
Challenges in Fault-tolerant Distributed
Runtime Verification

Borzoo Bonakdarpour1, Pierre Fraigniaud2, Sergio Rajsbaum3, and
Corentin Travers4

1 McMaster University, Canada, borzoo@mcmaster.ca
2 LIAFA, Paris, Pierre.Fraigniaud@liafa.univ-paris-diderot.fr
3 Instituto de Matemáticas, UNAM, Mexico rajsbaum@im.unam.mx

4 U. Bordeaux, France, travers@labri.fr

Abstract. Runtime Verification is a lightweight method for monitoring the
formal specification of a system (usually in some form of temporal logics) at
execution time. In a setting, where a set of distributed monitors have only
a partial view of a large system and may be subject to different types of
faults, the literature of runtime verification falls short in answering many
fundamental questions. Examples include techniques to reason about the
soundness and consistency of the collective set of verdicts computed by the set
of distributed monitors. In this paper, we discuss open research problems on
fault-tolerant distributed monitoring that stem from different design choices
and implementation platforms.

1 Introduction

Runtime verification (RV) is concerned with monitoring software and hardware
system executions. It is used after deployment of the system for ensuring relia-
bility, safety, and security, and for providing fault containment and recovery. Its
essential objective is to determine at run time, whether the system is in a legal
or illegal state, with respect to some specification.

1.1 The RV framework

An RV framework is essentially a two-layered system: the underlying system, and
the monitoring system, interacting through two components. First, a correctness
specification φ, which defines, at any moment during run time, if the underlying
system is behaving correctly. Second, a communication interface, which is the
subsystem stating how both layers communicate with each other. The communi-
cation is mainly one way, the monitoring system continuously gets information
about the state of the underlying system. Although eventually there should be
some way of getting feedback into the underlying system, for the whole setting
to be useful. As soon as a violation of the legality of the execution is revealed
recovery code can be executed for bringing the system back to a legal state,
for runtime enforcement. For example, the recovery code can reboot the sys-
tem, or release its resources. Runtime enforcement aims at guaranteeing desired



behaviors, e.g. [8]. The main communication is nevertheless upwards, and it de-
fines what can be observed about the underlying system, by which means, how
frequently and how reliably.

One source of difficulties in RV is the decoupled design of its two layers.
The whole RV system is designed and built by two different parties, one of
which does not know about the other. The underlying system is designed, and
deployed, perhaps without even considering the possibility that a monitoring
system will be built later on. Thus, with no concerns about the communication
interface; no provisions for exporting data to a monitoring layer and neither for
receiving feedback from it. Also, the correctness specification is not designed with
a monitoring system in mind. It may be stated for infinite traces, while at run
time, only finite traces are available. There may not exist at all a specification of
whether a finite trace is correct or not. In addition, classic specification languages
such as Ltl are designed for infinite traces. Thus, a main concern in RV is to
design finite trace semantics for RV, often based on Ltl, and to study which
properties are monitorable at run time.

In the simplest scenario, both the underlying system and the monitoring
system are considered to be centralized, sequential processes. The underlying
system produces runtime traces, which are finite sequences of samples, where
each sample contains relevant information for the monitor about the current un-
derlying system state. The monitoring system receives the sequence of samples
as input. Perhaps each sample is triggered by an event in the underlying system
or it is requested by demand of the monitoring system. In any case, the monitor-
ing system uses the sequence of samples to successively expand a runtime trace.
The goal of the monitoring system is, for each such trace, to emit a verdict about
the valuation of φ. It maybe that a clear violation of correctness is observed on
a trace α, or that no violation is seen and cannot happen in the future. But in
general, without knowing the future, the problem of what verdict to emit arises.
The three-valued logic Ltl3 [4] suggests to use the value ‘?’ as a verdict in such
a situation, while Rv-Ltl [3] refines this inconclusive verdict in two, possibly
true >p and possibly false ⊥p verdicts, and more generally, LtlK is a family of
(2k + 4)-valued logics, for k ≥ 0 [7]. For each k ≥ 0, the kth instance of the
family has 2k + 4 truth values, that intuitively represent a degree of certainty
that the formula is satisfied [7].

