A Comparison and Combination of Theory Generation and Model Checking for Security Protocol Analysis

By Nicholas J. Hopper, Sanjit A. Seshia, Jeannette M. Wing

Presentation by: Heather Goldsby

Overview

• Tools
 – BRUTUS
 – RVChecker

• Protocols
 – Dolev-Yao
 – Tatabayeshi-Matsuzaki-Newman

• Combination

BRUTUS

• Model checker
• State-space analysis
• Covered by
 – Ali Ebnenasir
 – Zhenxiao Yang
RVChecker

• Theory generation
• Based on Belief Logics (BAN)
• Concept:
 – Finite representation of theory
 – Generated by set of rules and assumptions
 – Check for set membership

RVChecker

• Theory Generation Overview
 – Everything is finite, thus theory is finite
 – Starting with assumptions and messages
 – Apply only shrinking rules
 – To test whether formula is part of theory
 • Backwards chaining using growing rules

RVChecker

• RV logic
 – Extension of BAN
 • Explicit interpretation
 – Idealization step
 » Fail to consider other interpretations
 » Hidden assumptions about safety of message
 • Responsibility
 – Account for principal’s irresponsible behavior
RVChecker

• Explicit Interpretation
 – Allows for explicit idealization of the protocol
 – Interpretation must match pattern
 – M matches all or part of a concrete message
 – M’ represents its intended meaning

| P |= M | P |= Q |= M’ | P |= Q |= M’ |
|-------|-------------|-------------|
| P sees M, then P sees M’ | If P believes M, then P believes M’ | If P believes Q says M, then P believes Q says M’ |

• Responsibility
 – Honesty
 • Sending principal believes any interpretation of message they sent
 • Expressed through legit rules
 • Signed – any message encrypted under private or shared key is signed

| P |= Q |= M | Q |= signed(M, M_s, P, Q) |
|-------------|-------------|
| P |= Q |= M’ | Q |= legit(M) |
| If P believes Q said M, then P believes Q said M’ | If Q believes M’ and Q believes the message is signed, then Q believes M’ is legit |

• Responsibility
 – Secrecy
 • Safe for the intruder to see a message
 • Expressed through maysee rules

• P |= Q maysee (X, Y)
 P |= Q maysee X

• If P believes Q maysee (X, Y), then P believes Q maysee X
RVChecker

- Protocol Analysis & Theory Generation
 1. Specification supplied
 - messages, interpretation rules, principals, belief goals for the
 principals, initial assumptions
 2. Theory generation applied to assumptions
 3. For each message M_i, receiver R_i
 - formula $R_i \vdash M_i$ is added
 - Theory generation is re-applied
 4. Secrecy is checked
 5. Honesty is checked
 6. Each belief goal is checked for set inclusion

Tatabayeshi-Matsuzaki-Newman Protocol

1. $A \rightarrow S : [S.A.B.\{R_a\}_{K_S}]$
 - A sends a message to Server S consisting of S, A, B, and its
 session key R_a encrypted under K_S
 2. $S \rightarrow B : [B.S]$
 - Server S sends a message to principal B consisting of B, S
 3. $B \rightarrow S : [S.B.A.\{R_b\}_{K_S}]$
 - Principal B sends a message to server S consisting of S, B, A, and its
 session key R_b encrypted under K_S
 4. $S \rightarrow A : [A.S.B.R_a \oplus R_b]$
 - Server S sends a message to principal A consisting of A, S, B, and the
 exclusive or of the session key of A and the session key of B.

Protocol Flaws
- Secrecy
- Authentication
- Simmons

Dolev-Yao Protocol

1. $A \rightarrow B : [A.\{M\}_{K_B}.A]_{K_B.B}$
 - Principal A sends principal B a message consisting of A, M
 encrypted under key K_B, A, encrypted under key K_B, and B
 2. $B \rightarrow A : [B.\{M\}_{K_A}.B]_{K_A.A}$
 - Principal B sends principal A a message consisting of B, M
 encrypted under key K_A, B, encrypted under key K_A, and A

Protocol Flaws
- Secrecy
- Authentication
BRUTUS – Dolev-Yao analysis

- **INITIATOR** =
 - internal ("begin-initiate", b)
 - send \(<a, b, \{M\}_{Kb}, a\>\)
 - receive \(<b, a, \{M\}_{Ka}, b\>\)
 - internal ("end-initiate", b)

- **RESPONDER** =
 - receive \(<a, b, \{M\}_{Ka}, a\>\)
 - internal ("begin-respond", a)
 - send \(<b, a, \{M\}_{Kb}, b\>\)
 - internal ("end-respond", a)

