
Crash-Resilient Decentralized Synchronous
Runtime Verification

Shokoufeh Kazemlou
Department of Computing and Software

McMaster University, Canada
Email: kazemlos@mcmaster.ca

Borzoo Bonakdarpour
Department of Computer Science

Iowa State University, USA
Email: borzoo@iastate.edu

Abstract—Runtime verification is a technique, where a monitor
process extracts information from a running system in order
to detect executions violating or satisfying a given correctness
specification. In this paper, we consider runtime verification of
synchronous distributed systems, where a decentralized set of
monitors that only have a partial view of the system are subject
to crash failures. In this context, it is unavoidable that monitors
may have different views of the underlying system, and, therefore,
have different opinions about the correctness property. We pro-
pose an automata-based synchronous monitoring algorithm that
copes with t crash monitor failures. Moreover, local monitors do
not communicate their explicit reading of the underlying system.
Rather, they emit a symbolic verdict that efficiently encodes
their partial views. This significantly reduces the communication
overhead. To this end, we also introduce an (offline) SMT-based
monitor synthesis algorithm, which results in minimizing the size
of monitoring messages1.

I. INTRODUCTION

In the past three decades, achieving system-wide depend-
ability and reliability has substantially benefited by incor-
porating rigorous formal methods. Such reliability and de-
pendability is especially critical in the domain of distributed
systems that inherently consist of complex algorithms and
intertwined concurrent components. Given the complexity of
today’s computing systems, deploying exhaustive verification
techniques such as model checking and theorem proving come
at a high cost in terms of time, resources, and expertise.
In many cases, formal verification may not even scale to a
realistic size to analyze the system’s correctness. Moreover,
exhaustive verification techniques may overlook bugs due to
unanticipated stimuli from the environment, internal bugs in
virtual machines, or operating systems as well as hardware
faults. On the other side of the spectrum, testing is a best-
effort method to examine the correctness, which scrutinizes
only a subset of behaviors of the system. Due to its under-
approximate nature, testing often does not reveal obscure
corner cases that complex systems may reach at run time.
In a distributed setting, the inherent uncertainty about an
exponential number of orderings of events makes testing
techniques often blind to concurrency bugs.

Runtime verification (RV) is a lightweight popular tech-
nique [1], [2], where a monitor continually inspects the health

1This is an extended version of the paper appeared in the 37th IEEE
International Symposium on Reliable Distributed Systems (SRDS’18)

of a system under inspection at run time with respect to a
formally specified set of properties. The formal specification
is normally in the form of some language with clear syntax
and semantics, such as regular expressions or some form of
temporal logics. RV is a crucial complement to exhaustive
verification and testing. Monitoring distributed systems and
distributed monitoring has recently gained traction [3]–[13]
as a technique to discover latent bugs in concurrent settings.
Efficient detection of such bugs is quite challenging for three
reasons: (1) a monitor may have to reconstruct a large set of
serializations from its observations, (2) local monitors have
only a partial view of the entire system and, (3) monitors
like any other process may be subject to faults. While the
first difficulty has been studied in various forms [3], [4], [9]–
[13], the body of literature on the latter two is limited to the
results in [5], [14], [15], where the authors show that runtime
monitors need to employ enough number of opinions (instead
of the conventional binary valuations) to consistently reason
about distributed tasks in a consistent manner. These results
are generally in an asynchronous wait-free setting, which is
a bit far from reality of widely used point-to-point message
passing networks.

With this motivation, in this paper, we introduce an RV tech-
nique for fault-tolerant decentralized monitoring that inspects
an underlying distributed system. Our RV framework has the
following properties:

• We assume that a set of monitors are distributed over
a synchronous communication network. The network is
a complete graph allowing all monitors to communicate
with each other using point-to-point message passing in
synchronous rounds.

• Each monitor is subject to crash failures. A crashed
monitor halts permanently and never recovers.

• Each monitor has only a partial view of the underlying
system. More specifically, given a set AP of atomic
propositions that describe the global state of the system,
each monitor can read an arbitrary proper subset of AP.

• The formal specification language is the linear temporal
logic (LTL) [16], where formulas are inductively con-
structed using the propositions in AP.

Our goal is to design an algorithm with the following features:

• Soundness. Upon termination, all local monitors com-

pute the same monitoring verdict as a centralized monitor
that can atomically observe the global state of the system.

• Low overhead. One way for local monitors to share their
observation of the underlying system is to communicate
their reading of AP with each other in synchronous com-
munication rounds. However, this will incur a message
size of O(|AP|), which is exponential in the number
of system variables. Thus, our goal is to find a more
efficient way for local monitors to communicate their
partial observations without compromising soundness.

Our main contribution in this paper is a decentralized
synchronous t-resilient RV algorithm, where t is the upper
bound on the number of crash failures of monitors. Given a
new global state, each monitor process computes a symbolic
representation of its reading of AP and starts t + 1 rounds
of synchronous communication with other monitors in the
network. The number of rounds is inspired by solutions to the
consensus problem in synchronous networks, though in our
problem, the monitors need to agree on a verdict that is not
known a priori and they collaboratively compute the verdict
during the rounds of communication. The symbolic represen-
tation is computed by employing a deterministic finite state
automaton for monitoring formulas in the linear temporal logic
(LTL). We show that the monitor automaton as constructed
using the algorithm in [17] cannot guarantee soundness in
a distributed synchronous setting. Subsequently, we propose
an algorithm that transforms the automaton into another by
adding a minimum number of extra states and transitions to
address cases where local monitors run into indistinguishable
states due to their partial observations. In order to minimize
the size of the transformed automaton, we formulate an offline
optimization problem in satisfiability modulo theory (SMT)2.
The size of the SMT instance is expected to be small, as
most practical LTL formulas are known to have at most just
a few nested temporal operators. Even if the size of the
transformed monitor is not minimized the size of each message
will be O(log |AP|). In short, our RV framework has message
complexity

O

(
log
(
|Mϕ

3 | · |AP|
)
n2
(
t+ 1

))
.

for evaluating each global state, where n is the number of
distributed monitors and Mϕ

3 denotes the finite state automa-
ton for monitoring an LTL formula ϕ as constructed in [17].
An important implication of our results is that unlike the
asynchronous fault-prone setting, where we need to increase
the number of truth values in the specification language to
design consistent distributed monitors [5], [14], [15], in this
paper, we show that in a fault-prone synchronous setting, the
number of truth values is irrelevant.

Organization: The rest of the paper is organized as
follows. We introduce the preliminary concepts in Section II.

2Satisfiability Modulo Theories (SMT) are decision problems for formulas
in first-order logic with equality combined with additional background theories
such as linear arithmetic, arrays, bit-vectors, etc.

