CSE 460: Computability and Formal Languages

Finite State Automata (FA) and Regular Languages
Finite State Automata (FA)

1. FA: $M = \langle Q, \Sigma, \delta, q_0, A \rangle$
 - Q: Finite set of states
 - Σ: finite input set
 - δ: transition function $Q \times \Sigma \to Q$
 - $q_0 \in Q$ initial state
 - A: set of acceptance states $\subseteq Q$

2. Example:

 ![Figure 1](image)

 Figure 1:

 $Q = \{q_0, q_1, \emptyset\}, \Sigma = \{a, b\}, A = \{q_1\}$

 $\delta(q_0, a) = q_0, \delta(q_0, b) = q_1, \delta(\emptyset, b) = q_1, \delta(q_1, a) = \emptyset,$

 $\delta(\emptyset, a) = \emptyset, \delta(\emptyset, b) = \emptyset$
Definition of FA Continued

1. Acceptance Conditions:

 (a) must be in final state
 and at the same time
 (b) reach the end of the string.

2. For the example FA:

 - Transitions for the string $x=aab$:
 $q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_1$
 accepted?

 - What are the transitions for $x=abb$?
 accepted?

 - What are the transitions for $x=abba$?
 accepted?

 - Language (all accepted strings) for the FA:
 $L = a^*b^+$
Transition Function on a string (δ^*)

1. Interested in the final state reached for a string.

2. Transition function δ^* defined for strings:
 \[\delta^*(q, w) = \text{state reached after reading the input string } w, \text{ starting from state } q. \]

 Note:
 - δ function makes transition on an input symbol.
 - δ^* is a function defined in terms of δ on an input string.

3. δ^* is defined in terms of δ as follows:
 \[\delta^*(q, ax) = \delta^*(q_1, x), \text{ where } q_1 = \delta(q, a) \]

 Write the above notation in English.

4. $\delta^*(q, \Lambda) = q$ needed?
 yes, for the base case of the recursive definition and this allows Λ in a language.

 For the above FA: $\delta^*(q_0, ab) = q_1$ why?
 \[\delta^*(\delta(q_0, a), b) = \delta^*(q_1, b) = \delta^*(\delta(q_1, b), \Lambda) = \delta^*(q_1, \Lambda) = q_1 \]

 Difference between $\delta(q_0, a) =$ and $\delta^*(q_0, a) =$?
Recursive Definitions of δ^*

1. Explicitly showing the transition on the first input symbol of the string:

 $\delta^*(q, ax) = \delta^*(\delta(q, a), x)$

 $\delta^*(q, \Lambda) = q$

 This is same as described in previous page.

2. Explicitly showing the transition on the last input symbol of the string:

 $\delta^*(q, xa) = \delta(\delta^*(q, x), a)$

 $\delta^*(q, \Lambda) = q$

 Example: $\delta^*(q_0, aab) = \delta(\delta^*(q_0, aa), b) = \delta(\delta^*(q_0, a), a, b) = \delta(\delta(\delta^*(q_0, \Lambda), a), a, b) = \delta(\delta(\delta(q_0, a), a), b) =$
Definition of the Language Accepted by an FA

1. The Language recognized by an FA:
 If M is an FA then
 $$T(M) = \{ x \in \Sigma^* | \delta^*(q_0, x) \in A \}$$

2. Another Definition of a Regular Language:

3. A set $L \subseteq \Sigma^*$ is regular if \exists fa: $L = T(M)$
Pairwise Distinguishable Strings

1. Definition:
Two strings \(x\) and \(y\) in \(\Sigma^*\) are distinguishable with respect to a language \(L\) if there is a string \(z \in \Sigma^*\) so that one and only one of \(xz\) or \(yz\) is in \(L\).

\(z\) is said to distinguish \(x\) and \(y\) with respect to \(L\).

2. Example:
Let \(L\) be the language \(\{x \in \{0, 1\}^* | x \text{ ends with } 10\}\)
The strings 01011 and 100 are distinguishable with respect to \(L\) because for \(z = 0, 01011z \in L\) but \(100z \notin L\).

