Spi Calculus

Gokhan Gokoz
Chad R. Meiners

What Spi Calculus Is

- Spi calculus is a form of pi calculus extended to support cryptography.
- Pi calculus is a language for describing and implementing concurrent processes over communication channels.
- Pi calculus is designed to have a concise description when compared to CSP.
- Spi calculus adds operators to perform symmetric cryptography.

How Pi and Spi Calculus is used

to verify security properties of protocols.
- Authenticity
 - Is the implementation equivalent to the specification?
- Secrecy
 - Can an external process distinguish one instance from another?
Basic Facilities of Pi Calculus

- **Process**: A system is constructed out of a set of concurrent processes.
- **Scope**: Variables and channels may be restricted to certain processes or they may be global.
- **Channel**: Processes communicate and synchronize with each other via channels.

Scope Extrusion

- Channels may be placed as messages on channels.
- Allows for scope restricted channel to be used outside of its original scope.
- Allows dataflow analysis.
- Spi calculus adds encryption operators.

Pi Grammar

Pi calculus has four types of objects:
- **Names**: channels.
 - represented as \(m, n, p, q \), and \(r \).
- **Variables**:
 - represented as \(x, y, \) and \(z \).
- **Terms**: objects in Pi calculus.
 - represented as \(L, M, N \).
- **Processes**:
 - represented as \(P, Q, \) and \(R \).
Terms

A term can be one of the following five forms:

• n: the name of a channel
• (M, N): a pair of terms.
• 0: the number zero.
• $\text{su}(M)$: the successor of M.
• x: a variable.

Process Primitives

• 0: Is the nil process.
• $P | Q$: Is the process composition operator.
• $!P$: Is the process replication operator

Examples:

$A := 0$: A is the nil process
$B := !A | C$: B is an infinite number of A in parallel with C.

Process communication

• $M < N > P$
 – communicate message N on channel M
 – becomes P.
• $M(x).P$
 – block until it receives a message N from channel M
 – P where all occurrences of x in P are replaced by N
 – (We abbreviate such replacements with $P[N/x]$)

Examples:

$A := c<\emptyset >.0$: A sends nil on c and becomes nil.
$B := c(x).0$: B received x on c and becomes nil.
Process Decisions

- \([M \text{ is } N]P \)
 - \(P \) if \(M=N \)
 - else 0

- let \((x,y) = M \text{ in } P\)
 - \(P[N;x][Ly] \) when \(M=(N,L) \)
 - otherwise 0

- case \(M \) is 0 : \(P \) suc(\(x \)) : \(Q \)
 - \(P \) when \(M=0 \)
 - \(Q[N;x] \) if \(M=\text{suc}(N) \)
 - 0 if \(M \) is not an integer.

Process Decisions

Examples:
- \(A(M,N) := [M,N]B \)
 - \(A \) is \(B \) if \(M=N \); otherwise, \(A \) is 0.

- \(B(M) := \text{let } (x,y) = M \text{ in } A(x,y) \)
 - \(B \) is \(A(x,y) \) if \(M \) is a pair; otherwise, \(B \) is 0.

- \(C(M) := \text{case } M \text{ is 0 : } 0 \text{ suc}(\(x \)) : \text{C}(\(x \)) \)
 - \(C \) is 0 when \(M=0 \)
 - \(C \) is \(C(M-1) \) when \(M > 0 \)
 - \(C \) is 0 if \(M \notin \mathbb{N} \)

Process Scope and Extrusion

- \((n)P\)
 - \(P \) with the name \(n \) bound to \(P \)'s scope.

Example:
\(A(M) := (v \epsilon^0) <e <^c [\epsilon^0] <M >.0 \)
 - Send private channel \(e^c \) on \(c^e \) then become nil.

\(B := e^c(x).x(y).0 \)
 - Receive channel \(x \) on \(c^e \) then receive \(y \) on \(x \) then become 0.

