Introduction to Misuse Intrusion Detection Systems (IDS)

- Two categories
 - Single event IDS
 - Each event is compared with each known signature
 - Specifying signatures simple
 - Multi-event IDS
 - Do not have a uniform abstract algorithm because they do not propose the same operators to combine events
 - Can be further split into two categories (next slide)

Multi-event IDS Categories

- Transition based
 - What are the significant traces of attacks is hidden by how they should be detected
 - Very tricky to write signatures
- Declarative
 - Signatures only contain what are the significant traces of attacks
 - How they are detected is addressed by an algorithm
 - Easier to write signatures
 - Problem: algorithm is a black box and detects all instances of an attack, allowing attackers to choke the IDS by launching many incomplete instances of an attack
Focus of Paper

- Refine the declarative approach
 - Formally specify the algorithm in two stages
 - Classify the signature instances
 - Give a set of detection rules which detects in an audit trail a representative of each class
 - Rules are formally specified using a “parsing schemata”
 - Algorithm defined by the rules are proved sound and complete
 - What and the how still separated, but security officer can parameterize the detection by choosing a class for each signature

Contribution of Paper

- Two main contributions
 - Less instances of signatures are tracked
 - More resistant to choking attacks
 - Detection algorithm is specified in a high level formal way
 - Easy to understand and reason about
 - Essential operation features are made explicit

Specification of Signatures

- Intrusion signatures describe combinations of events

- A filter is a signature on one event

- Complex signatures can be focused on two ways
 - Sequence
 - Conjunction
Specification of Signatures

• Definition 1 (Event): An event is a collection of values identified by field names. We represent an event as a set of pairs (field_name, value). We assume that in an event, a field name belongs to one pair.

\[E = \{ (\text{eventID}, \text{EXEC}) \} \]

• Definition 2 (Trail): A trail is a totally ordered sequence of events. Given a trail \(T \), we note \(T[i] \) the \(i \)th event in the trail.

• Definition 3 (Filter): A filter is a set of constraints between event field names, constant values and variable names. In this paper, we consider that constraints involving variable names can only be equality constraints.

\[F = \{ \text{eventID} = \text{EXEC} \} \]

\[\text{userID} \neq 0 \]

\[\text{userID} = \text{User} \]

\[\text{path} = \text{ProgName} \]
Specification of Signatures

- **Definition 4 (Signatures):** A signature is defined by a 5-tuple \((V, F, N_T, S, P)\)
 - \(V\) is a set of variables
 - \(F\) is a set of filters that use variables in \(V\)
 - \(N_T\) is a set of non-terminal elements
 - \(S\in N_T\) is the axiom,
 - \(P\) is a set of production rules \(N_T \rightarrow \text{Prod.}\), where \(p\in \text{Prod.}\) can be:
 - \(\text{Filter}(f)\) where \(f\in F\)
 - \(\text{Seq}(A, B)\) where \((A, B)\in N_T \times N_T\)
 - \(\text{And}(A, B)\) where \((A, B)\in N_T \times N_T\)

Specification of Signature

Several signatures rules can be summed up into a single one. For example:

\[
\begin{align*}
N_T & \rightarrow \text{Seq}(N_{T+1}, N_{T+2}) \quad | \quad f_1[A, B] = (...) \\
N_{T+1} & \rightarrow \text{Filter}(f_2[A]) \\
N_{T+2} & \rightarrow \text{Filter}(f_3[B])
\end{align*}
\]

is equivalent to:

\[
\begin{align*}
N_T & \rightarrow \text{Seq}(N_{T+1}, N_{T+2}) \\
N_{T+1} & \rightarrow \text{Filter}(f_2[A]) \\
N_{T+2} & \rightarrow \text{Filter}(f_3[B]) \\
\end{align*}
\]