1.2 Decentralized RV

In this paper, we are concerned with RV when the underlying system is dis-
tributed. It could consist of computer hardware or other interacting machines,
or a set of collaborating software components or a mix of both, for example, an
aircraft. In this case, it makes sense to deploy monitors at different locations of
the underlaying system. Passing messages to a central monitor at every event
leads to communication bottlenecks, a single point of failure, and delays from far
away components of the underlying system to the central monitor. Therefore,
recent contributions e.g., [5,6,17,18] on RV of distributed systems assume a set
of n monitors observing the behavior of the underlying system, with benefits

2



such as replication (e.g. tolerate failures of the monitors themselves, or failures
of sensors) or locality (e.g. a monitor observing some region or component of the
underlying system). The monitors communicate with each other, to be able to
tolerate failures of the monitors themselves. Also, to be able to evaluate a cor-
rectness condition that may depend on samples by several monitors. In short, in
decentralised RV, both the underlying and the monitoring system are distributed
systems.

The specific distributed RV setting depends first of all on which type of dis-
tributed system each one of its two layers is. A distributed system is defined by
the asynchrony of processes, how they communicate with each other, and by the
types of failures that may happen. One may divide them in two classes. Those
where the processes can solve consensus, and those where they cannot. When the
monitoring system is reliable enough to be able to solve consensus, monitors can
exchange samples, and compute a snapshot representing the underlying system
state. Then, each one locally can evaluate φ on this global state, and emit a
verdict. Many papers exists on this scenario, where the concerns are about effi-
ciency, perhaps distribution of the correctness formula, snapshot computation,
reaching consensus on the snapshot as fast as possible, and so on, to build a
monitoring layer that is as lightweight and quick as possible.

1.3 Distributed RV

In this paper we focus on the issues that arise when the monitoring system itself
is distributed, unreliable, and unable to solve consensus. We call this setting dis-
tributed RV, to distinguish it from the more general decentralised RV. Instead of
efficiency considerations, we discuss modeling and computability difficulties that
arise in distributed RV. Many other issues related to efficiency in reliable decen-
tralised RV, although they are challenging and important, they are somewhat
better understood.

The purpose of this note is to discuss some of the new, fascinating issues
that arise in distributed RV, and to discuss some of the existing work, which is
far less than the work done on centralized RV. For some of the issues we discuss
some possible solutions, for others we leave them open for discussion.

1. How to model an unreliable distributed RV system?
2. How is the correctness of the underlying system specified?
3. How many different verdicts are needed, and what is their meaning?
4. What is the meaning of a set of verdicts emitted by the monitors?
5. What is the process of giving feedback to the underlying system?

2 Challenges in Distributed Monitoring

We present a concrete distributed RV setting, very simple, but that serves as
a basis to discuss the issues mentioned above. There are many other possible
settings, but even in this very ideal setting already interesting difficulties appear.

3



2.1 A Distributed RV System

Challenge: how to make sure the monitors take samples about the same global
state of the underlying system?

We now describe a distributed monitor system with two properties: monitors
are unable to solve consensus, and it is simple. This system is very weak, but
computability issues here extrapolate to other, stronger models, such as message-
passing where at most t monitors may fail by crashing, Byzantine failures and
others [14]. In particular, the following shared-memory model can be simulated
in a message passing system if less than half of the monitors can fail5 [1].

Assume that the system under inspection produces a finite trace
α = s0s1 · · · sk of global states. The trace is inspected with respect to some
correctness specification expressed by a formula ϕ and a set of monitors M =
{M1,M2, . . . ,Mn}. The monitors communicate with each other by writing and
reading shared memory registers. They execute the following algorithm.

For every j ∈ [0, k − 1], between each sj and sj+1, each monitor Mi:

1. takes a sample which results in a partial observation of sj , denoted Si(sj);
2. repeatedly communicates with other monitors through a shared memory,

and
3. emits a verdict about the correctness of α = s0s1 · · · sj .

If the samples Si(sj) cover sj , i.e. collectively have all the information about
sj , then if the monitors could gather all their samples, they could locally evalu-
ate ϕ. Instead, we assume each monitor Mi ∈ M is a sequential asynchronous
process. It runs at its own speed, that may vary along with time. In step 2,
monitors communicate with each other as much as they want, but a fixed, finite
number of times. Namely, the code that each monitor executes in step 2 consists
of N write and read instructions (no waiting for events in other monitors). We
assume the monitors can communicate fast enough so that the underlying sys-
tem changes to its new state sj+1 only once each monitor has executed its N
instructions.

The monitor system corresponds to a layered asynchronous wait-free read-
/write shared memory model [16]. In such a model, monitors cannot agree on a
common view about sj , due to the impossibility of solving consensus [13]. Ad-
ditional details about fault-tolerant distributed computing appear in standard
textbooks e.g. [2].