Section III presents our model of computation for decentral-
ized crash-resilient synchronous RV. We present the general
idea behind our RV algorithm in Section IV and subsequently
elaborate on the details in Section V. Related work is discussed
in Section VI. Finally, we make concluding remarks and
discuss future work in Section VII. All proofs appear in the
appendix.

II. PRELIMINARIES

In this section, we review the preliminary concepts.

A. Linear Temporal Logic
Let AP be a set of atomic propositions and Σ = 2AP be the

alphabet. We call each element of Σ an event. For example,
for AP = {a, b}, event s = {} means that both propositions
a and b are not true in s and event s′ = {a} means that only
proposition a is true in s′. A trace is a sequence

s0s1s2 · · ·

where si ∈ Σ, for every i ≥ 0. The set of all finite
(respectively, infinite) traces over Σ is denoted by Σ∗

(respectively, Σω). Throughout the paper, we denote finite
traces by the letter α, and infinite traces by the letter σ. For
a finite trace α = s0s1 · · · sn, by αi, we mean trace suffix
sisi+1 · · · sn of α.

LTL Syntax: Formulas in the linear temporal logic
(LTL) [16] are defined using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕU ϕ

where p ∈ AP is an atomic proposition, U is the “until”
operator, and is the “next operator”. Additionally, we allow
the following operators as syntactic sugar, each of which is
defined in terms of the above ones: true = p ∨ ¬p, false =
¬true, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ = trueU ϕ, and
ϕ = ¬ (¬ϕ), where and are the ‘eventually’ and

‘always’ temporal operators, respectively.

LTL Semantics: The semantics of LTL is defined with
respect to infinite traces. Let σ = s0s1 · · · be an infinite
trace in Σω , i ≥ 0 be a non-negative integer, and |= denote
the satisfaction relation. The semantics of LTL is defined as
follows:

σ, i |= p iff p ∈ si
σ, i |= ¬ϕ iff σ, i 6|= ϕ
σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2

σ, i |= ϕ iff σ, i+ 1 |= ϕ
σ, i |= ϕ1 U ϕ2 iff ∃k ≥ i : σ, k |= ϕ2 and

∀j ∈ [i, k) : σ, j |= ϕ1.

Also, σ |= ϕ holds iff σ, 0 |= ϕ holds. For example, consider
the following request/acknowledgment LTL formula:

ϕra =
(
¬a ∧ ¬r

)
∨
(

(¬aU r) ∧ a
)

This formula requires that (1) if a request r is emitted,
then it should eventually be acknowledged by a, and (2) an
acknowledgment happens only in response to a request.

2

B. 3-valued LTL for Runtime Verification
The semantics of LTL is defined over infinite traces. In the

context of runtime verification, since a system only generates
finite traces, the standard LTL semantics does not seem to
be the appropriate formalism. The 3-valued LTL (denoted
LTL3 [17]) allows us to reason about finite traces for veri-
fying properties at run time with an eye on possible future
extensions. The syntax of LTL3 is identical to that of LTL and
the semantics is based on three truth values:

B3 = {>,⊥, ?}
where ‘>’ (respectively, ‘⊥’) denotes that the formula is
permanently satisfied (respectively, violated), no matter how
the current execution extends, and ‘?’ denotes the unknown
truth value, i.e., there exists a future extension that can falsify
the formula, and another that can truthify the formula.

Now, let α ∈ Σ∗ be a non-empty finite trace. The truth
value of an LTL formula ϕ with respect to α in the 3-valued
semantics, denoted by [α |=3 ϕ], is defined as follows:

[α |=3 ϕ] =

> if ∀σ ∈ Σω : ασ |= ϕ

⊥ if ∀σ ∈ Σω : ασ 6|= ϕ

? otherwise.

For example, consider formula ϕ = aU b and the following
three finite traces:
• u1 = {a}{a}{a}
• u2 = {a}{a}{a}{}
• u3 = {a}{a}{a}{b}

Here, we have [u1 |=3 ϕ] =?, as this finite trace can be
extended to traces that result in violation or satisfaction
of ϕ. Two such traces are u2 and u3, respectively, i,e.,
[u2 |=3 ϕ] = ⊥ and [u3 |=3 ϕ] = >.

Definition 1: The LTL3 monitor of a formula ϕ is
the unique deterministic finite state machine Mϕ

3 =
〈Σ, Q, q0, δ, λ〉, where Q is a set of states, q0 ∈ Q is the
initial state, δ : Q × Σ → Q is the transition function, and
λ : Q→ B3, is a function such that:

λ
(
δ(q0, α)

)
= [α |=3 ϕ]

for every finite trace α ∈ Σ∗. �
In [17], the authors introduce an algorithm that takes as

input an LTL formula and constructs as output an LTL3
monitor. For example, Fig. 1 shows the LTL3 monitor for
formula ϕ = aU b, where λ(q0) =?, λ(q⊥) = ⊥, and
λ(q>) = >. It is easy to observe that finite traces u1, u2, and
u3 terminate at monitor states q0, q⊥, and q>, respectively.

III. MODEL OF COMPUTATION

An LTL3 monitor as defined in Definition 1 can evaluate an
LTL formula ϕ with respect to a finite execution, where each
event represents the full view of the system under inspection.
From now on, we refer to such events as global events, where
the value of all propositions in the event is known. While this
model is realistic in a centralized setting, it is too abstract in
a distributed setting. We now present our computation model.

q⊥

q0

q>

{a}

{} {a, b}, {b}

true true

Fig. 1. LTL3 monitor for ϕ = aU b.

A. Overall Picture

We consider a distributed monitoring system compris-
ing of a fixed number n of monitor processes M =
{M1,M2, . . . ,Mn} that communicate with each other by
sending and receiving messages through point-to-point bidi-
rectional communication links3. We assume that the com-
munication graph is synchronous and complete. Each com-
munication link is reliable, that is, we assume no loss or
alteration of messages. Each monitor process locally executes
identical sequential algorithms. Each run of a monitor process
consists of a sequence of rounds that are identified by the
successive positive integers 1, 2, etc. The round number is a
global variable and its progress is ensured by the synchrony
assumption [18]. Each round is made up of three consecutive
steps: send, receive, and local computation. The principle
property of the round-based synchronous model is the fact
that a message sent by a monitor Mi to another monitor Mj ,
for all i, j ∈ [1, n], during a round r is received by Mj at
the very same round r. Each monitor process can start a new
round when the current is complete.

Throughout this section, the system under inspection pro-
duces a finite trace α = s0s1 · · · sk, and is inspected with re-
spect to an LTL formula ϕ by a set of synchronous distributed
monitor processes. Informally, our synchronous distributed
monitoring architecture works as follows. For every j ∈ [0, k],
between each two consecutive global events sj and sj+1, each
monitor process Mi, where i ∈ [1, n]:

1) reads the value of a subset of propositions in sj , which
results in a partial observation of sj ;

2) at every synchronous round, broadcasts a message con-
taining its current observation of the underlying system,
and then waits to receive similar messages from other
monitor processes;

3) based on the messages received at each round updates its
current observation by incorporating partial observations
of other monitor processes, and composes a message to
be sent at next round, and

4) finally, after t+ 1rounds of communication, evaluates ϕ
and emits a truth value from B3, where t is the upper
bound on the number of monitor process crash failures.