Example of Signature

<table>
<thead>
<tr>
<th>Const</th>
<th>Define</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{T+1})</td>
<td>(N_{T+1} = \text{Seq}(N_{T+2}, N_{T+3}))</td>
</tr>
<tr>
<td>(N_{T+2})</td>
<td>(N_{T+2} = \text{Filter}(f_{T+1}[A]))</td>
</tr>
<tr>
<td>(N_{T+3})</td>
<td>(N_{T+3} = \text{Filter}(f_{T+2}[B]))</td>
</tr>
<tr>
<td>(N_T)</td>
<td>(N_T = \text{Seq}(N_{T+1}, N_{T+2}))</td>
</tr>
<tr>
<td>(f_{T+1})</td>
<td>(f_{T+1} = \text{Filter}(A, B))</td>
</tr>
<tr>
<td>(f_{T+2})</td>
<td>(f_{T+2} = \text{Filter}(A, B))</td>
</tr>
</tbody>
</table>
Semantics of Signature

• A concrete instance of a signature is a collection of events that
 – Fulfill the constraints in filters
 – With respect to the correlation specified by the logical variables
 – And are in a correct order according to temporal constraints

• This is denoted \(\{p_1, \ldots, p_n\} \) where \(p_i \) are positions in the trail

• Proposed semantics:
 – \((T, i, j) \) where \(T \) is a signature valuation, \(i \) is the position of the first event of the instances, and \(j \) is the position of the last event of the instance

Semantics of Signatures (Signature Constraints)

• Definition 5 (Signature constraints): A signature constraint is a set of constraints that force some properties on the possible values of the variables used in a signature. Can not contain reference to a field name.

\[
\theta = \{ \gamma_1 = 42, \gamma_5 \neq 21, \gamma_5 \neq 34, \gamma_5 \neq 17 \}
\]

Semantics of Signatures (Signature Valuation)

• Definition 6 (Signature valuation):
 A signature constraint is said to be a signature valuation if it forces a unique value for each variable that appears in the signature.

\[
\theta = \{ \gamma_1 = 42, \gamma_5 = 28 \}
\]
Semantics of Signatures
(Event Matching)

- Definition 7 (Event Matching):
 - We define the predicate match(E, F, T) where E is an event, F is a filter, and T is a valuation of F.
 - This predicate holds iff the constraint set \((F_{E_T}) \) admits at least one solution.
 - It does not hold if an event field name used in F is not present in E.

Semantics of Signature

- Semantics of the language given by means of the relation \(\mathcal{D} \). Given a signature S, a trail T, and an abstract instance \(I=(T, i, j) \), \(I \) is an instance of S in T iff \(T, T, I, j \mathcal{D} S \).

Specification of Signature Instances

- Many approaches to ID strive to be both sound and complete.
- Authors argue that completeness is not necessary and is sometimes a drawback.
- Authors propose an approach to specify what instances are relevant for detection.
 - Specifications are expressed as equivalence relations between instances of each signature.
 - Once classified, the IDS can report only a particular instance of each class.
Specification of Signature Instances

- Given a signature, equivalence relation is specified by choosing an element in the lattice of all the subsets of variable of the signature.

- Two instances are equivalent if they contain the same values for the variables in this subset.

```
<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>{U1, U2, T1, T2}</td>
<td>{U3, T1}</td>
<td>{T2}</td>
</tr>
<tr>
<td>{U1, T2, T3}</td>
<td>{U1}</td>
<td></td>
</tr>
<tr>
<td>{T1}</td>
<td>{T3}</td>
<td></td>
</tr>
</tbody>
</table>
```

Specification of Signature Instances

- Each element e in this lattice corresponds to an equivalence R(e) between instances:
 - \(R(\top) = \lambda x_1 \ldots \lambda x_n . \text{true} \)
 All instances are in the same class.
 - \(R(T_i) = \lambda x_1 \ldots \lambda x_n . x_i = \text{false} \)
 Each instance is in its own class.
 - For any other element \(e = \{ T_1, \ldots, T_i \} \) of the lattice:
 \[
 R(e) = \lambda x_1 \ldots \lambda x_n . \begin{cases} \text{true} & \text{if } T_i(x_i) = \text{false} \\ \text{false} & \text{otherwise} \end{cases}
 \]

where \(T_i(x_i) \) is the value of variable \(T_i \) in the instance \(T \). Here, \(e \) is a sequence of \(T_i \)s present in \(e \).

