Requirements Analysis Document

Sean Albright, Dong Kang, Doug Elkins, Homan Law.

Adaptive Cruise Control (ACC)
ACC Group 4

October 19, 2001
Contents

1 Introduction .. 3
 1.1 Problem Description .. 3
 1.2 Motivation .. 3

2 Overview .. 4

3 Requirements .. 4
 3.1 Radar Information .. 4
 3.2 Vehicle Information .. 5
 3.3 Adaptive Cruise Control System Information .. 5

4 UML Analysis .. 6
 4.1 Use Cases .. 6
 4.2 Use Cases .. 7
 4.3 Use Cases .. 7
 4.4 Use Cases .. 8
 4.5 Use Cases .. 8
 4.6 Use Cases .. 9
 4.7 Object Model .. 9
 4.7.1 Class Overview .. 10
 4.7.2 Data Dictionary .. 10
 4.8 Dynamic Model .. 13
 4.8.1 State Diagrams .. 13
 4.8.2 Sequence Diagrams .. 18
1 Introduction

At least one person dies in a crash every minute on average. There are 30 or more deaths across the globe. The drivers in these accidents were unable to stop their vehicles in time to prevent a rear-end collision. Air bags and seat belts save ten thousands of people. However, the best solution for preventing a rear-end collision is to keep cars from smacking into each other. Adaptive Cruise Control (ACC) is used to alert the drivers to traffic ahead.

Our ACC simulation can be found in http://www.cse.msu.edu/~cse470/F01/Projects/ACC/ACC4/web/Prototype/index.html. It can show how ACC works with the driver, radar, cruise control system, engine control module and the braking system of the vehicle. Also, this document includes the use case diagram, object model and dynamic model that can show how those components react with each other. Hence, it can give you a clear idea about the Adaptive Cruise Control in a vehicle.

1.1 Problem Description

Car collisions injure over 10 million people per year worldwide. One approach to collision avoidance is to measure the clear distance ahead of a car with radar, and apply brakes if the car will come within an unsafe distance of the lead vehicle. Typically, these systems are linked with the cruise control and automatic speed control systems in the car to hold the car at or below the minimum of the leading vehicle speed and the speed being commanded by the driver or cruise control.

1.2 Motivation

In 1999, more than 6 million crashes occurred on U.S. highways, killing over 41,000 people and injuring nearly 3.4 million others. Rear-end collisions accounted for almost one-third of these crashes (1.848 million) and 11.8 percent of multivehicle fatal crashes (1,923). Regardless of the individual circumstances, the drivers in these accidents were unable to detect slowed or stopped traffic and to stop their vehicles in time to prevent a rear-end collision. Hence, the ultimate solution, and the only one that save far more lives, limbs, and money, is to keep cars from smashing into each other in the first place. The technology to alert drivers to traffic ahead is the Adaptive Cruise Control (ACC).

Adaptive Cruise Control (ACC), like conventional cruise control, maintains the driver's desired speed. However, it will also adapt the vehicle speed to follow a slower vehicle ahead, and resume when the vehicle is no longer ahead. ACC informs the driver about its operation and will apply limited braking when required.

Toyota became the first to introduce an ACC system on a production vehicle when it unveiled a laser-based system for its luxury sedan sold in Japan. Later, Nissan, Jaguar, General Motors and Ford followed suit with a radar-based system.

In this document, we are going to tell how the radar-based ACC system works according to our simulation. We use radar-based system instead of laser-based system due to the poor performance of laser in rain and snow conditions. Also, this document can tell how the ACC system interacts with the driver, radar, cruise control system, engine control module and the braking system of a vehicle.
2 Overview

Adaptive cruise control system uses traditional cruise control switches and enhanced displays showing the vehicle ahead. The system is alike to conventional cruise control in that it maintains the vehicle’s pre-set speed. However, the added benefit is that it automatically adjusts the speed to maintain a proper headway between vehicles in the same lane. This is achieved through a radar headway sensor, digital signal processor, and longitudinal controller.

This ACC system uses the vehicle speed set by the driver as an upper limit for controlling the host vehicle’s speed automatically so it can maintain a certain desired distance from a vehicle ahead. The driver can set the speed at any arbitrary level between 50 and 100 km/h, and the headway distance to a forward vehicle can be set at three different levels.

The ACC system measures the distance to a former vehicle and the relative velocity of the vehicles, based on information obtained by a microwave radar installed at the front of the host vehicle. It uses the data and automatically controls the host vehicle’s speed by activating the throttle actuator or the brake actuators in order to maintain the set distance between the two vehicles. The microwave radar unit transmits a wave pulse and computes the distance to a forward object from the time it takes for the reflected wave to be received. The relative speed is calculated from the difference in frequency between the transmitted and reflected waves.