3To prevent confusion, we refer to monitors in M as ‘monitor processes’
and the one defined in Definition 1 as ‘LTL3 monitor’.

3

Data: LTL formula ϕ and finite trace s0s1 · · · sk
Result: A verdict from B3

1 for j = 0 to k do
2 Let Ssji be the initial partial view of the monitor;
3 LS1

i ← µ(Ssji , ϕ);

4 for r = 1 to t+ 1 do
5 Send: broadcasts symbolic view LSr

i ;
6 Receive: Πr

i ← {LSr
j }j∈[1,n];

7 Computation: LSr+1
i ← LC(Πr

i);
8 end

9 end
10 Emit a verdict from B3;
Algorithm 1: Behavior of Monitor Mi, for i ∈ [1, n]

B. Detailed Description

We now delve into the details of our computation model
(see Algorithm 1). When an event sj is reached in a finite
trace α = s0s1 · · · sk, each monitor process Mi ∈ M, where
i ∈ [1, n], attempts to read sj (Line 2 in Algorithm 1). Due
to distribution, this results in obtaining a partial view Ssji
defined next.

Definition 2: A partial view is a function
S : AP 7→ {true, false, \}, i.e, a mapping from the set
of atomic propositions to values true, false, or \. The latter
denotes an unknown value for a proposition. �

Notice that the unknown value ‘\’ for a proposition is different
from the unknown truth value ‘?’ in the LTL3 semantics.

Definition 3: We say that a partial view S is consistent with
a global event s ∈ Σ (denoted S v s), if for every atomic
proposition p ∈ AP, we have:

(S(p) = true ⇒ p ∈ s) ∧ (S(p) = false ⇒ p 6∈ s).

�
Hence, in a partial view S is consistent with event s, if the
value of an atomic proposition is not unknown, then it has to
be consistent with s.

Monitor processes observe the system under inspection by
reading partial views. We denote the partial view of a monitor
process Mi from event s ∈ Σ by Ssi and assume that Ssi v
s. This implies that two monitors Mi and Ml cannot have
inconsistent partial views of the same global event. That is,
for any event s and partial views Ssi , Ssl , and for every p ∈ AP,
we have:

(Ssi (p) 6= Ssl (p) ⇒ (Ssi (p) = \ ∨ Ssl (p) = \).

In Algorithm 1, one way for monitor processes to share
their observation of the system is to communicate their partial
views. This way, after several rounds of communication (due
to the occurrence of faults), all monitor processes can construct
the full global event. Although this idea works in principle,

it is quite inefficient, as the size of each message will have
to be at least |AP| bits. Our goal is to design a technique,
where monitor processes can communicate their observations
without sending and receiving their full observation of all
atomic propositions. To this end, we introduce the notion of
a symbolic view that intends to represent the partial view of a
monitor processes Mi without losing information. We denote
the symbolic view of a partial view Ssi with respect to an LTL
formula ϕ by LSi = µ(Ssi , ϕ) (see Line 3 in Algorithm 1). In
Section IV, we will present a concrete way of computing µ.

Let LSr
i denote the symbolic view of monitor process Mi

at the beginning of round r. In Line 5, each monitor process
sends its current symbolic view to all other monitor processes
and then receives the symbolic view of all monitor processes
in Line 6. Let

Πr
i =

{
LSr

l

}
l∈[1,n]

be the set of all messages received4 by monitor process Mi

during round r. Then (Line 7), the monitor computes the new
symbolic view from the messages it received using a function
LC (described in detail in Section IV). This new view will be
broadcast during the next round.

In order to achieve sound monitoring, we assume the full
event in the system is observed by the set M of monitor
processes. We call this assumption event coverage. More
specifically, we say that a set of monitor processes cover a
global event if and only if the collection of partial views of
these monitor processes cover the value of the all atomic
propositions.

Definition 4: A set M = {M1,M2, . . . ,Mn} satisfies
event coverage for an event s if and only if for every p ∈ AP,
there exists Mi ∈M such that Ssi (p) 6= \. �

C. Fault Model

Each monitor process is subject to crash faults, i.e., it may
halt and never recover. We assume that up to t monitor pro-
cesses can crash, where t < |M|. A monitor process may crash
at any round. To ensure the event coverage, we assume that
if there is a proposition p ∈ AP, such that at round r monitor
process Mi is the only monitor aware of p, then the message
sent by Mi at round r, must be received by at least one non-
faulty monitor in round r. This is a reasonable assumption and
can be implemented by including redundant monitors. That is,
there is enough number of monitors that ensure event coverage
(e.g., by using triple modular redundancy).

D. Problem Statement

Our formal problem statement is the termination require-
ment for Algorithm 1. Roughly speaking, we require that when
a non-faulty monitor process runs Algorithm 1 to the end, it

4We note that if some monitor process crashes while another monitor is
receiving messages in Line 6, this monitor will not receive n messages as
prescribed by the algorithm. In synchronous algorithms, by the synchrony
assumption, a crash failure can be easily detected and hence, the accurate
value of n can be determined for receiving messages.

4

q0 q>
{a, b}

{a}, {b}, ∅ true

Fig. 2. LTL3 monitor for ϕ = ♦(a ∧ b).

emits a verdict that a centralized monitor that has global view
of the system would compute. This termination condition is
formally the following

∀i ∈ [1, n] : Mi is non-faulty ⇒ νi = [α |=3 ϕ]

where α is a finite trace, ϕ is an LTL formula, and νi is
the truth value emitted by monitor Mi at the end of running
Algorithm 1.

It is easy to see that our decentralized synchronous moni-
toring problem, where monitor processes are subject to crash
faults is in spirit similar to the uniform consensus prob-
lem [18]. The main difference is that in consensus, processes
need to agree on one values that they own. In our problem,
they should particularly agree on the value [α |=3 ϕ], while
none of the monitors necessarily has this value before the
inner for-loop. In Section V, we will show that similar to
synchronous consensus, if t monitors may fail, t + 1 rounds
of communication are sufficient to agree on the final verdict.

IV. THE GENERAL IDEA AND MOTIVATING EXAMPLE

In Algorithm 1, we provided the skeleton of our syn-
chronous monitoring algorithm. What remains to be done is
identifying concrete µ and LC . Our general idea is described
in the sequel and is reflected in Algorithm 2, which refines
Algorithm 1.