Specification of Signature Instances

- Two motivations:
 - Want to be able to prune search paths on the fly
 - Don’t want to miss relevant instances

- For \(T_i \neq \top \):
 \[
 R(\{ U_1, U_2, T_1, T_2 \}) = R(\{ U_3, U_2, T_3 \})
 \]

- For \(T_i = \top \):
 \[
 R(\{ U_1, U_2, T_1, T_2 \}) = \lambda x_1 \ldots \lambda x_n . \text{true}
 \]

- For \(T_i = \bot \):
 \[
 R(\{ U_1, U_2, T_1, T_2 \}) = \lambda x_1 \ldots \lambda x_n . \text{false}
 \]
Specification of Signature Instances

• After instances are classified, must decide which instance to report to the IDS
• Three strategies (Chakravarthy et al.):
 – Report the instance that starts first and ends first
 – Report the one that starts last among all the ones that end first
 – Report the shortest instance for each event that starts an instance
• This paper selected the first strategy:
 – Finding the instance that ends first is required for analyzing an infinite trail
 – Easier to constrain further search as opposed to canceling previous results

First Strategy

• The predicate First is defined as
 – First(S, ?, T, a, (i, j, T))

 • S is a signature
 • ? is an equivalence relation between instances of S
 • T is a trail
 • a is a position in T
 • (i, j, T) is an instance in S
 – Given an instance I = (T, i, j) with a = I, this predicate holds iff, among all instances equivalent to I according to ? that start after a, I is the one that starts first and ends first

First Algorithm

• Implements the First strategy
• Described with a formalism called parsing schemata
 – Specifies algorithms using a set of deduction rules
 – Gives a formal framework to describe and prove properties
 – Modular description (i.e. one does not need to know the whole specification to understand how a particular construct is searched for in the language)
Parsing Schemata

- Parsing algorithm is described as set of deduction steps
 - Hypothesis and conclusion of these steps are called parsing items
 - Parsing items are partial or complete parsing trees
 - Deduction starts with an item representing an empty parsing tree
 - Deduction ends when an item representing a complete parsing tree of the axiom grammar is produced

Parsing Schemata
(Defining the Domain of Items)

- Uses the form:
 - $$[i, a?ß, j]T$$
 - $$(i, j)$$ are positions in the trail
 - $$a?ß$$ is the right-hand side of a grammar production where $$a$$ has been inserted
 - $$T$$ is a signature constraint

Description of First Algorithm

- Assumptions on specifications:
 - Signatures that use the $$[]$$ notation have to be expanded
 - Non-terminal elements can be used only once in all grammar rules
 - All filters must be labeled with the equivalence relation associated to the signature (Ex. Filter,$$_r$$(F) where $$?$$ is an equivalence relation)
Operators (Propag)

• Propag operator unifies the variables in the signature constraint with the values of an event (Definition 8)
 – Denoted as Propag(E, F, T)
 • E is an event
 • F is a filter
 • T is a signature constraint
 – This constraint is obtained by:
 • Copying F into F’ and removing all constraints with no variable in F
 • Substituting all field names of F according to E
 • Making the union of F’ and T

Operators (Restrict)