3. A set of pairwise distinguishable strings:
A set of strings is pairwise distinguishable with respect to a language \(L\) if every pair of strings in the set is distinguishable with respect to \(L\).

Example: \(L= (1 + 0)0^*\)
A set of pairwise distinguishable strings with respect to \(L\):
\(\{\Lambda, 1, 11\}\) because
\((\Lambda, 1): z = \Lambda, (\Lambda, 11): z = 1, (1, 11): z = \Lambda\)
Distinguishable Strings and Nonregular Languages

1. Theorem: If for some positive integer \(n \), there are \(n \) strings in \(\Sigma^* \), any two of which are distinguishable with respect to a language \(L \) (i.e., a set of \(n \) pairwise distinguishable strings), then there can be no FA recognizing \(L \) with fewer than \(n \) states.

Proof:
Suppose \(x_1, x_2, \ldots, x_n \) are \(n \) strings, any two of which are distinguishable with respect to \(L \). If \(M \) is any FA with fewer than \(n \) states, then by pigeonhole principle, the states \(\delta^*(q_0, x_1), \delta^*(q_0, x_2), \ldots \delta^*(q_0, x_n) \) cannot all be distinct, and so for some \(i \neq j \),
\[
\delta^*(q_0, x_i) = \delta^*(q_0, x_j). \tag{A}
\]
Since \(x_i \) and \(x_j \) are distinguishable with respect to \(L \), \(\delta^*(q_0, x_iz) \neq \delta^*(q_0, x_jz) \) for some \(z \in \Sigma^* \). Because,
\[
\delta^*(q_0, x_iz) = \delta^*(\delta^*(q_0, x_i), z) \quad \text{and} \quad \delta^*(q_0, x_jz) = \delta^*(\delta^*(q_0, x_j), z)
\]
we get
\[
\delta^*(q_0, x_i) \neq \delta^*(q_0, x_j).
\]
This is a contradiction with (A) above.

2. \(L = \{a^ib^i \mid i \geq 0\} \)
• has a set of infinite number of pairwise distinguishable strings:
 \(\{a^2b, a^3b, a^4b, \ldots \} \)

• Needs infinite number of states.

• Not a regular language.
Indistinguishable Strings and Minimum State FA

1. Lemma:

If $M = \{Q, \Sigma, q_0, A, \delta\}$ recognizes a language $L \subseteq \Sigma^*$, and x and y are two strings in Σ^* for which $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are indistinguishable with respect to L.

2. (a) FA1: $L = (1 + 0)0^*$
 FA2: $L = (1 + 0)0^*$

(b) Set of strings corresponding to a state:

$L_q = \{x \mid \delta^*(q_0, x) = q\}$

For FA1: $L_{q_0} = \Lambda$, $L_{q_1} = (0 + 1)0^*$,
$L_{q_2} = (0 + 1)0^*1(0 + 1)^*$
A string from L_{q0}, a string from L_{q1}, and a string from L_\emptyset are pairwise distinguishable.

Thus, for FA1:
If $x \in L_{q0}$, $y \in L_{q1}$, $z \in L_\emptyset$
Then $\{x, y, z\}$ is pairwise distinguishable $\{\Lambda, 1, 11\}$.

For FA2: If $x \in L_{q0}$, $y \in L_{q1}$, $z \in L_\emptyset$, $w \in L_{q2}$
Then y and w are not distinguishable with respect to L. 1, 00 are not distinguishable strings with respect to $(1 + 0)0^*$.

(c) q_1, q_2 could be merged.
Composite FA

1. Closure properties of Regular Languages:
 By definition of regular languages we can say:
 If L_1 and L_2 are two regular languages then
 $L_1 \cup L_2$, L_1L_2, L_1^* are regular.

2. How about $L_1 \cap L_2$, $L_1 - L_2$? also regular.

3. Regular languages are closed under union, concatenation, Kleene star, set intersection, set difference, etc.

4. Given two FAs M_1 and M_2, can we construct new FAs to accept the the languages $L(M_1) \cup L(M_2)$, $L(M_1)L(M_2)$, $L(M_1)^*$, $L_1 \cap L_2$ and $L_1 - L_2$?