A. Symbolic View µ

As mentioned in Section III, sharing explicit partial views
is not space efficient, as each message will need at least |AP|
bits. To tackle this problem, our idea is that each monitor
process employs an LTL3 monitor, as defined in Definition 1
and the symbolic view of a monitor process consists of the set
of possible LTL3 monitor states that corresponds to its partial
view. Formally, let q be the current state of the LTL3 monitor
and S be the partial view of the monitor process. The set of
possible next LTL3 monitor states can be computed as follows:

µ(S, q) =
{
q′
∣∣ ∃s ∈ Σ.

(
S v s ∧ δ(q, s) = q′

)}
(1)

Recall that δ denotes the transition function in LTL3 monitors.
For example, consider the following LTL formula:

ϕ = (a ∧ b).

The LTL3 monitor of this formula is shown in Fig. 2, where
λ(q0) =? and λ(q>) = >. Let us imagine that (1) a monitor
process M1 is currently in state q0, (2) the global event is s =
{a, b}, and (3) the current partial view of M1 is Ss1(a) = true
and Ss1(b) = true. This implies that monitor M1 considers q>
as the only possible next LTL3 monitor state, i.e.,

µ(Ss1 , q0) = {q>}.

Data: LTL3 monitor Mϕ
3 = 〈Σ, Q, q0, δ, λ〉, finite

trace s0s1 · · · sk.
Result: Verdict from B3

1 qcurrent ← q0;
2 for j = 0 to k do
3 Let Ssji be the initial partial view of the monitor;
4 LS1

i ← µ(Ssji , qcurrent) ; /* Equation (1)
*/

5 for r = 1 to t+ 1 do
6 Send: broadcasts symbolic view LSr

i ;
7 Receive: Πr

i ← {LSr
j }j∈[1,n];

8 Computation: LSr+1
i ← LC(Πr

i) ;
/* Equation (2) */

9 end

10 qcurrent ← LSr+1
i ;

11 end
12 return λ(qcurrent);
Algorithm 2: Updated behavior of Monitor Mi, for
i ∈ [1, n]

However, considering another partial view Ss1(a) = true and
Ss1(b) = \, monitor process M1 will have to consider {q0, q>}
as possible next LTL3 monitor states. This is because it has to
consider two possibilities for proposition b. That is,

µ(Ss1 , q0) = {q0, q>}.

We use µ as defined in Equation (1) to compute the concrete
symbolic view in Line 4 of Algorithm 2.

B. Computing LC

Given a set of possible LTL3 monitor states computed by
µ, in Line 7 of Algorithm 2, each monitor process receives
a set of possible states from all other monitors, denoted by
LSr

i for each monitor process Mi, where i ∈ [1, n] and each
communication round r. Our idea to compute LC from these
sets is to simply take their intersection. The intuition behind
intersection is that it represents the conjunction of all partial
views of all monitors. That is, in Line 8 of Algorithm 2, we
have:

LC (Πr
i) =

⋂
i∈[1,n]

LSr
i . (2)

C. Motivating Example

The above general ideas for computing µ and LC has one
problem. In Line 10, one final LTL3 monitor state should
determine the final output, but in some cases, the partial views
of two monitors are too coarse and applying intersection on
them cannot compute the LTL3 monitor states that represent
the aggregate knowledge of the monitors. For example, con-
sider again the LTL3 monitor for formula (a ∧ b) in Fig. 2.
Suppose that we have a global event s = {a, b}, two monitors
M1 and M2, both at initial state q0, and two partial views,

5

where M1 knows the value of a and M2 knows the value of
b. That is,

Ss1(a) = true Ss1(b) = \
Ss2(a) = \ Ss2(b) = true

These monitors will compute µ as follows:

µ(Ss1 , q0) = µ(Ss2 , q0) = {q0, q>}.

Applying intersection on µ(Ss1 , q0) and µ(Ss2 , q0) will result
in the same set {q0, q>}. At this point, no matter how many
times the monitor processes communicate, at the end of the
inner for-loop, LS will not become a singleton and in Line
11 qcurrent cannot be determined properly. This scenario is in
particular, problematic since the collective knowledge of M1

and M2 (i.e., the fact that a and b are both true) should result in
reconstructing s = {a, b}. Surprisingly, this problem does not
stem from the way we compute µ and LC . It is mainly due to
the structure of the LTL3 monitor as defined in Definition 1.
Although the definition works for centralized monitoring, it
needs to be refined for distributed monitors that have only a
partial view of the underlying system. In Section V, we will
present a technique to transform an LTL3 monitor into one
capable of encoding enough information for monitor processes
with partial views.

V. MONITOR TRANSFORMATION ALGORITHM

The discussion in Section IV reveals the source of the
problem on the structure of the monitor in Fig. 2. The self-
loop on state q0 prescribes that state q0 is reachable by three
events: {a}, {b}, or {}, while a partial view of {a, b} may
intersect with both {a} and {b}, which are indistinguishable
from each other. If we can somehow split q0 to two states to
explicitly distinguish the cases where either of a or b are true,
then applying intersection will effectively solve the problem
presented in Section IV-C. More specifically, consider the
LTL3 monitor shown in Fig. 3 for formula ϕ = (a ∧ b),
where state q0 is split in two states q01 and q02. State q02
is reached when a is true and b is false. Analogously, State
q01 is reached when b is true or both a and b are false. Now,
recall the two monitors M1 and M2 and their partial views in
Section IV-C:

Ss1(a) = true Ss1(b) = \
Ss2(a) = \ Ss2(b) = true

These monitors will compute µ as follows:

µ(Ss1 , q0) = {q02, q>}
µ(Ss2 , q0) = {q01, q>}

Applying intersection on µ(Ss1 , q0) and µ(Ss2 , q0) will now
result in the singleton {q>}, which is indeed the correct verdict
for global event {a, b}. We call the monitor shown in Fig. 3
an extended LTL3 monitor.

In this section, we present an algorithm that takes as input
an LTL3 monitor and generates as output an extended LTL3

q01 q>

q02

{a, b}

{b}, ∅

{a}

true

{a, b}
{b}, ∅

{a}

Fig. 3. Extended LTL3 monitor for ϕ = ♦(a ∧ b).

monitor. We prove that by plugging an extended LTL3 monitor
in the distributed RV Algorithm 2, it will produce a verdict
identical to that of a centralized LTL3 monitor.

A. The Challenge of Generating an Extended LTL3 Monitor

Let Mϕ
3 = 〈Σ, Q, q0, δ, λ〉 be the LTL3 monitor of an LTL

formula ϕ. To simplify our notation, we denote transitions of
δ by

q
L(q,q′)−−−−→ q′,

where the set L(q, q′) of labels is formally defined as follows:

L(q, q′) =
{
s ∈ Σ | δ(q, s) = q′

}
.

When it is clear from the context, we refer to the set of labels
L(q, q′) simply by L.

