.

Consider a function g : A→ B where A,B are some sets. The range of g, denoted
range(g) is the set {g(a)|a ∈ A}.

A sequence of g is a function g′ : A → B such that range(g′) ⊆ range(g). A
permutation of g is a function g′ : A→ B such that range(g′) = range(g). We extend
the notions of sequences and permutations to word assignments. Let w be a word over
Σ̂. A sequence of w is a word w′ such that S(w′) ⊆ S(w), and a permutation of w is a
word w′ such that S(w′) = S(w).

Theorem 1

Proof. Complementation. Let A be an NFH. The NFA Â can be complemented with
respect to its language over Σ̂ to an NFA Â. Then for every assignment v : X → S, it
holds that Â accepts wv iff Â does not accept wv . Let α be the quantification condition
obtained from α by replacing every ∃ with ∀ and vice versa. We can prove by induction
on α that A, the NFH whose underlying NFA is Â, and whose quantification condition
is α, accepts L(A). The size of A is exponential in |Q|, due to the complementation
construction for Â.

Now, let A1 = 〈Σ,X,Q,Q0, δ1, F1, α1〉 and A2 = 〈Σ,Y, P, P0, δ2, F2, α2〉 be
two NFH with |X| = k and |Y | = k′ variables, respectively.

Union. We construct an NFH A∪ = 〈Σ,X ∪ Y,Q ∪ P ∪ {p1, p2}, Q0 ∪ P0, δ, F1 ∪
F2 ∪ {p1, p2}, α〉, where α = α1α2 (that is, we concatenate the two quantification
conditions), and where δ is defined as follows.

– For every (q1
f−→ q2) ∈ δ1 we set (q1

f∪g−−→ q2) ∈ δ for every g ∈ (Σ ∪ {#})Y .

– For every (q1
f−→ q2) ∈ δ2 we set (q1

f∪g−−→ q2) ∈ δ for every g ∈ (Σ ∪ {#})X .

– For every q ∈ F1, we set (q
{#}X∪g−−−−−→ p1), (p1

{#}X∪g−−−−−→ p1) ∈ δ for every g ∈
(Σ ∪ {#})Y .

– For every q ∈ F2, we set (q
g∪{#}Y−−−−−→ p2), (p2

g∪{#}Y−−−−−→ p2) ∈ δ for every g ∈
(Σ ∪ {#})X .

14 Borzoo Bonakdarpour and Sarai Sheinvald

Let S be a hyperword. For every v : (X ∪ Y)→ S, it holds that if wv|X ∈ L(Â1),
then wv ∈ L(Â∪). Indeed, according to our construction, every word assigned to the Y
variables is accepted in the A1 component of the construction, and so it satisfies both
types of quantifiers. A similar argument holds for v|Y and A2.

Also, according to our construction, for every v : (X ∪ Y) → S, if wv ∈ L(Â∪),
then either wv|X ∈ L(Â1), or wv|Y ∈ L(Â2). As a conclusion, we have that L(A∪) =
L(A1) ∪ L(A2).

The state space ofA∪ is linear in the state spaces ofA1,A2. However, the size of the
alphabet of A∪ may be exponentially larger than that of A1 and A2, since we augment
each letter with all functions from Y to Σ ∪ {#} (in A1) and from X to Σ ∪ {#} (in
A2).

Intersection. The proof follows the closure of regular hyperlanguages under union and
complementation. However, we also offer a direct translation, which avoids the need to
complement. We construct an NFH A∩ = 〈Σ,X ∪ Y, (Q ∪ {q})× (P ∪ {p}), (Q0 ×
P0), δ, (F1 ∪ {q})× (F2 ∪ {p}), α1α2〉, where δ is defined as follows.

– For every (q1
f−→ q2) ∈ δ1 and every (p1

g−→ p2) ∈ δ2, we have(
(q1, p1)

f∪g−−→ (q2, p2)
)
∈ δ

– For every q1 ∈ F1, (p1
g−→ p2) ∈ δ2 we have(

(q1, p1)
{#}X∪g−−−−−→ (q, p2)

)
,
(

(q, p1)
{#}k∪g−−−−−→ (q, p2)

)
∈ δ

– For every (q1
f−→ q2) ∈ δ1 and p1 ∈ F2, we have(

(q1, p1)
f∪{#}Y−−−−−→ (q2, p)

)
,
(

(q1, p)
f∪{#}Y−−−−−→ (q2, p)

)
∈ δ

Intuitively, the role of q, p is to keep reading {#}X and {#}Y after the word read by
Â1 or Â2, respectively, has ended.