\(C := (v \epsilon^0)(A(M) \mid B) \)
 - \(C \) is \(A \) in parallel with \(B \). Channel \(c^e \) is only in \(A \)'s and \(B \)'s scope.
Spi Calculus Extensions

- \([M]_N \): term representing the message “\(M \) encrypted with the key \(N \).”
- **case** \(L \) of \(\{x\}_N \) in \(P : P[M/x] \) provided that \(L = [M]_N \) otherwise it is \(0 \).

Examples:

- \(A(M) := c^e[M] \) : \(0 \)
 - \(A \) sends \(M \) encrypted with \(k \) on \(c^e \) and then becomes nil.
- \(B := c^e(y).\text{case } x \text{ of } \{x\}_k \text{ in } F(x) \)
 - \(B \) receives \(y \) on \(c^e \) and decrypts \(y \) into \(x \) using \(k \). \(B \) then become \(F(x) \).
- \(C(M) := (\forall e^d)k(A(M) | B) \)
 - \(C \) is \(A \) and \(B \) with channel \(c^e \) and key \(k \).

Process Equivalence

- In Pi Calculus, we write \(P = Q \) iff \(P \) and \(Q \) are indistinguishable to a separate process \(R \).
- In Spi Calculus we write \(P(M) = P(M') \) iff given the two process instances a separate process \(R \) cannot tell which instance is the instance of \(M \) and which the instance of \(M' \).

Pi Calculus Example

Message 1: \(A \to B : M \) on \(e^{ch} \)

\[
\begin{align*}
A(M) & := e^{ch} < M > \\
B & := e^{ch}(x).F(x) \\
Inst(M) & := (\forall e^{ch})(A(M) | B)
\end{align*}
\]

- Principal \(A \) sends message \(M \) on channel \(e^{ch} \) to principal \(B \).
- \(e^{ch} \) is restricted, only \(A \) and \(B \) have access to \(e^{ch} \).
- \(Inst(M) \) is one instance of the protocol.
Pi Calculus Example (cont.)

- Specification:
 \[A(M) := c(ab) < M > \]
 \[B_{spe}(M) := c(ab)(x).F(M) \]
 \[Inst_{spe}(M) := (ve^{ab})(A(M) \parallel B_{spe}(M)) \]
- Difference between protocol and specification:
 \(B_{spe}(M) \) is a variant, which receives input from \(A \) and acts like \(B \) when \(B \) receives \(M \).

Security Properties

- Authenticity property:
 \(Inst(M) = Inst_{spe}(M) \), for all \(M \).
 The protocol with message \(M \) is indistinguishable from the specification with message \(M \), for all messages \(M \).
- Secrecy property:
 \(Inst(M) = Inst(M') \) if \(F(M) = F(M') \), for all \(M, M' \).
 If \(F(M) \) is indistinguishable from \(F(M') \), then the protocol with message \(M \) is indistinguishable from the protocol with message \(M' \).
 - These security properties hold because of the restriction on the channel \(c^{ab} \).

Channel Establishment Example

- Abstract and simplified version of the Wide Mouthed Frog protocol
- proposed by Michael Burrows in 1989
- passes a restricted channel from \(A \) to \(B \) via restricted channels to \(S \).
Channel Establishment Example (cont.)

- channels instead of the keys
- channel establishment and data communication happen only once

Message 1: $A \rightarrow S$: \(c^{ab} \) on \(c^{as} \)
Message 2: $S \rightarrow B$: \(c^{ab} \) on \(c^{sb} \)
Message 3: $A \rightarrow B$: M on \(c^{ab} \)

Protocol Implementation

- $A(M) := (v_{c^{ab}})^{cs} (c_{as}^{ab} M)$
 - A sends channel \(c^{ab} \) over \(c^{as} \) then sends M over \(c^{sb} \).
- $S := c^{as}(x) (c_{sb}^{ab} x)$
 - S forwards x from c^{as} to c^{sb}.
- $B := c^{sb}(x) x (y) F(x)$
 - B receives channel x on \(c^{sb} \) and receives y on x.
- $Inst(M) := (v_{c^{as}})(v_{c^{sb}}) (A(M) \mid S \mid B)$
 - $Inst$ is the composition of A, S and B.

Specification

In the specification, $A(M)$ and S are same as above,

- $B_{spec}(M) := c^{sb}(x) x (y) F(M)$
 - Here B_{spec} is similar to B except it knows what M is already for authenticity checking.
- $Inst(M)_{spec} := (v_{c^{as}})(v_{c^{sb}}) (A(M) \mid S \mid B_{spec}(M))$

The authenticity and secrecy properties hold.
Spi Calculus Example

Same as the first Pi example except that a key is used to insure secrecy.

• Message 1: A→B: \{M\}_{ab} on c^{ab}
 - A(M) := c^{ab} \langle {M} \rangle_{ab} >
 • A sends a shared key encrypted message M on c^{ab}.
 - B := c^{ab}(x).\text{case } x \text{ of } y |_{ab} \text{ in } F(y)
 • B decrypts x into y.
 - \text{Inst}(M) := (v k_{ab})(A(M) \mid B)
 • The key k^{ab} is restricted to only A and B.

Spi Example Specification

Specification:
• A(M) := c^{ab} \langle {M} \rangle_{ab} >
• B_{spec}(M) := c^{ab}(x).\text{case } x \text{ of } y |_{ab} \text{ in } F(M)
• \text{Inst}_{spec}(M) := (v k^{ab})(A(M) \mid B_{spec}(M))

Authenticity and secrecy properties are confirmed under a coarse-grained equivalence since an observer can definitely distinguish between P(M) and P(M').

Key establishment in Spi Calculus

• Same as the Pi frog protocol with key used instead of restricted channels.

1. new key k^{as} under k^{a}
2. new key k^{sb} under k^{b}
3. Data under new key k^{as}

Message 1: A→S: \{k^{as}\}_{as} on c^{as}
Message 2: S→B: \{k^{sb}\}_{sb} on c^{sb}
Message 3: A→B: \{M\}_{ab} on c^{ab}
Protocol

- $A(M) := (vk)_{\{k\}} \cdot (vk)_{\{M\}}$
 - A sends a key k^a to the server S and uses k^a to encrypt M to send to B.
- $S := (vk)_{\{x\}} \cdot \text{case } x \text{ of } \{y\} \cdot \text{in } (vk)_{\{y\}}$
 - S forwards the key contained in x via the shared key k^a.
- $B := (vk)_{\{x\}} \cdot \text{case } x \text{ of } \{y\} \cdot \text{in } (vk)_{\{y\}} \cdot \text{case } z \text{ of } \{w\} \cdot \text{in } F(w)$
 - B receives and decrypts the key in x then uses that key to get the message w.
- $\text{Inst}(M) := (vk)_{\{k\}} \cdot (vk)_{\{A(M) \mid S \mid B\}}$

Specification

- Principals $A(M)$ and S are the same as in the protocol;
 - $B_{\text{spec}}(M) := (vk)_{\{x\}} \cdot \text{case } x \text{ of } \{y\} \cdot \text{in } (vk)_{\{y\}} \cdot \text{case } z \text{ of } \{w\} \cdot \text{in } F(M)$
 - $\text{Inst}_{\text{spec}}(M) := (vk)_{\{k\}} \cdot (vk)_{\{A(M) \mid S \mid B_{\text{spec}}(M)\}}$
- The specification is more complex than the protocol but $B_{\text{spec}}(M)$ applies F only to the data from A and not to a message resulting from an attack or error.

