Proof of step 4: The language Halting, \(H \), is not recursive

In the following proof we argue by contradiction that if \(H \) is recursive then \(SA \) is recursive. But \(SA \) is not recursive. Therefore, \(H \) is not recursive.

Proof:

Assume that \(H \) is recursive and \(T_H \) is the corresponding Turing Machine. Then, we can construct a composite Turing Machine \(T_{SA} \) for the language \(SA \) as shown in figure below.

Note that the Turing Machine \(T_1 \) converts the input of \(T_{SA} \) into an input for the Turing Machine \(T_H \). Thus, \(T_1 \) can be designed in such a way that it will copy an input \(w \) to the right of it after changing \(w \) to its encoding \(e(w) \). This TM, \(T_1 \), can be designed in such a way that it does not loop. If \(T_H \) does not loop then we have a TM for the language \(SA \) which does not loop. Thus, \(SA \) is recursive. This is a contradiction.

Explanation of the input \(< w, e(w) > \) to the box \(T_H \) above. Note that the input to box \(T_H \) should be \(< w, e(w) > \) and not \(< e(w), e(w) > \). The explanation is given below.

Definition of the language SelfAccepting, \(SA \), is as follows:

\(SA = \{ w \epsilon \{0,1\}^* \text{ and } w=e(T) \text{ for some TM } T, \text{ and } T \text{ accepts } w \} \)

Thus, the input to box \(T_{SA} \) is any string \(w \) of 0’s and 1’s. But \(T_{SA} \) accepts \(w \) only when it is a code for some TM \(T \) and \(T \) accepts \(w \). Any other inputs of 0’s and 1’s to \(T_{SA} \) are not accepted. Since \(w \) already represents a TM code, it need not be coded again. However, when \(w \) is used as an input to \(T \), this \(w \) needs to be coded for input. Note that the TM code itself is the input.

Following is an example:

Assume that \(T \) is a TM that accepts \(\{0,1\}^* \), that is, it accepts all strings. Thus, TM \(T \) has only one move that goes to halt state from the start state.
on input delta. Obviously, this TM T accepts its own encoding e(T) because it accepts everything.

TM T:
- Move: \((q_1, \Delta) = (h, \Delta, S)\) We assumed \(q_1\) is the start state. Thus,
- \(e(T) = 001001010101011\)

Now \(w = e(T)\) is the input to the TM T. This needs to be coded. We have two symbols in the input, namely, 0 and 1. We use the following encoding for the characters 0 and 1.
- \(S(0) = 00\)
- \(S(1) = 000\)

Based on the above encoding \(e(w)\) becomes:
- \(001001000100010010001001000100010010001001000100010010010010010001\)

Therefore, \(<e(T), e(W)>\) is \(<w, e(W)>\) which is
- \(00100101010111100100100010010001001000100100010010001001000100100010001\)