The NFH Â∩ simultaneously reads two word assignments that are read along Â1

and Â2, respectively, and accepts iff both word assignments are accepted. The correct-
ness follows from the fact that for v : (X ∪ Y) → S, we have that wv is accepted
by Â iff wv|X and wv|Y are accepted by Â1 and Â2, respectively. This construction is
polynomial in the sizes of A1 and A2.

Theorem 2

Proof. NFH∃ and NFH∀. The lower bound for both fragments follows from the NL-
hardness of the nonemptiness problem for NFA.

We turn to the upper bound, and begin with NFH∃. Let A∃ be an NFH∃. We claim
thatA∃ is nonempty iff Â∃ accepts some legal word w. The first direction is trivial. For

Finite-Word Hyperlanguages 15

the second direction, let w ∈ L(Â∃). By assigning v(xi) = vw(xi) for every xi ∈ X ,
we get wv = w, and according to the semantics of ∃, we have that A∃ accepts S(w).
To check whether Â∃ accepts a legal word, we can run a reachability check on-the-fly,
while advancing from a letter σ to the next letter σ′ only if σ′ assigns # to all variables

for which σ assigns #. While each transition T = q
f−→ p in Â is of size k, we can

encode T as a set of size k of encodings of transitions of type q
(xi,σi)−−−−→ p with a binary

encoding of p, q, σi, as well as i, t, where t marks the index of T within the set of
transitions of Â. Therefore, the reachability test can be performed within space that is
logarithmic in the size of A∃.

Now, let A∀ be an NFH∀ over X . We claim that A∀ is nonempty iff A∀ accepts a
hyperword of size 1. For the first direction, let S ∈ L(A∀). Then, by the semantics of
∀, we have that for every assignment v : X → S, it holds that wv ∈ L(Â∀). Let u ∈ S,
and let vu(xi) = u for every xi ∈ X . Then, in particular, wvu ∈ L(Â∀). Then for every
assignment v : X → {u} (which consists of the single assignment vu), it holds that Â∀
accepts wv , and therefore A∀ accepts {u}. The second direction is trivial.

To check whetherA∀ accepts a hyperword of size 1, we restrict the reachability test
on Â∀ to letters over Σ̂ that represent fixed functions.

NFH∃∀. We prove a PSPACE upper bound. Let m be the number of ∃ quantifiers
in α, and let S ∈ L(A). Then, according to the semantics of the quantifiers, there exist
w1, . . . wm ∈ S, such that for every assignment v : X → S in which v(xi) = wi for
every 1 ≤ i ≤ m, it holds that Â accepts wv . Let v : X → S be such an assignment.
Then, Â accepts wv′ for every sequence v′ of v that agrees with v on its assignments
to x1, . . . , xm, and in particular, for such sequences whose range is {w1, . . . , wm}.
Therefore, by the semantics of the quantifiers, we have that {w1, . . . , wm} is in L(A).
The second direction is trivial.

We call wv′ as described above a witness to the nonemptiness ofA. We construct an
NFA A based on Â that is nonempty iff Â accepts a witness to the nonemptiness of A.

Let Γ be the set of all functions of the type ζ : [1, k] → [1,m] such that ζ(i) = i
for every i ∈ [1,m], and such that range(ζ) = [1,m]. For a letter assignment f =
{σ1x1

, . . . σkxk
}, we denote by fζ the letter assignment {σζ(1)x1

, . . . , σζ(k)xk
}.

For every function ζ ∈ Γ , we construct an NFA Aζ = 〈Σ̂,Q,Q0, δζ , F 〉, where

for every q
g−→ q′ in δ, we have q

f−→ q′ in δζ , for every f that occurs in Â for which
fζ = g. Intuitively, for every run of Aζ on a word w there exists a similar run of Â on
the sequence of w that matches ζ. Therefore, Â accepts a witness w to the nonemptiness
of A iff w ∈ L(Aζ) for every ζ ∈ Γ .

We define A =
⋂
ζ∈Γ Aζ . Then Â accepts a witness to the nonemptiness ofA iff A

is nonempty.
Since |Γ | = mk−m, the state space of A is of size O(nm

k−m

), where n = |Q|,
and its alphabet is of size |Σ̂|. Notice that for A to be nonempty, δ must be of size at
least |(Σ ∪#)|(k−m), to account for all the sequences of letters in the words assigned
to the variables under ∀ quantifiers (otherwise, we can immediately return “empty”).
Therefore, |Â| is O(n · |Σ|k). We then have that the size of A is O(|Â|k). If the number

16 Borzoo Bonakdarpour and Sarai Sheinvald

k −m of ∀ quantifiers is fixed, then mk−m is polynomial in k. However, now |Â| may
be polynomial in n, k, and |Σ|, and so in this case as well, the size of A is O(|Â|k).