2.2 Distributed Correctness Specifications

Challenge: how to define a correctness specification in a way that can be evalu-
ated on partial views of the global underlying system state?

5 We work in shared memory because then we can consider runs composed of any in-
terleaving of monitor operations, facilitating analysis. Also to including the extreme
case where any number of monitors may fail. In message passing partitions may
happen if half of the monitors can fail.

4



An execution of the monitoring system starting in state sj (step 2 above),
consists of an interleaving of the N operations of each one of the n monitors, and
furthermore, any interleaving is possible (thus, it is as if monitors may crash, but
technically it is not necessary to assume crashes). Consider a monitor Mi, and
such an execution α. There is a subset of monitors from which Mi learns their
samples: all of the monitors that write their samples to shared registers before
Mi reads those registers. Therefore, Mi has to be able to emit its verdict based
only on a partial view about sj . Given that the code executed by the monitors
is wait-free, in an extreme case, it is possible that Mi finishes its code before all
the other monitors, and its partial view could consists of only its own sample.

It follows from the above discussion there has to be a way for a monitor to
emit a verdict based on a partial view of the state. One approach is to assume
a list of all possible partial views is given, including a predicate stating if the
partial view is correct or not. This type of specification is called a distributed
language in [10–12], and is used without any formal semantics.

Another approach is to assume that the specification ϕ was designed for (full)
global states of the underlying system only, and use an extension function which
somehow completes the partial view to a full state that could have occurred in
the underlying system, as in [7, 9]. Care must be taken to ensure that different
monitors use extensions on their own partial views that are somehow compatible.

Also, the difficulty remains even in the case that the monitors are much more
synchronous and reliable. The partial views will be much more complete, but
still consensus is impossible if the monitors may miss at least one sample. Notice
that even if monitors are fully synchronous, there are lower bounds on how many
rounds of communication are needed to solve consensus [2, 16], and thus there
may not be enough time to reach consensus in between sj and sj+1.

2.3 Different Verdicts

Challenge: given that different perspectives about the underlying system state are
unavoidable, how should they be used?

Given that in a wait-free distributed monitoring system it is impossible for
the monitors to solve consensus, it is unavoidable that different verdicts are
emitted. It was shown in [12], that as ϕ gets more and more “complex,” more
and more different verdicts have to be used.

Let us consider the following motivating example e.g. [3], of a system in which
requests are sent by clients, and acknowledged by servers. The system is in a
legal state if and only if (1) all requests have been acknowledged, and (2) every
received acknowledgment corresponds to a previously sent request. Each monitor
i is aware of a subset Ri of requests that has been received by the servers, and a
subset Ai of acknowledgments that has been sent by the servers. To verify legality
of the system, each monitor Mi communicates with other monitors in order to
produce some verdict oi. In a traditional setting of decentralized monitoring, it
may be required that the monitors produce opinions oi ∈ {true, false} such that,
whenever the system is not in a legal state, at least one monitor produces the

5



opinion false. It was shown in [12] that even if there is only one possible request
and one possible acknowledgment, already three different verdicts are needed
(with wait-free monitors).

To prove the lower bound on the number of verdicts required, a minimal
consistency requirement is assumed in [12], stating that the set of verdicts should
distinguish correct from incorrect traces. Namely, if a set of verdicts S is emitted
on a correct trace, the same set should never be emitted on an incorrect trace.

2.4 Semantics of Verdicts

Challenge: which logic, which semantics should be assigned to an opinion, and
which formulas are monitorable under a given distributed model?

Even in centralized RV, it has been observed that we need more than binary
verdicts (i.e., true/false) to evaluate a finite trace. In Rv-Ltl [3] four truth values
B4 = {>,⊥,>p,⊥p} are used. These values identify cases where a finite execution
(1) permanently satisfies, (2) permanently violates, (3) presumably satisfies, or
(4) presumably violates an Ltl formula. A multi-valued family of temporal logics
refining Rv-Ltl was proposed in [7], each one with 2k+4 values, denoted LtlK ,
for k ≥ 0. In particular, LtlK coincides with Rv-Ltl when k = 0. The syntax of
LtlK is identical to that of Ltl. Its semantics is based on Fltl [15] and Ltl3 [4],
two Ltl-based finite trace semantics for RV. For each k ≥ 0, the kth instance of
the family has 2k+4 truth values, that intuitively represent a degree of certainty
that the formula is satisfied. In particular, when t = 2, the set of truth values
B6 = {>,⊥,>0,⊥0,>1,⊥1}, can be used to monitor a request/acknowledgment
formula with two types of requests and acknowledgments. It evaluates to: ⊥0