Now, suppose that AP = {a, b, c}, an LTL3 monitor has a
transition of the form:

q0
{a},{b,c},{a,c}−−−−−−−−−→ q1,

the global event is s = {a, b, c}, and the partial view of each
process Mi, where i ∈ [1, n], has the value of at most one
atomic proposition (i.e., the value of other propositions are
unknown). It is straightforward to see that for any global
event s ∈ Σ − {{a}, {b, c}, {a, c}}, the monitor state q1
appears in the symbolic view of every monitor process Mi,
i.e., q1 ∈ µ(Ssi , q0), and consequently, it is impossible for LSi

to become a singleton. Note that q1 is not the correct verdict.
Hence, we need to split q1 into two new states q11 and q12,
which can be done in one of the following ways:

(1) q0
{a},{b,c}−−−−−−→ q11 and q0

{a,c}−−−→ q12

(2) q0
{a}−−→ q11 and q0

{b,c},{a,c}−−−−−−−→ q12

(3) q0
{a},{a,c}−−−−−−→ q11 and q0

{bc}−−−→ q12

In scenarios (1) and (2) above: we further need to split q11
and q12, respectively. But in scenario (3), there is no need to
split q11 or q12. Thus, the choice of splitting the monitors’
blind spot, has an impact on the size of the extended LTL3
monitor. In order to minimize the number of new states that

6

1 Function SPLIT(L):
2 CV ← 1;
3 for each p ∈ AP do
4 if (∃s, s′ ∈ L.p ∈ s ∧ p /∈ s′) then
5 CV ← CV + 1;
6 end
7 end
8 if (2CV > |L|) then
9 return true;

10 end
11 return false;
Algorithm 3: Function to determine whether a transi-
tion has to split.

are added to the extended LTL3 monitor, we need to compute
the minimum-size split. Finding the minimum-size split is a
combinatorial optimization problem very similar to the set
cover or the hitting set problem [19]. In the next subsection,
we present an SMT-based technique to obtain the minimum-
size transition split.

B. Identifying the Minimum-size Split

Definition 5: We say that a transition q
L−→ q′ covers an

event s ∈ Σ if and only if

∀p ∈ AP : ∃s′ ∈ L : (p ∈ s ⇔ p ∈ s′)

�
Observe that if a transition covers an event, it does not mean
that the event is in the label set of the transitions. It only
means that all of its propositions are covered.

Definition 6: We say that an event s is opaque to a transi-
tion q L−→ q′, if (1) s 6∈ L, but (2) q L−→ q′ covers s. �

For example, event {a, b} is opaque to transition

q0
{a},{b},∅−−−−−−→ q> in the LTL3 monitor in Fig. 2. It is easy

to observe that two partial views of an opaque event to a
transition may result in identical possible sets of LTL3 monitor
states. When one monitor only reads a and another monitor
reads only b, then the resulting set of possible states (i.e.,
{q0, q>}) are not distinguishable from each other, because both
propositions a and b are in event {a, b}. Indeed, this is the main
reason in creating ambiguity in distributed monitor processes
with partial views and such transitions need to be split in
order to resolve possible ambiguities. Function SPLIT (see
Algorithm 3) determines whether or not a transition should be
split. The variable CV in the function computes the number
of events covered by the input transition label set. In the above
example, the value of 2CV for transition q0

{a},{b},∅−−−−−−→ q0 is
4 which is strictly greater than |L| = 3. This means that the
transition needs to be split.

Our goal is to minimize the number of splits for a transition,
as the number of splits determines the final size of the
extended LTL3 monitor. Formally, given an event s ∈ Σ

opaque to a transition q
L−→ q′, we aim at splitting the

transition to transitions q L1−−→ q1 to q
Ln−−→ qn such that (1)⋃

i∈[1,n] Li = L, (2) s is opaque to none of these transitions,
and (3) n is minimum. It is straightforward to see that this is
a combinatorial optimization problem that involves generating
all subsets of L to find the best choice for L1 to Ln, i.e., a bad
choice can result in more future splits. To solve this problem,
we transform it into an SMT instance to utilize powerful SMT-
solvers.

We now define the constants, variables, constraints, and the
optimization objective of our SMT instance. The input is a
transition q L−→ q′ and the output are two transitions q L1−−→ q1
and q L2−−→ q2 such that minimum number of global events are
opaque to the transition.

Constants. For every atomic proposition p ∈ AP and every
global event s ∈ L, we employ a Boolean constant aps defined
as follows:

aps =

{
true if p ∈ s
false if p /∈ s

Variables and functions. For every global event s ∈ L,
we define two Boolean variables xL1

s and xL2
s , meaning that

xL1
s = true, if s ∈ L1, otherwise xL1

s = false. Likewise,
xL2
s = true, if s ∈ L2, otherwise xL2

s = false. We define an
operator ◦ between a Boolean variable x and a constant a as
follows:

x ◦ a =

{
a if x = true

true if x = false

For each atomic proposition p ∈ AP, we introduce two
Boolean variables ypL1

and y¬pL1
with the following meaning:

ypL1
=

{
true if ∀s ∈ L1 : p ∈ s
false otherwise

y¬pt1 =

{
true if ∀s ∈ L1 : p /∈ s
false otherwise

Analogously, for each atomic proposition p ∈ AP, we intro-
duce Boolean variables ypL2

and y¬pL2
. We also include two

Booleans vpL1
and vpL2

, whose meaning is explained later in
the set of SMT constraints. For each event s ∈ L, we define
two binary integer variables wp

L1
and wp

L2
(for the purpose of

counting and optimization) as follows:

wp
L1

=

{
0 if υpL1

= true

1 otherwise

wp
L2

=

{
0 if υpL2

= true

1 otherwise

Constraints. Informally, an event appears either in L1 or in
L2. Hence, we add the following constraint for each s ∈ L:

xL2
s = ¬xL1

s

7

The constraints to encode the meaning of variables ypL1
and

y¬pL1
are as follows:

ypL1
=
∧
s∈L

(xL1
s ◦ aps)

y¬pL1
=
∧
s∈L

(xL1
s ◦ a¬ps)

It is easy to verify that ypL1
evaluates to true if and only if for

every event s ∈ L1, we have p ∈ s, and y¬pL1
evaluates to true

if and only if for every event s ∈ L1, we have p /∈ s. Likewise,
for variables ypL2

and y¬pL2
, we add the following constraints:

ypL2
=
∧
s∈L

(xL2
s ◦ aps)

y¬pL2
=
∧
s∈L

(xL2
s ◦ a¬ps)

Finally, we need to count the number of opaque events in
ypL1

and y¬pL1
(respectively, ypL2

and y¬pL2
). Hence, we add the

following assertions:

vpL1 = ypL1
∨ y¬pL1

vpL2 = ypL2
∨ y¬pL2

Optimization objective. Our objective is to minimize the total
number of opaque events to transition labels L1 and L2:

min
∑
p∈AP

(
wp
L1

+ wp
L2

)
We remark that although SMT-solvers cannot directly handle
optimization objectives such as the above, a common practice
is to find the minimum of the above sum using a simple binary
search over a coarse range.