BRUTUS – Dolev-Yao analysis

- **Secrecy**
 - Check property: \(\neg I \text{ Knows M}\)
 - BRUTUS catches error (property false)
 - B listens for 2 sessions
 - A initiates one session
 - A Intruder I B
 - Start(B, I, K(A, K(b, M)))
 - Send(B, I, K(B, K(A, K(b, M))))
 - Send(I, B, K(I, K(A, K(b, M))))
 - Send(I, B, K(I, K(b, M)))
 -Recv(B, I, K(I, K(b, M)))
 -Recv(B, I, K(I, K(b, M)))
 -Knows(M)

BRUTUS – Dolev-Yao analysis

- **Authentication**
 - Check properties:
 1. If A finishes initiating a message to B, B responded to this message at an earlier point in time
 2. If B finishes responding to a message from A, A initiated sending this message at an earlier point in time
 - BRUTUS catches error (property false)
 - More than 1 session
 - A Intruder I B
 - Start(A, I, K(A, K(b, M)))
 - Send(B, I, K(b, K(A, M)))
 - Receives(B, A, K(A, K(b, M)))
 - A thinks it is communicating with B while really it is communicating with I
 - B thinks it is communicating with I (it really is communicating with I)
RVChecker Dolev-Yao analysis

• Authentication
 – Desired belief goals
 - A ⊨ B ⊨ (A ⊨ M)
 - A believes B says that it is A who says M
 - B ⊨ A ⊨ M
 - B believes it is A who says M
 – RVChecker finds - beliefs are not in the protocol
 – Fixable by encryption

RVChecker Dolev-Yao analysis

• Secrecy
 – Flaw
 - comes from double encryption
 - Lack of authentication (shown on previous slide)
 – RVChecker does not find flaw

Comparison

<table>
<thead>
<tr>
<th>System</th>
<th>Dolev-Yao Auth</th>
<th>Dolev-Yao Secrecy</th>
<th>TMN Auth/Secrecy</th>
<th>TMN Simmons/Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVChecker</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BRUTUS</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>BRUTUS</th>
<th>RVChecker</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fully automated</td>
<td>- Fully automated</td>
</tr>
<tr>
<td>- State-space explosion</td>
<td>- High level</td>
</tr>
<tr>
<td>- Complicated counterexample</td>
<td>- Assumptions = attacks?</td>
</tr>
<tr>
<td>- Number of protocol sessions needed</td>
<td>- Conservative approach to security</td>
</tr>
<tr>
<td>- Considers all principals to be honest</td>
<td></td>
</tr>
</tbody>
</table>

How much previous knowledge of protocols is necessary?

Combination

Assumptions to Counterexamples
- RVChecker identifies assumptions
- Search for counterexamples using BRUTUS
 - For assumption held by A
 - If A believes something about its own behavior
 » Intruder plays role of A
 » Model extra sessions of other principals
 - If A believes something about principal B
 » Intruder plays role of B
 » Model extra sessions of A

Counterexamples to Assumptions
- BRUTUS identifies counter examples
- RVChecker then isolates assumptions
 - Model entire counter example trace as a protocol
 - Add assumptions until goal properties satisfied
 - Find assumptions about I playing the role of Q
 - Indicate assumptions made about Q
 - Discovers how I subverted the protocol
Combination – Dolev-Yao

A
Init(b)
Send(A,B,Kb(A,Kb(M)))

Intruder I

B
Send(B,I,Kb(I,Kb(M)))
Recv(I,B,Kb(I,Kb(M)))
Send(I,B,Kb(I,Kb(M)))
Recv(I,B,Kb(I,Kb(M)))
Send(I,B,Kb(I,Kb(M)))
Recv(I,B,Kb(I,Kb(M)))
knows(M)

Recv(B,A,Ka(B,Ka(M)))

Combination Dolev-Yao

• Counterexamples to Assumptions
 – New assumptions necessary
 • I |¬ I may see M
 • I |¬ B may see M
 • B |¬ I may see M
 – Shows B must believe it is ok for the Intruder to see message M

References

RV logic – Legit Rules

- \(P \vdash Q \Rightarrow M \quad P \vdash Q \Rightarrow M' \)
- If \(P \) believes \(Q \) says \(M \), then \(P \) believes \(Q \) says \(M' \)

- \(P \vdash M \quad P \vdash M' \)
- If \(P \) sees \(M \), then \(P \) sees \(M' \)

- \(Q \vdash M' \quad Q \vdash \text{signed}(M, P, Q) \)
- If \(Q \) believes \(M' \) and \(Q \) believes the message is signed, then \(Q \) believes \(M \)

