Multi-Dimensional Analysis of SSL3.0

Zhenxiao Yang & Ali Ebnenasir
Computer Science Department
Michigan State University
December 2002

Outline

- Motivations
- Problem
- Our Approach
 - Temporal-Belief Logic
 - Two-Dimensional Model Checking Using SPIN
- Analysis Approach
- Comparison
- Conclusions and Future work
Motivations

- Why Secure Socket Layer Protocol?
 - A de facto standard for the security of transport layer
 - Results affect a large number of e-commerce users
 - Applicability of formal methods in the analysis of security protocols

- What is Multi-Dimensional Analysis and why?
 - Multiple semantic model to capture different dimensions of a protocol
 - Each formal method has limited expressiveness
 - The semantic model of each formal method filters some details that are not expressible in its language

Problem

- Formal analysis of SSL3.0
- Related work
 - Wagner and Schneier, 1996
 - An informal analysis
 - No analysis for the state of beliefs
 - Experience-based approach
 - Mitchell et al., 1997
 - A finite-state model checker (Murphi)
 - A low-level modeling language for a complex protocol
 - No analysis for the state of beliefs
Problem (continued)

- Related work (continued)
 - Dietrich, 1997
 - A formal analysis using Belief logic
 - The analysis of passive attacks
 - No formal model for the intruder
 - No automatic analysis

- Common shortcoming?
 - Single semantic model

Our Approach

Specification(s) → Properties → Analysis

Model 1 → Model 2 → Model 3

Instantiation
Our Approach (continued)

- Security protocols
 - Distributed programs
 - Inter-Participant communication mechanism: *Message passing*
 - Each action affects the beliefs of the participants

Timeline structure: an interleaving of participants actions

![Timeline diagram]

Temporal-Belief Semantic models

- Temporal-Belief analysis
- Specification: Temporal-Belief Logics
- What do we mean by Belief?
 - A logical language for the internal representation of the beliefs of each participant
 - A formal belief model is pair (\(\Delta_i, R_i\))
 - \(\Delta_i\): a set of observations of participant \(i\)
 - \(R_i\): a relation from a set of observations to a new observation (a.k.a reasoning ability of \(i\)).

Wooldridge & Fisher 94
Belief Model Constraints

- Assumptions:
 - The reasoning ability of a participant does not change over time
 - The beliefs of a participant may change over time

Wooldridge & Fisher 94

Analysis Approach

- One instance, one session
 - Specify the protocol in TBL language
 - Specify an intruder model in TBL
 - Translate the specification into a modeling language (e.g., Promela)
 - Find the flaws and possible attacks using a model checker (e.g., SPIN) as long as your computational resources allow
 - Fix your model by improving the Specification
Example

- An step of a simplified protocol

 ClientHello: \(C \rightarrow S : C, Ver_C, Suite_C \)

 TBL Specification:

 \[
 BC(\text{clientName} = C) \\
 BC(\text{clientVersion} = \text{Ver}_C) \\
 BC(\text{clientSuite} = \text{Suite}_C) \\
 IC(\text{BS}(\text{clientName} = C) \land (\text{clientVersion} = \text{Ver}_C) \land \\
 (\text{clientSuite} = \text{Suite}_C))
 \]

Comparison of TBL and CAPSL

- A sample property:
 - It is always the case that both client and server cannot roll back to version 2.0

\[
(\square \neg ((BC(\text{Ver}_C = 2.0)) \land (BS(\text{Ver}_S = 2.0))))
\]
Conclusions

- Advantages
 - A methodology for inductive analysis of security protocols
 - Our approach have the potential to be automated
 - The expressiveness of TBL with respect to CAPSL

- Disadvantages
 - The more expressive, the more complex (computational and human resources)

Future Work

- Automatic generation of TBL specification from CAPSL specification

- Automatic translation of TBL specification into a modeling language (e.g., Promela)

- Use a model checker (e.g., SPIN) to analyze the protocol
References

Formal Belief Model

A belief model M is a pair (Δ, R), where

- $\Delta \subseteq \text{Form}(\mathcal{L})$, where Form($\mathcal{L}$) is the set of all formulae in \mathcal{L}.

- $R \subseteq ((\text{PowerSet(Form} (\mathcal{L})) \times \text{Form}(\mathcal{L}))$, where R is a finite enumerable binary relation that has the following properties:

 - If $(\Delta_0, \alpha) \in R$ then $\forall \varphi : \varphi \in \Delta_0 : (\Delta_0, \varphi) \in R$ (Reflexivity).
 - If $(\Delta_0, \alpha) \in R$, $(\Delta_1, \beta) \in R$, and $\Delta_0 \subseteq \Delta_1$ then $(\Delta_1, \alpha) \in R$ (Monotonicity).
 - If $(\Delta_0, \alpha) \in R$ and $(\{\alpha\}, \beta) \in R$ then $(\Delta_0, \beta) \in R$ (Transitivity).
Temporal-Belief Logic - Syntax

- Symbols

 - Every symbol of \mathcal{L}_r, where \mathcal{L}_r is the language of propositional logic.

 - A set $\text{Par} = \{P_1, \cdots, P_n\}$ that contains the names of participants.

 - The symbols B and I.

 - The temporal connectives X (i.e., next operator) and U (i.e., until operator).

Temporal-Belief Logic – Syntax (Cont’d)

- Formulae

 - If $\alpha \in \mathcal{F}_r$ then α is a formula, where \mathcal{F}_r is the set of well-formed formulae in propositional logic.

 - If α is a formula and P_i is a participant then $B P_i \alpha$ is also a formula.

 - If α is a formula and P_i is a participant then $I P_i \alpha$ is also a formula.

 - If α is a formula then $\neg \alpha$, $X \alpha$, and (α) are also formulae.

 - If α and β are formulae then $\alpha \land \beta$ and $\alpha U \beta$ are also formulae.
Temporal-Belief Logic - Semantics

Temporal operators semantics.

\[\langle M, x \rangle \models X \alpha \iff \langle M, x + 1 \rangle \models \alpha \]
\[\langle M, x \rangle \models (\alpha U \beta) \iff \exists y : (y \in N) \land (x \leq y) : \]
\[(\langle M, x \rangle \models \beta) \land (\forall z : z \in N : (y \leq z < x) \Rightarrow (\langle M, z \rangle \models \alpha) \]

Wooldridge & Fisher 94

Temporal-Belief Logic – Semantics (Cont’d)

The semantics of propositional and belief operators

\[\langle M, x \rangle \models \text{true} \]
\[\langle M, x \rangle \models p \iff Val(x, p) = T, \text{ where } p \text{ is an atomic proposition.} \]
\[\langle M, x \rangle \models \neg \alpha \iff \langle M, x \rangle \not\models \alpha \]
\[\langle M, x \rangle \models \alpha \land \beta \iff \langle M, x \rangle \models \alpha \text{ and } \langle M, x \rangle \models \beta \]
\[\langle M, x \rangle \models BP_i \alpha \iff \alpha \in Bel(L(x, P_i), R_i) \]
\[\langle M, x \rangle \models IP_i \alpha \iff \langle M, x \rangle \models (BP_i(true \land (BP_i \alpha)) \]

Wooldridge & Fisher 94