C. The Complete Transformation Algorithm

We now know how to split a transition to two transitions
with minimum number of opaque events. All we need to do
at this point is to design an algorithm that takes as input
an LTL3 monitor Mϕ

3 = 〈Σ, Q, q0, δ, λ〉 and transforms it
into an extended monitor Mϕ

e = 〈Σ, Qe, q0, δe, λe〉 as output
using the above SMT-based optimization technique. We now
describe the details of this transformation in Algorithm 4:
• In Lines 2 – 28, we examine each outgoing transition

of each state q of the input LTL3 monitor transitions for
splitting.

• If a transition does not need to be split, we simply add
the original transition to the extended monitor (Lines 25
and 26).

• For each transition that should be split, we apply the
above SMT-based optimization technique described in
Section V-B. We first add the new states to the set
of states of the extended monitor (Line 7). Then, we
distinguish two cases:

– If the transition that needs to be split, say q L−→ q′ is
not a self-loop (Lines 10 – 13), then two transitions
q
L1−−→ q1 and q

L2−−→ q2 with the labels returned by

Input: Mϕ
3 = 〈Σ, Q, q0, δ, λ〉

Output: Mϕ
e = 〈Σ, Qe, q0, δe, λe〉

1 Qe ← Q;
2 for every q ∈ Qe do
3 Lq ←

{
L(q, q′) | ∃q′ ∈ Q.q L−→ q′

}
;

4 for every L(q, q′) ∈ Lq do
5 if SPLIT (L(q, q′)) then
6 {L(q, q1),L(q, q2)} ← SMT(L(q, q′));
7 Qe ← (Qe ∪ {q1, q2})− {q′};
8 Lq ← Lq ∪ {L(q, q1),L(q, q2)};
9 λe(q1), λe(q2)← λ(q′) ;

10 if q 6= q′ then
11 δe(q, s)← q1 for all s ∈ L(q, q1);
12 δe(q, s)← q2 for all s ∈ L(q, q2);
13 δe(q1, s), δe(q2, s)← δ(q′, s) for all

s ∈ Σ;
14 end
15 if q = q′ then
16 δe(q1, s)← q1 for all s ∈ L(q, q1);
17 δe(q1, s)← q2 for all s ∈ L(q, q2);
18 δe(q1, s), δe(q2, s)← δ(q′, s) for every

s ∈ Σ− L(q, q′);
19 end
20 for every q′′ such that δ(q′′, s) = q′ do
21 δe(q′′, s)← q1;
22 end
23 end
24 else
25 δe(q, s)← q′ for every s ∈ L(q, q′);
26 λe(q′)← λ(q′);
27 end
28 Lq ← Lq − {L(q, q′)};
29 end
30 end

Algorithm 4: Extended LTL3 Monitor Construction

the SMT-solver are included in the extended monitor
(see Fig. 4). We also add all the outgoing transitions
from q′ to q1 and q2 (Line 13).

– If the transition that needs to be split is a self-loop,
say q

L−→ q, (Lines 15 – 18), then two transitions
q1
L1−−→ q1 and q1

L2−−→ q2 with the labels returned by
the SMT-solver are included in the extended monitor
(see Fig. 5). We also add all the outgoing transitions
from q to q1 and q2 (Line 18) for the events not in
the original self-loop.

– Finally, we include the incoming transitions to each
state (Line 25) and remove labels that are have no
opacity issues (Line 28).

• We repeat the loop until no transition needs to be split.
The reader can test that running Algorithm 4 on the LTL3
monitor in Fig 2, will result in the extended LTL3 monitor in
Fig. 3.

We now show the soundness of Algorithm 2 (as defined in
the problem statement in Section III-D) when augmented by
an extended LTL3 monitor as constructed by Algorithm 4.

Theorem 1: Let α ∈ Σ∗ be finite trace and ϕ be an LTL
formula. The return value of Algorithm 2 augmented with an

8

q q′ q

q1

q2

L

L1

L2

Fig. 4. Splitting a transition to two.

q q1 q2

L L1

L2

Fig. 5. Splitting a self-loop to two.

extended LTL3 monitor as constructed in Algorithm 4 is [α |=3

ϕ] by every monitor process in the presence of up to t crash
failures.

Proof: Please refer to the appendix.

Theorem 2: Let ϕ be an LTL formula and α ∈ Σ∗ be a
finite trace. The message complexity of Algorithm 2 using an
extended LTL3 monitor is

O

(
log
(
|Mϕ

3 | · |AP|
)
|α|(t+ 1)n2

)
.

Proof: Please refer to the appendix.

VI. RELATED WORK

In the sequel, we focus on reviewing the work on monitoring
distributed systems and distributed monitoring.

A. Synchronous Distributed Monitoring

The most relevant work to this paper is the algorithms
proposed in [6], [7]. The algorithm in [6] for monitoring
synchronous distributed systems with respect to LTL formulas
is designed such that satisfaction or violation of specifications
can be detected by local monitors alone. The framework
employs disjoint alphabet for each process in the system. Thus,
a local monitor in [6] can only evaluate subformulas that
include its own propositions and if the subformula contains
propositions of other processes, it sends a proof obligation
to the corresponding monitor to resolve the obligation. This
technique is called formula progression. This implies that if
multiple proof obligations exist, the formula needs to be pro-
gressed by multiple monitors in a sequence of communication
rounds. Each round may increase the size of the formula to
remember what happened in the past.

In [7], the authors introduce a way of organizing sub-
monitors for LTL subformulas in a synchronous distributed
system, called choreography. In particular, the monitors are

organized as a tree across the distributed system, and each
child feeds intermediate results to its parent in a manner sim-
ilar to diffusing computation. They formalize choreography-
based decentralized monitoring by showing how to synthesize
a network from an LTL formula, and give a decentralized
monitoring algorithm working on top of an LTL network.

The approach in these articles are different from our work
in this paper in the following fundamental ways: (1) the
framework in [6], [7] is fault-free, (2) we do not assume that
components have disjoint alphabet and can indeed observe
a shared set of propositions. This creates ambiguity among
monitors and brings inconsistency issues to the problem, which
are absent in [6], [7].

B. Fault-tolerant Distributed Monitoring

In [14], [15] the authors show that if runtime monitors
employ enough number of opinions (instead of the con-
ventional binary valuations), then it is possible to monitor
distributed tasks in a consistent manner. Building on the work
in [14], [15], [20], the authors in [5] show that employing
the four-valued LTL [21] will result in inconsistent distributed
monitoring for some formulas. They subsequently introduce
a family of logics, called LTL2k+4, that refines the 4-valued
LTL by incorporating 2k + 4 truth values, for each k ≥ 0.
The truth values of LTL2k+4 can be effectively used by each
monitor to reach a consistent global set of verdicts for each
given formula, provided k is sufficiently large. In this paper,
we showed that in a synchronous setting, we do not need to
change the number of truth values.

C. Distributed Monitoring for Past-time LTL

In [8], the authors propose a decentralized monitoring
algorithm that monitors a distributed program with respect to
safety properties in PT-DTL, a variant of the past-time linear
temporal logic. PT-DTL expresses temporal properties of dis-
tributed systems by drawing relation to particular processes
and their knowledge of the local state of other processes at
any point in time. In the monitoring algorithm, monitors gain
knowledge about the state of the system by piggybacking
on the existing communication among processes. In such a
framework, the valuation of some predicates and properties
may be overlooked. That is, if processes rarely communicate,
then monitors exchange little information and, hence, some
violations of properties may remain undetected.

D. Lattice-theoretic Distributed Monitoring

Predicate detection is the problem of identifying states of
a distributed computation that satisfy a predicate [9], [10].
The problem is in general NP-complete [22]. Computation
slicing [23] is a technique for reducing the size of the
computation and, hence, the number of global state to be
analyzed for detecting a predicate. The slice of a computation
with respect to a predicate is the sub-computation satisfying
the following two conditions: (1) it contains all global states
for which the predicate evaluates to true, and (2) among
all computations that satisfy the first condition, it contains

9

the least number of consistent cuts. In [23], the authors
propose an algorithm for detecting regular predicates. This
idea is then extended to a full blown distributed algorithm
for distributed monitoring [3]. One shortcoming of this line
work is that it does not address monitoring properties with
temporal requirements. This shortcoming is partially addressed
in [11] for a fragment of temporal operators. In [4], the authors
propose the first sound method for runtime verification of
asynchronous distributed programs for the 3-valued semantics
of LTL specifications defined over the global state of the
program. In the proposed setting, monitors are not subject
to faults. The technique for evaluating LTL properties is
inspired by distributed computation slicing described above.
The monitoring technique is fully decentralized. LTL formulas
in this work are in terms of conjunctive predicates.

Lattice-based techniques may suffer from the existence of
too many concurrent states. To tackle this problem in [12],
the authors propose an algorithm and analytical bounds if
a combination of logical and physical clocks (called hybrid
clocks) are used. This method is enriched with SAT solving
techniques in [13].

VII. CONCLUSION

In this paper, we proposed a runtime verification algorithm,
where a set of decentralized synchronous monitors that have
only a partial view of the underlying system continually eval-
uate formulas in the linear temporal logic. We assume that the
communication network is a complete graph and each monitor
is subject to crash failures. Our algorithm is sound in the sense
that upon termination, all local monitors compute the same
monitoring verdict as a centralized monitor that can atomically
observe the global state of the system. The monitors do not
share their full observation of the underlying system. Rather,
they communicate a symbolic representation of their partial
observations without compromising soundness. This symbolic
observation is the set of possible LTL3 monitor states. Since
LTL3 monitors may not be able to resolve indistinguishable
cases due to partial observations, we also proposed an SMT-
based transformation algorithm to obtain minimum size LTL3
monitors. Our SMT-based algorithm increases the size of an
LTL3 monitor only by a factor of O(log |AP|) (communicating
explicit observations would require O(|AP|) bits), where AP
is the set of atomic propositions that describe the global state
of the underlying system.

As for future work, we plan to study the same problem
where the communication network graph is not complete (e.g.,
a tree or a ring). Another interesting research avenue is to
consider other types of faults, e.g., when monitors are subject
to Byzantine faults and may misrepresent their observation of
the underlying system.

VIII. ACKNOWLEDGMENT

We would like to thank César Sánchez of IMDEA Software
Institute, Spain, for sharing his idea of computing moni-
tor state intersections in private communication. This work
was partially supported by Canada NSERC Discovery Grant

418396-2012 and by NSERC Strategic Grants 430575-2012
and 463324-2014.

REFERENCES

[1] K. Havelund and G. Rosu, “Monitoring Programs Using Rewriting,” in
Automated Software Engineering (ASE), 2001, pp. 135–143.

[2] E. Bartocci, Y. Falcone, B. Bonakdarpour, C. Colombo, N. Decker,
F. Klaedtke, K. Havelund, Y. Joshi, R. Milewicz1, G. Reger, G. Rosu,
J. Signoles, D. Thoma, E. Zalinescu, and Y. Zhang, “First international
competition on runtime verification,” Software Tools for Technology
Transfer (STTT), 2018.

[3] H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal, “A distributed
abstraction algorithm for online predicate detection,” in IEEE 32nd
Symposium on Reliable Distributed Systems (SRDS), 2013, pp. 101–110.

[4] M. Mostafa and B. Bonakdarpour, “Decentralized runtime verification
of LTL specifications in distributed systems,” in Proceedings of the
29th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015, pp. 494–503.

[5] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth,
and C. Travers, “Decentralized asynchronous crash-resilient runtime
verification,” in Proceedings of the 27th International Conference on
Concurrency Theory (CONCUR), 2016, pp. 16:1–16:15.

[6] A. Bauer and Y. Falcone, “Decentralised LTL monitoring,” Formal
Methods in System Design, vol. 48, no. 1-2, pp. 46–93, 2016.

[7] C. Colombo and Y. Falcone, “Organising LTL monitors over distributed
systems with a global clock,” Formal Methods in System Design, vol. 49,
no. 1-2, pp. 109–158, 2016.

[8] K. Sen, a. Vardhan, G. Agha, and G. Rosu, “Efficient decentralized
monitoring of safety in distributed systems,” in International Conference
on Software Engineering (ICSE), 2004, pp. 418–427.

[9] V. K. Garg, Elements of distributed computing. Wiley, 2002.
[10] S. D. Stoller and F. B. Schneider, “Verifying programs that use

causally-ordered message-passing,” Sci. Comput. Program., vol. 24,
no. 2, pp. 105–128, 1995. [Online]. Available: https://doi.org/10.1016/
0167-6423(95)00002-A

[11] V. A. Ogale and V. K. Garg, “Detecting temporal logic predicates
on distributed computations,” in Proceedings of the 21st International
Symposium on Distributed Computing (DISC), 2007, pp. 420–434.

[12] S. Yingchareonthawornchai, D. N. Nguyen, V. T. Valapil, S. S. Kulkarni,
and M. Demirbas, “Precision, recall, and sensitivity of monitoring
partially synchronous distributed systems,” in Runtime Verification - 16th
International Conference, RV 2016, Madrid, Spain, September 23-30,
2016, Proceedings, 2016, pp. 420–435.