- \(Q \vdash M' \quad Q \vdash \text{legit}(M) \)
- If \(Q \) believes \(M' \), then \(Q \) believes \(M \) is legit

RV logic – maysee rules

- \(P \vdash Q \Rightarrow R \quad P \vdash \text{maysee} K \)
- If \(P \) sees \(K \), the shared key of \(Q \) and \(R \), then \(P \) believes \(Q \) maysee \(K \)

- \(P \vdash \text{maysee} Y \quad P \vdash \text{maysee} X \)
- If \(P \) sees \(Q \) maysee, then \(P \) believes \(Q \) maysee \(Y \)

- \(P \vdash \text{maysee}(X, Y) \quad P \vdash \text{maysee} X \)
- If \(P \) believes \(Q \) maysee \((X, Y) \), then \(P \) believes \(Q \) maysee \(X \)

- \(P \vdash \text{maysee} X \quad P \vdash \text{maysee} \{X\} \quad K \)
- If \(P \) believes \(Q \) maysee \(X \) and \(P \) believes \(Q \) maysee \(X \) encrypted under key \(K \), then \(P \) believes \(Z \) maysee \(X \) encrypted under key \(K \)
RVChecker

- **Finite Model**
 - Finite number of entities
 - Parties communicating
 - Messages exchanged
 - Types of messages
 - Encryption and decryption keys
 - Finite number of rules of inference
 - Grow in a controlled manner

- **Inference Rules**
 - S-rules (shrinking rules)
 - Conclusion same size or smaller than premises
 - Each variable in conclusion occurs in premises
 - E.g.
 - G-rules (growing rules)
 - Conclusion larger than each premise
 - Each variable in conclusion occurs in premises
 - E.g.
 - Rewrites (same size)
 - A pair of formulas f_1, f_2
 - Any occurrence of f_1 can be replaced with f_2
 - f_1, f_2 are the same size and have the same variables
 - E.g.

- **Theory Generation**
 - Modeled as directed a cyclical graph
 - Roots: assumptions and messages
 - 1. Apply S-rules to generate new formulas
 - Can apply G or R rules to generate premises for S-rules
 - 2. Show completeness
 - Backwards chaining with G-Rules & R-rules
BRUTUS - TMN analysis

- INITIATOR =
 internal ("begin-initiate", B)
 send <A,S,B,(R_a)K_s>
 receive <S,A,b,(R_b)K_s>
 internal ("end-initiate", b)

- RESPONDER =
 receive <S,B,a>
 internal/"begin-respond", a)
 send <B,S,a,(R_b)K_s>
 internal ("end-respond", a)

- SERVER =
 receive <A,S,B,(R_a)K_s>
 internal ("begin-initiate", b)
 send <B,S,a,(R_b)K_s>
 receive <b,S,a,(R_a)K_s>
 internal ("begin-respond", a)
 send <S,b,(R_b)K_s>
 initiate ("end-respond", a)

NOTE: The authentication property is not shown for this protocol because it is the same as the Dolev-Yao protocol. BRUTUS catches the error.

BRUTUS – TMN analysis

- Secrecy
 - Check properties
 - ¬(I Knows N_B)
 - I cannot read messages passed between A and B
 - ¬(I Knows N_B) ∧ ¬(I Knows N_A)
 - I cannot masquerade as S while communicating with A
 - BRUTUS catches error (both properties false)
 - 2 sessions

BRUTUS – TMN analysis

- Intruder IS B
 - Init(B)
 - Send(A,S,B,(R_a)K_s)
 - recv(A,S,B,(R_a)K_s)
 - send(B,A)
 - know(B)
 - recv(B,I,A,(R_b)K_i)
 - know(B)
 - send(U,I,A,(R_i)K_i)
 - recv(U,S,A,(R_i)K_i)
 - send(U,A,I)
 - recv(S,I,A,(R_i)K_i)
 - send(S,A,I)
 - recv(S,I,A,(R_i)K_i)
 - send(S,I,A,(R_i)K_i)
 - recv(S,I,A,(R_i)K_i)
 - send(S,I,A,(R_i)K_i)
 - recv(S,I,A,(R_i)K_i)
RVChecker – TMN analysis

- Authentication
- Desired belief goals
 - $A \models A \leftarrow Rb \rightarrow B$
 - $B \models A \leftarrow Rb \rightarrow B$
 - $A \models B \models A \leftarrow Rb \rightarrow B$
 - $B \models A \models A \leftarrow Rb \rightarrow B$
- RVChecker finds - beliefs are not in the protocol