• The Restrict operator creates a new constraint which causes some paths in the search to be pruned (Definition 9)
 – Denoted as Restrict(?, T)
 • T is a valuation of a given signature S
 • ? is an equivalence relation
 • Defined as:

\[
\text{Restrict}(\rho, ?) = \text{case } \rho \text{ in } \begin{cases}
R(()) : \text{return } VALUE \\
R(T) : \text{return } T \\
R((T_1, T_2)) : \text{return } \bigvee_{i=1}^n \{ T_i \neq ?(T_i) \}
\end{cases}
\]

Operators (Constraint Comparison)

• =s compares signature constraints
 – Given a signature S and two signature constraints T_1 and T_2
 – T_1 =s T_2 iff the set of possible values for each element of Var(S) described by T_1 includes the one described by T_2

\[
\text{S} = \{ (\text{Seq}(A \star B), \theta), (\text{Seq}(A \star B), \theta) \} : \{ j \leq k \}
\]
Deduction Rules for Filters

- Rule **Filter 1** specifies that if event $T[i]$ cannot be used to match the filter, then the algorithm goes one step forward in the trail.

- Rule **Filter 2** handles the other case. The first item memorizes an instance of F found in position i. Propag takes into account that some variables can be instantiated here. The second item starts the search for a new instance of F in the remaining part of the trail. Can be more constrained than the one that produced this item according to the result provided by Restrict.

\[
\text{Filter 1: } \frac{\text{match}(T[i], F, \theta) = \text{false}}{\text{match}(T[i+1], F, \theta) = \text{false}}
\]

\[
\text{Filter 2: } \frac{\text{match}(T[i], F, \theta) = \text{true}}{\theta_1 = \text{Propag}(T[i], F, \theta) \quad \theta_2 = \theta_1 \setminus \{\text{restrict}(T[i])\}}
\]

Deduction Rules for Sequence

- Rule **Seq 1** starts the search for the first part of the sequence.

- Rule **Seq 2** shows that once an instance of the first part is found, that item is replaced to find the next item. The second item added starts the search for B.

\[
\text{Seq 1: } \frac{\text{match}(A \cdot B, \theta)}{\text{match}(A, \theta)}
\]

\[
\text{Seq 2: } \frac{\text{match}(A, \theta) = \text{true}}{\text{match}(B, \theta)}
\]

Deduction Rules for Sequence

- Rule **Seq 3** triggers once B is found:
 - Checks that B is found after A ($j = k$).
 - The constraint of the second part must refine the constraint of the first part.
 - Does not remove first item, because it may be needed later.
 - Second item added showing that it found an instance of Seq(AB).

\[
\text{Seq 3: } \frac{\text{match}(A \cdot B, \theta)}{\text{match}(A, \theta) \land \text{match}(B, \theta)}
\]

\[
\frac{\text{match}(A, \theta) = \text{true}}{\text{match}(A \cdot B, \theta) \land \text{match}(B, \theta) \land \theta_1 \land \theta_2}
\]

\[
\frac{\text{match}(A, \theta) = \text{true}}{\text{match}(A \cdot B, \theta) \land \text{match}(B, \theta) \land \theta_1 \land \theta_2 \land \text{match}(A, \theta)}
\]
Deduction Rules for Conjunction

- Rule And\(_1\) starts the search of both parts of the conjunction.
- Rule And\(_2\) states that when two parts of a conjunction are found, if their respective constraints are compatible, then a new item is created to notify that an instance of the conjunction is found.

\[
\text{And}_1: \bar{P}, \{\text{\textbullet}, \text{\textbullet}, (\bar{A}, \bar{B}), \bar{P}\} \\
\text{And}_2: \bar{P}, \{\text{\textbullet}, \text{\textbullet}, (\bar{A}, \bar{B}), \bar{P}\} \\
\]

Conclusion

- Described how to specify signatures with sequences and conjunctions of events correlated with logical variables.
- Presented a declarative semantics to these signatures.
- Introduced signature instance classes based on the valuation of variables of interest.
- Given a formal description of a detection algorithm.
- Parsing schemata makes it easy to understand and reason about while essential features are made explicit.