Use Cases and Scenarios

We Will Cover
- What is a use-case
 - Use-case versus user interaction
- Use-Case diagrams
 - The constructs in the use-case diagrams
- Capturing the use-case
 - High-level use-case
 - Extended use-case
 - Difference between use case and scenario

What is a Use-Case
- A use-case captures some user visible function
- This may be a large or small function
 - Depends on the level of detail in your modeling effort
- A use-case achieves a discrete goal for the user
- Examples
 - Format a document
 - Request an elevator
- How are the use cases found (captured or elicited)?

User Goals versus User Interactions
- Consider the following when formatting a document
 - Define a style
 - Change a style
 - Copy a style from one document to the next
 - versus
 - Format a document
 - Ensure consistent formatting of two documents
- The latter is a user goal
 - Something the user wants to achieve
- The former are user interactions
 - Things the user does to the system to achieve the goal

Goals and Interactions
- There is a place for both goals and interactions
- Understand what the system shall do
 - Capture the user goals
- Understand how the user will achieve the goals
 - Capture user interactions
 - Sequences of user interactions
- Thus, start with the user goals and then refine the user goals into several (many) user interactions

Use-Case Diagrams (POST)

POST: Point of Sale Terminal
- System Boundary
- POST
- User Case
- Cashier
- Log In
- Customer
- Buy Item
- Refund a Purchased Item

Adapted from Leaner, Applying UML and Patterns.
Another Example

Includes and Extends

Includes
- You have a piece of behavior that is similar across many use cases
- Break this out as a separate use-case and let the others "include" it
- Examples include
 - Valuation
 - Validate user interaction
 - Safely check on sensor inputs
 - Check for proper authorization

Extends
- A use-case is similar to another one but does a little bit more
- Put the normal behavior in one use-case and the exceptional behavior somewhere else
- Try to figure out what can go wrong in each step
- Capture the exceptional cases in separate use-cases
- Makes it a lot easier to understand

Setting the System Boundary

A Different Boundary

- The system boundary will affect your actors and use-cases

- Let us view the whole store as our system
Embedded System “Onion Skin”

- Perception/Action
- Sensors/Actuators
- Interfaces
- System

Partial POST

POST Use-Case

Use case: Buy Item
Actors: Customer (initiator), Cashier
Type: Primary
Description: The Customer arrives at the checkout with items to purchase. The Cashier records the purchase items and collects a payment. On completion the Customer leaves with the items

POST Expanded Use-Case

Use case: Buy Item
Actors: Customer (initiator), Cashier
Type: Primary and essential
Description: The Customer arrives at the checkout with items to purchase. The Cashier records the purchase items and collects a payment. On completion the Customer leaves with the items.
Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Cashier must have completed the Log In use-case

Typical Course of Events

Actor Action
- This use-case begins when a user arrives at the checkout
- The cashier records purchase items
- The cashier collects payment
- The user leaves with items

The Home Heating System
Home Heating Use-Case Diagram

Home Heating

- Power Up
- Power Down
- Change Temp.

Home Owner

Modified Home Heating

Home Heating

- Power Up
- Power Down
- Adjust Temp.
- Change Temp.

Home Owner

Modified: Home Heating Use-Cases

Use case: Power Up
Actors: Home Owner (initiator)
Type: Primary and essential
Description: The Home Owner turns the power on. Each room is temperature checked. If a room is below the desired temperature the valve for the room is opened, the water pump started. If the water temp falls below threshold, the fuel valve is opened, and the burner ignited. If the temperature in all rooms is above the desired temperature, no actions are taken.
Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: None

Modified: Home Heating Use-Cases

Use case: Power Up
Actors: Home Owner (initiator)
Type: Primary and essential
Description: The Home Owner turns the power on. Perform Adjust Temp. If the temperature in all rooms is above the desired temperature, no actions are taken.
Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Perform Adjust Temp

Modified: Home Heating Use-Cases

Use case: Adjust Temp
Actors: System (initiator)
Type: Secondary and essential
Description: Check the temperature in each room. For each room: Below target: Perform Temp Low Above target: Perform Temp High
Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Temp Low, Temp High

Modified: Home Heating Use-Cases

Use case: Temp Low
Actors: System (initiator)
Type: Secondary and essential
Description: Open room valve, start pump if not started. If water temp falls below threshold, open fuel valve and ignite burner.
Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: None
HACS

- Homework assignment and collection are an integral part of any educational system. Today, this task is performed manually. What we want the homework assignment distribution and collection system (HACS for short) to do is to automate this process.
- HACS will be used by the instructor to distribute the homework assignments, review the students' solutions, distribute suggested solution, and distribute student grades on each assignment.
- HACS shall also help the students by automatically distributing the assignments to the students, provide a facility where the students can submit their solutions, remind the students when an assignment is almost due, remind the students when an assignment is overdue.

HACS Use-Cases

Use case: Distribute Assignments

Actors: Instructor (initiator)

Type: Primary and essential

Description: The Instructor completes an assignment and submits it to the system. The instructor will also submit the due date and the class the assignment is assigned for.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: Configure HACS must be done before any user (Instructor or Student) can use HACS

Alternate HACS
Alternate HACS Use-Cases

Use case: Distribute Assignments
Actors: Instructor (initiator), Student
Type: Primary and essential
Description: The Instructor completes an assignment and submits it to the system. The instructor will also submit the delivery date, due date, and the class the assignment is assigned for. The system will at the due date mail the assignment to the student.
Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Configure HACS must be done before any user (Instructor or Student) can use HACS

When to use Use-Cases

- In short, always!!!
- Requirements is the toughest part of software development
 - Use-Cases is a powerful tool to understand
 - Who your users are (including interacting systems)
 - What functions the system shall provide
 - How these functions work at a high level
- Spend adequate time on requirements and in the elaboration phase

How it Fits Together

- **Preliminary Investigation Report**
- **Prototypes**
- **Budget, Schedule**
- **Use-Cases**
 - All High Level
 - Some Expanded
- **Use-Case Diagram**
- **Draft Conceptual Model**
- **Glossary (data dictionary)**