[13] V. T. Valapil, S. Yingchareonthawornchai, S. S. Kulkarni, E. Torng,
and M. Demirbas, “Monitoring partially synchronous distributed systems
using SMT solvers,” in Runtime Verification - 17th International Confer-
ence, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings,
2017, pp. 277–293.

[14] P. Fraigniaud, S. Rajsbaum, and C. Travers, “On the number of opinions
needed for fault-tolerant run-time monitoring in distributed systems,” in
Runtime Verification (RV), 2014, pp. 92–107.

[15] P. Fraigniaud, S. Rajsbaum, M. Roy, and C. Travers, “The opinion
number of set-agreement,” in Principles of Distributed Systems - 18th
International Conference (OPODIS), 2014, pp. 155–170.

[16] Z. Manna and A. Pnueli, “The modal logic of programs,” in Proceedings
of the 6th Colloquium on Automata, Languages and Programming
(ICALP), 1979, pp. 385–409.

[17] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, pp. 14:1–14:64, 2011.

[18] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers, 1996.

[19] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[20] P. Fraigniaud, S. Rajsbaum, and C. Travers, “Locality and checkability
in wait-free computing,” Distributed Computing, vol. 26, no. 4, pp. 223–
242, 2013.

[21] A. Bauer, M. Leucker, and C. Schallhart, “Comparing LTL Semantics
for Runtime Verification,” Journal of Logic and Computation, vol. 20,
no. 3, pp. 651–674, 2010.

10

[22] N. Mittal and V. K. Garg, “On detecting global predicates in distributed
computations,” in Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS 2001), Phoenix, Arizona, USA,
April 16-19, 2001, 2001, pp. 3–10.

[23] ——, “Techniques and applications of computation slicing,” Distributed
Computing, vol. 17, no. 3, pp. 251–277, 2005.

APPENDIX

A. Proof of Theorem 1

We prove Theorem 1 in three steps, similar to the proof
technique for consensus in synchronous networks (e.g., the
FloodSet algorithm) [18]. First, we prove that at then end of
inner for-loop LS includes only one state. Then, we show
that if no crash faults occur, in one round, all monitors will
compute a monitor state q, where λ(q) is the same as what
a centralized monitor that can read the global event in one
atomic step would compute. Finally, we show that if up to t
monitors crash, all active monitors return λ(q) as described in
the previous step. We now delve into these three steps:
• Step 1. Let us assume that the monitor processes in M

are evaluating event sj for some j ∈ [0, k]. Formally, we
are going to show that if no crash faults occur, then in
Line 10 of Algorithm 2, we have |LS1

i | = 1, for all i ∈
[1, n]. First, note that if no faults occur, all monitors send
and receive all the messages in one clean round. Thus, in
the subsequent rounds all messages will be identical. We
now prove this claim by contradiction. Suppose we have
|LS1

i | = 2 (the case for > 2 can be trivially generalized).
This means that at least two monitor processes sent a
message containing two possible LTL3 monitor states, say
{q1, q2}. This can be due to two scenarios:

– The first scenario is that q1 and q2 are possible LTL3
monitor states, because the value of some atomic
proposition p ∈ AP is unknown, i.e., S(p) = \.
However, this scenario contradicts our assumption on
event coverage (see Section III) in our computation
model.

– The second scenario is that q1 and q2 are possible
LTL3 monitor state, because sj is opaque to some
outgoing transitions from qcurrent in the LTL3 mon-
itor. This case contradicts with our construction of
extended LTL3 monitor in Algorithm 4.

• Step 2. We prove this step by induction on the length of
the finite input trace. The base case is that the monitors
are evaluating event s0 and qcurrent = q0. From Step 1
of the proof, we know that |LS1

i | = 1. We also know
that |LSr

i | = 1 (for all r ∈ [1, t + 1]) and LSr
i contains

the same content as LS1
i . Let this content be an LTL3

monitor state q. Our goal is to show that:

λ(q) = [s0 |= ϕ].

The proof, again, is by contradiction. This scenario can
happen if the intersection of all possible monitor states q,
where q = δ(q0, s0) and λ(q) 6= [s0 |= ϕ]. This can hap-
pen only if due to opacity, a wrong monitor state comes
out of the intersection. This case contradicts with out

construction of extended LTL3 monitor in Algorithm 4.
Hence, q would be the monitor state that a centralizes
monitor would compute. The induction step is now trivial:
it is straightforward to show that for any valid qcurrent
and any sj , the next monitor state is the same as what a
centralized monitor would compute.

• Step 3. From Steps 1 and 2, we know that if no faults
occur, in one round all monitors compute one and only
one LTL3 monitor state q, where λ(q) = [α |= ϕ]. Now,
we show in a fault-prone scenario, in some round 1 ≤
r ≤ t+ 1, any two active monitors Mi and Mj compute
the same single monitor state LSr

i = {q}, where λ(q) =
[α |= ϕ]. Since there are at most t crash failures, there has
to be some round r, where no failures occur. Recall that in
Section III, we assume that if a monitor crashes and this
monitor is the only one that is aware of some proposition
p ∈ AP, this monitor sends a message containing its set of
possible monitor states before crashing. This assumption
ensures event coverage. This means that in any round
r ≤ r′ ≤ t + 1, the value of all propositions are read.
This in turn implies that all rounds r′ are now identical
to a fault-free setting and, hence, Steps 1 and 2 hold.

These three steps prove the soundness of Algorithm 2 when
augmented by an extended LTL3 monitor as constructed by
Algorithm 4.

�

B. Proof of Theorem 2
We analyze the complexity of each part of Algorithm 2:
• The algorithm has a nested loop. The outer loop iterates

exactly |α| times.
• The inner loop iterates exactly t+ 1 times.
• In the inner loop each monitor process sends n messages

to all other monitrs and receives n messages from all
other monitors. That is, n2 messages.

This makes it a total of |α|(t+ 1)n2 messages throughout the
algorithm.

We now focus on the size of each message. Let
Mϕ

3 = 〈Σ, Q, q0, δ, λ〉 be an LTL3 monitor and Mϕ
e =

〈Σ, Qe, q0, δe, λe〉 be its extended monitor constructed by
Algorithm 4. The algorithm may split a transition at most |AP|
number of times. Hence, we have

|Qe| ≤ 2|Q| · |AP|.
Recall that each message contains the possible states of the
extended LTL3 monitor. This means each message in Algo-
rithm 2 needs

O

(
log
(
|Q| · |AP|

))
bits for each message. Recall that the size of an LTL3 monitor
is the number of its state, i.e., |Mϕ

3 | = |Q|. Hence, the
message complexity is

O

(
log
(
|Mϕ

3 | · |AP|
)
|α|(t+ 1)n2

)
.

�

11