Since the nonemptiness problem for NFA is NL-complete, the problem for NFH∃∀
can be decided in space of size that is polynomial in |Â|.

General NFH. We mimic the proof idea in [10], which uses a reduction from the
Post correspondence problem (PCP), which is known to be undecidable. A PCP in-
stance is a collection C of dominoes of the form:{[u1

v1

]
,
[u2
v2

]
, . . . ,

[uk
vk

]}

where for all i ∈ [1, k], we have vi, ui ∈ {a, b}∗. The problem is to decide whether
there exists a finite sequence of the dominoes of the form[ui1

vi1

][ui2
vi2

]
· · ·
[uim
vim

]
where each index ij ∈ [1, k], such that the upper and lower finite strings of the dominoes
are equal, i.e.,

ui1ui2 · · ·uim = vi1vi2 · · · vim
For example, if the set of dominoes is

Cexmp =

{[ab
b

]
,
[ba
a

]
,
[a

aba

]}

Then, a possible solution is the following sequence of dominoes from Cexmp:

sol =
[a

aba

][ba
a

][ab
b

]
.

Given an instance C of PCP, we encode a solution as a wordwsol over the following
alphabet:

Σ =
{ σ
σ′
| σ, σ′ ∈ {a, b, ȧ, ḃ, $}

}
.

Intuitively, σ̇ marks the beginning of a new domino, and $ marks the end of a sequence
of the upper or lower parts of the dominoes sequence.

We note that wsol encodes a legal solution iff the following conditions are met:

1. For every σ
σ′ that occurs in wsol, it holds that σ, σ′ represent the same domino letter

(both a or both b, either dotted or undotted).
2. The number of dotted letters in the upper part of wsol is equal to the number of

dotted letters in the lower part of wsol.
3. wsol starts with two dotted letters, and the word ui between the i’th and i + 1’th

dotted letters in the upper part of wsol, and the word vi between the corresponding
dotted letters in the lower part of wsol are such that [ui

vi
] ∈ C, for every i.

Finite-Word Hyperlanguages 17

We call a word that represents the removal of the first k dominoes from wsol a
partial solution, denoted by wsol,k. Note that the upper and lower parts of wsol,k are
not necessarily of equal lengths (in terms of a and b sequences), since the upper and
lower parts of a domino may be of different lengths, and so we use letter $ to pad the
end of the encoding in the shorter of the two parts.

We construct an NFHA, which, intuitively, expresses the following ideas: (1) There
exists an encoding wsol of a solution to C, and (2) For every wsol,k 6= ε in a hyperword
S accepted by A, the word wsol,k+1 is also in S.

L(A) is then the set of all hyperwords that contain an encoded solutionwsol, as well
as all its suffixes obtained by removing a prefix of dominoes from wsol. This ensures
that wsol indeed encodes a legal solution. For example, a matching hyperword S (for
the solution sol discussed earlier) that is accepted by A is:

S = {wsol =
ȧ

ȧ

ḃ

b

a

a

ȧ

ȧ

b

ḃ
, wsol,1 =

ḃ

ȧ

a

ḃ

ȧ

$

b

$
, wsol,2 =

ȧ

ḃ

b

$
, wsol,3 = ε}

Thus, the quantification condition of A is α = ∀x1∃x2∃x3, where x1 is to be
assigned a potential partial solution wsol,k, and x2 is to be assigned wsol,k+1, and x3 is
to be assigned wsol.

During a run on a hyperword S and an assignment v : {x1, x2, x3} → S, the NFH
A checks that the upper and lower letters of wsol all match. In addition, A checks that
the first domino of v(x1) is indeed in C, and that v(x2) is obtained from v(x1) by
removing the first tile. A performs the latter task by checking that the upper and lower
parts of v(x2) are the upper and lower parts of v(x1) that have been “shifted” back
appropriately. That is, if the first tile in v(x2) is the encoding of [wi

vi
], thenA uses states

to remember, at each point, the last |wi| letters of the upper part of v(x2) and the last
|vi| letters of the lower part of v(x2), and verifies, at each point, that the next letter in
v(x1) matches the matching letter remembered by the state.