5. There are construction algorithms for creating composite FAs given two FAs.

6. We will, for now, focus on a construction algorithm for composite FA for $L(M_1) \cup L(M_2)$, $L_1 \cap L_2$ and $L_1 - L_2$
Construction of Composite FA for $L(M_1) \cup L(M_2), L_1 \cap L_2$ and $L_1 - L_2$

- Given two FAs, M_1 and M_2, construct FAs accepting $L(M_1) \cup L(M_2), L_1 \cap L_2$ and $L_1 - L_2$?
- States of new machine remember transitions in both machines.
- Simulate transitions of both machines by a composite state in new machine.
- $\delta_1(q_1, a) = p_1$ for M_1 and $\delta_2(q_2, a) = p_2$ for M_2 then $\delta_c((q_1, q_2), a) = (p_1, p_2)$ for the composite machine.
- State (p_1, p_2) in new machine remembers transition in M_1 and transition in M_2 for the same input a from q_1 to p_1 and from q_2 to P_2.

\begin{itemize}
 \item $\delta^*(q_1, 1) = p_1$
 \item $\delta^*(q_2, 1) = p_2$
 \item $\delta^*((q_1, q_2), 1) = (p_1, p_2)$
 \item $\delta^*(q_1, 10) = p_1$
 \item $\delta^*(q_2, 10) = r_2$
 \item $\delta^*((q_1, q_2), 10) = (p_1, r_2)$
 \item $\delta^*(q_1, x) = m_1$
 \item $\delta^*(q_2, x) = n_2$
 \item $\delta^*((q_1, q_2), x) = (m_1, n_2)$
\end{itemize}
Theorem 3.4:
Suppose that $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ accept languages L_1, L_2, respectively. Let M be a composite FA defined by
$M = (Q, \Sigma, q_0, A, \delta)$ where
$Q = Q_1 \times Q_2$ and $q_0 = (q_1, q_2)$
and the transition function δ is defined by
$\delta((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$
for any $p \in Q_1, q \in Q_2,$ and $a \in \Sigma$ then

1. If $A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}$, M accepts the language $L_1 \cup L_2$.
2. If $A = \{(p, q) \mid p \in A_1 \text{ and } q \in A_2\}$, M accepts the language $L_1 \cap L_2$.
3. If $A = \{(p, q) \mid p \in A_1 \text{ and } q \notin A_2\}$, M accepts the language $L_1 - L_2$.

Proof:
By Mathematical induction show
$\delta^*((p, q), x) = (\delta_1^*(p, x), \delta_2^*(q, x)) \forall x \in \Sigma^*$
Base case: $\delta^*((p, q), \Lambda) = (\delta_1^*(p, \Lambda), \delta_2^*(q, \Lambda))$
$\delta^*((p, q), \Lambda) = (p, q)$, $\delta_1^*(p, \Lambda) = p$ and $\delta_2^*(q, \Lambda)$ by definition of δ^*
True for $|x| = n$ then true for $|x| = n + 1$
\[\delta^*((p, q), xa) = \delta(\delta^*((p, q), x), a) = \delta((\delta_1^*(p, x), \delta_2^*(q, x)), a) = \\
(\delta_1(\delta_1^*(p, x), a), \delta_2(\delta_2^*(q, x), a)) = (\delta_1^*(p, xa), \delta_2^*(q, xa)) \]

A string is accepted by the composite machine if

\[(\delta_1^*(p, x), \delta_2^*(q, x)) \in A \]

If the set is defined as in case 1 this is the same as

saying \((\delta_1^*(p, x) \in A_1 \) or \(\delta_2^*(q, x) \in A_2 \). In other words, that \(x \in L_1 \cup L_2 \) Cases 2 and 3 are similar.
Example

• $L_1 = 10^* = \{1, 10, 100, 1000, \ldots\}$
 $L_2 = 101^* = \{10, 101, 1011, \ldots\}$

• $L_1 \cap L_2 = 10$
 $L_1 \cup L_2 = 1 + 10 + 1000^* + 1011^*$
 $L_1 - L_2 = 1 + 1000^*$

Figure 3:

Composite FA: