CSE 480, Spring 2003

Database Systems

Views in Relational Datamodel

S. Pramanik
Views (Virtual Tables)

• View:
 – A named SQL statement or
 – A named relational algebraic expression.

• Relational Algebra:
 GoodStudent(Id, Name, GPA):
 \[\pi_{Sid,Sname,gpa}\sigma_{gpa>3.0}(Student) \]

• SQL:

 CREATE VIEW
 GoodStudents(Id, Name, GPA)
 AS
 SELECT Sid, Sname, gpa
 FROM Student
 WHERE gpa>3.0
How It Works

- Queries on Views:
 - Algebra:
 \[\pi_{Id} \sigma_{Name='John'}(GoodStudents) \]
 - SQL:
 Select Id
 From GoodStudent
 Where Name='John'

- View Definition Replaces References:
 - \[\pi_{Sid} \sigma_{Name='John' \& gpa>3.0}(Student) \]
 - Select Sid
 From Student
 Where Name='John' and gpa>3.0
Why It Works

• Closure Properties:
 – Algebraic Operators.
 – Group By?

• Use of Closure properties:
 – Algebraic Expression ⇒ Virtual Relation
 – Substitute and Merge Algebraic Expressions (Names to Base Tables)
 – \(\pi Id \sigma Name = 'John'(GoodStudents) \Rightarrow \pi Sid \sigma Name = 'John' \& gpa > 3.0(Student) \)
Advantages of Views

1. Security of Hidden Data
2. Simplify Complex Operations
3. Logical Data Independence.
Updates on Views

• Updates Allowed When
 – Defined on a Single relation
 – Contains PK or a Candidate Key

• Problems of View semantics and inserts.
 (lab problem: Insert into EastLansing (Sid, Sname))
 Base table gets data through view but view does not show it.
 Read Only views

• Problems of Unique Mapping
 Key preserving tables (See Oracle)

• Queries; Updates Nonprimary
Materialized Views

• Physical Copy of Data
• Data in Sync With Base Tables
• Achieved by Triggers
• Better Query Performance
• Oracle Features:
• Data Warehousing Example:
 – Huge Base Tables
 – Expensive Joins
 – Archival In Nature
• Mirroring Database