Complete Authentication

Example (with a flaw)

- A server and n other principals
- Each principal’s input channels are public and are named as c^1, c^2, \ldots, c^n.
- Server shares a pair of keys with each other principal, k^n and k^a.
- Message sequence:
 - Message 1: $A \rightarrow S: A, [B, k^{ab}]_{k^a}$ on c^n
 - Message 2: $S \rightarrow B: [A, k^{ab}]_{k^a}$ on c^n
 - Message 3: $A \rightarrow B: A, [M]_{k^b}$ on c^n
Instance of the protocol

- We have two principals (A and B) and the message sent after key establishment.
- Instance I is a triple (i,j,M) where
 i: source address, j: destination address
- Send(i,j,M) := (vk(ck < (i, j, k)ks > c < (i, M)ks >))
- Recv(j) := c(ycipher).case y_cipher of {xa, x_key}ks in c(z_cipher) x_a is za case z_cipher of {z_cipher}ks in F(xa, za, z_cipher)

Instance of the protocol

(Sending)

- Send(i,j,M) := (vk(ck < (i, j, k)ks > c < (i, M)ks >))
 - Creates a key k, sends to the server along with the names i and j of the principals of the instance.
 - Sends M under k with its name j.

Instance of the protocol

(Receiving)

- Recv(j) := c(y_cipher).case y_cipher of {xa, x_key}ks in c(z_cipher) x_a is za case z_cipher of {z_cipher}ks in F(xa, za, z_cipher)
 - Waits for a message y_cipher, from server, extracts x_key from this message
 - Then waits for a message z_cipher under this key
 - At the end applies F to the name x_a of the presumed sender, j and to z_cipher of the message.
Server

The server S is the same for all instances:

\[S := c(x_a, x_{cipher}) \]
\[\Pi_{i \in 1..n} \{ x \text{ is } i \} \text{ case } x_{cipher} \text{ of } \{ x_i, x_{cipher} \} \text{ in } \]
\[\Pi_{i \in 1..n} \{ x \text{ is } i \} \notin \{ x_i, x_{cipher} \} \text{ end } \]

S receives a key that selects the correct branch to forward the key to the correct j.

\[\Pi_{i \in 1..k} P_i \text{ is the k-way composition } P_1 | \ldots | P_k \]

Whole System

\[\text{Sys}(I_1, \ldots, I_m) := (vk^S)(vk^S) \]
\[(\text{Send}(I_1) \ldots \text{Send}(I_m)) \]
\[!S \]
\[!\text{Recv}(1) \ldots !\text{Recv}(n) \]

- Where $(vk^S)(vk^S)$ stands for $(vk^{i_1}) \ldots (vk^{i_m})$
- $(vk^{i_1}) \ldots (vk^{i_m})$ and $\text{Sys}(I_1, \ldots, I_m)$ represents a system with m instances of the protocol.

The Flaw

- The protocol is vulnerable to a replay attack.
- System: $\text{Sys}(I, I')$ where $I = (i, j, M), I' = (i, j, M')$
- An attacker can replay messages of one instance and get them mistaken for messages of the other instance.
- So M will be passed to F twice and $\text{Sys}(I, I')$ could execute two copies of $F(I, M)$ although $\text{Sys}(I, I')$ can run F for both instances $F(I, M)$ and $F(I', M')$ only once.
- Therefore the authenticity equation doesn’t hold.

$\text{Inst}(M) = \text{Inst}_{seq}(M)$, for all M.
Complete Authentication Example (repaired)

• To protect previous protocol against replay attacks, nonce handshakes (tag in the message to authenticate the sender) are added.
• The new protocol, informally looks like:
 – Message 1: $A \rightarrow S: A$ on c
 – Message 2: $S \rightarrow A: N_s$ on c
 – Message 3: $A \rightarrow S: A|A.A.B.k^s.s_{N_s}$ on c
 – Message 4: $S \rightarrow B: *$ on c
 – Message 5: $B \rightarrow S: N_b$ on c
 – Message 6: $S \rightarrow B: \{S.A.B.k^s.s_{N_b}\}$ on c
 – Message 7: $A \rightarrow B: A.(M |s_{N_b})$ on c
• See Appendix for implementation.

What we get with Spi Calculus?