(presumably false with low degree of certainty) in a finite execution that only
contains r1, to >0 (presumably true with the same degree of certainty) in an
execution that includes r1 and a1, to ⊥1 (presumably false with higher degree of
certainty) in an execution that contains r1, a1, and r2, and to >1 (presumably
true with higher degree of certainty) in an execution that contains r1, a1, r2,
and a2.

The LtlK logic gives a formal semantics for the verdict of each monitor.
It remains an open question how to get a formal semantics for collections of
opinions emitted by the monitors of a decentralized system.

3 Conclusion

In this short note we are unable to discuss many other interesting issues related
to distributed RV. The mechanisms of giving feedback from the monitors to
the underlying system have not been studied. Given that each monitor emits a
verdict, how and when are the collective verdicts used to give feedback to the
underlying system? The simplest approach it to send all the verdicts to a human
or machine control center, that decides what to do, but other, more distributed
approaches should be studied. The work on wait-free distributed RV [10–12]

6



has focused on studying only one iteration of the algorithm discussed above,
namely, where monitors take only one sample, and emit a verdict only once.
Many technical issues arise in the general case of repeatedly taking samples.

There are already quite a few papers studying situations where more than
one monitor is used, from different angles and using different techniques, and the
Bertinoro Seminar on Distributed Runtime Verification, May 2016, was devoted
to discuss these ideas.

4 Acknowledgment

This work was partially sponsored by Canada NSERC Discovery Grant 418396-
2012 and NSERC Strategic Grants 430575-2012 and 463324-2014, Mexico UNAM-
PAPIIT IN107714 and CONACYT-ECOS-NORD grants, as well as the French
State, managed by the French National Research Agency (ANR) in the frame of
the ”Investments for the future” Programme IdEx Bordeaux - CPU (ANR-10-
IDEX-03-02).

References

1. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, Jan. 1995.

2. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley, 2004.

3. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime
verification. Journal of Logic and Computation, 20(3):651–674, 2010.

4. A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):14,
2011.

5. A. K. Bauer and Y. Falcone. Decentralised LTL monitoring. In Proceedings of
the 18th International Symposium Formal Methods (FM), volume 7436 of Lecture
Notes in Computer Science, pages 85–100. Springer, 2012.

6. S. Berkovich, B. Bonakdarpour, and S. Fischmeister. Runtime verification with
minimal intrusion through parallelism. Formal Methods in System Design (FMSD),
46(3):317–348, 2015.

7. B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers.
Decentralized asynchronous crash-resilient runtime verification. In Proceedings of
the 27th International Conference on Concurrency Theory (CONCUR), 2016. To
appear.

8. Y. Falcone. You Should Better Enforce Than Verify, pages 89–105. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

9. Y. Falcone, T. Cornebize, and J.-C. Fernandez. Efficient and Generalized Decen-
tralized Monitoring of Regular Languages, pages 66–83. Springer, 2014.

10. P. Fraigniaud, S. Rajsbaum, M. Roy, and C. Travers. The opinion number
of set-agreement. In 18th Int. Conference on Principles of Distributed Systems
(OPODIS), LNCS 8878, pages 155–170. Springer, 2014.

11. P. Fraigniaud, S. Rajsbaum, and C. Travers. Locality and checkability in wait-free
computing. Distributed Computing, 26(4):223–242, 2013.

7



12. P. Fraigniaud, S. Rajsbaum, and C. Travers. On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In 5th Int. Conference
on Runtime Verification (RV), LNCS 8734, pages 92–107. Springer, 2014.

13. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, Jan. 1991.

14. M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann-Elsevier, 2013.

15. Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

16. Y. Moses and S. Rajsbaum. A layered analysis of consensus. SIAM J. Comput.,
31(4):989–1021, Apr. 2002.

17. M. Mostafa and B. Bonakdarpour. Decentralized runtime verification of LTL spec-
ifications in distributed systems. In Int. Parallel Dist. Proc. Symp. (IPDPS), 2015.

18. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Decentralized runtime analysis of
multithreaded applications. In Int. Parallel Dist. Proc. Symp. (IPDPS), 2006.

8