• Protocols in Spi Calculus are tedious.
• Good for proofing authenticity and secrecy.
• The scope of errors that it can find are limited though
• Spi Calculus is not as general as other logics, but this lack of generality allows us more confidence in the properties we can prove.

Tool Support

• Spi Calculus does not have any direct tool support.
• Security proprieties must be proven by humans.
• There is however a protocol language Cryptc that is based on Spi Calculus.
Cryptc

- Redefines Spi calculus’s grammar
- Adds protocol beginnings and endings
- Protocols are considered secure if every protocol ending has a distinct beginning.
- Cryptc performs an exhaustive search for paths that generate an end without a begin.

Online References

- A Calculus for Cryptographic Protocols: The Spi Calculus
 Martin Abadi and Andrew D. Gordon
 Digital SRC Research Report 149
 January 25, 1998
 http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-149.html

- Authenticity by Typing for Security Protocols
 A.D. Gordon and A.S.A. Jeffrey
- The Cryptc webpage:
 http://cryptc.cs.depaul.edu/intro.html
Appendix : Corrected Protocol

\[\text{Send}(i,j,M) := \langle i \rangle | \]
\[c(s_{\text{nonce}}) \]
\[(v_k) \langle j \rangle (l_k k_v x_{\text{nonce}_{k_v}}) \cong \langle i \rangle \langle M \rangle | \]
\[S := c(s_{\text{nonce}}) P_{\text{init}} \left[x_{\text{is}} \cong \langle i \rangle \right] \]
\[c(x_{\text{nonce}}) \left[x_{\text{is}} \cong \langle i \rangle \right] \]
\[\text{case } \text{cipher of } \left[y_{\text{is}}, x_k, y_{\text{nonce}} \right] \text{ in } \]
\[P_{\text{init}}, x_{\text{is}} \cong \langle i \rangle \left[x_{\text{is}} \cong \langle i \rangle \right] \left[y_{\text{nonce}} \cong N_j \right] \]
\[\langle i \rangle \cong \langle N_j \rangle \left[c_j (y_{\text{nonce}}) \cong \langle i \rangle \langle M \rangle \rangle \right] \]

\[\text{Recv}(j) := c(w) \left[v_{N_j} \langle N_j \rangle \cong \langle i \rangle \right] \]
\[c(y_{\text{nonce}}) \left[x_{\text{is}} \cong \langle i \rangle \right] \]
\[\text{case } \text{cipher of } \left[y_{\text{is}}, x_k, y_{\text{nonce}} \right] \text{ in } \]
\[P_{\text{init}}, x_{\text{is}} \cong \langle i \rangle \left[x_{\text{is}} \cong \langle i \rangle \right] \left[y_{\text{nonce}} \cong N_j \right] \]
\[c(x_{\text{nonce}}) \left[x_{\text{is}} \cong \langle i \rangle \right] \]
\[\text{case } \text{cipher of } \left[z_{\text{is}}, x_{\text{nonce}} \right] \text{ in } \]
\[F(k_{\text{nonce}}, l_{\text{plain}}) \]

\[\text{Sys}(I_1, \ldots, I_m) := (v_k) (v_{N_k}) \]
\[(\text{Send}(I_1) \ldots \text{Send}(I_m) | \]
\[\text{IS} | \]
\[!\text{Recv}(I_1) \ldots !\text{Recv}(n)) \]

• Authenticity:
\[\text{Sys}(I_1, \ldots, I_m) = \text{Sys}_{\text{spec}}(I_1, \ldots, I_m) \text{ for any} \]
\[\text{instances } I_1, \ldots, I_m. \]
\[\text{This property holds because of the nonces.} \]

• Secrecy:
\[\text{Sys}(I_1, \ldots, I_m) = \text{Sys}_{\text{spec}}(I_1, \ldots, I_m) \text{ if each pair} \]
\[(I_j, I_j), \ldots, (I_m, I_m) \text{ is indistinguishable.} \]