In the event a preceding vehicle decelerates or another vehicle cuts in front of the host vehicle so that the headway distance is shorter than the value set by the driver, the ACC system automatically closes the throttle valve to decelerate the host vehicle until it returns to the preset distance. When the situation necessitates even greater deceleration, the system also automatically applies the brakes. Once the headway distance becomes longer than the set distance, as a result of the preceding vehicle or the host vehicle changing lanes, for example, the ACC system automatically opens the throttle valve and accelerates the host vehicle gradually until the set distance is reached. Then, it acts again to maintain the desired headway distance to preceding traffic.

The driver can override the operation of the ACC system by braking or accelerating the vehicle manually. Braking overrides the system at any time if the braking force from the driver is greater than that of the system. In this case, the control system is released and precedence is given to the driver’s action. When the lead vehicle changes lanes or exits and the road is clear, the ACC will accelerate to the set speed.

3 Requirements

3.1 Radar Information

The radar serves as a peripheral source of information for the ACC system. Primarily, it obtains information pertaining to the lead car in relation to the host vehicle. The information obtained is limited to the range of the radar (500 ft.), and consists of the following:

- A "lead vehicle detected" signal
 This signal is sent when a lead car is detected within 400 feet of the host vehicle. If there isn’t a car in the 400 feet detection range, this signal is absent.

- The distance to the lead vehicle
 This data item is transmitted as a scaled integer and measured in feet. It is scaled as a multiple of 100, which allows for two decimal places of precision. For example any data in the format, xx.xx, would be converted, xx.xx * 100 = xxxx, and then transmitted.
A safe distance between the lead vehicle and the host vehicle is considered to be a distance that allows for a two second cushion. This distance can be determined by subtracting the relative speed from the host vehicle's current speed and dividing the result by 2 seconds.

- **The relative or closing speed between the host vehicle and the lead vehicle**
 This data item is scaled in the same manner as the distance to the lead vehicle (see above), but is measured in feet per second.

3.2 Vehicle Information

- **Brakes** The brakes are considered to be the host vehicle's interface for deceleration by the vehicle's operator.
 - The brakes have a deceleration capability that ranges from 0 to 12 feet per second per second. This range is scaled at increments of 1 foot per second per second.

- **Engine Control Module (ECM)** The Engine Control Module is the system that monitors and controls the host vehicle’s engine. The following properties describe the pertinent ECM behavior.
 - The ECM will accept a digital speed specification from the Cruise Control Module. The ECM will then maintain that speed until a release signal is received, at which point throttle control will be transferred to either manual, or the ACC system.
 - The speed control on the ECM can be overridden if the speed desired by the vehicle operator via the accelerator is greater than the speed indicated by the speed control.

- **Cruise Control Module (CCM)** The Cruise Control Module allows the user to indicate to the engine control module to maintain the current speed. The following properties describe the pertinent CCM behavior.
 - When the vehicle operator engages the cruise control, the CCM sends a digital message to the engine control module to set and hold the current speed.
 - The vehicle operator is notified by signal when the cruise control is engaged.

3.3 Adaptive Cruise Control System Information

The adaptive cruise control (ACC) system is the primary focus of this document, and its description can be read above.

- **Engagement Conditions** The ACC will only engage or turn on when the following conditions exist:
 - The host vehicle is travelling at a speed greater than 25 miles per hour.
 - A lead car is detected within the 400 feet specified in the Radar Information above.

- **Engine Control and Brake Override Description** The ACC may override other controls within the host vehicle if conditions exist where it would be beneficial to do so. The following properties describe this behavior.
- The vehicle operator will be notified by signal when the ACC is overriding vehicle operator controls.
- When the ACC no longer needs to override vehicle controls, control will return to the appropriate vehicle operator or system.

4 UML Analysis

4.1 Use Cases

![ACC Use Case Diagram]

Figure 1: ACC Use Case
4.2 Use Cases

<table>
<thead>
<tr>
<th>Use case: Set Cruise Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors: Engine Control Unit.</td>
</tr>
<tr>
<td>Type: Primary</td>
</tr>
<tr>
<td>Description: The Engine control unit remember cruise speed when a driver sets cruise on. Then it keeps the cruise speed as long as it is at the safe distance.</td>
</tr>
<tr>
<td>Cross-reference: The engine control module will accept a digital speed message to hold the car at a given speed. A release signal resumes manual throttle control.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended by:</td>
</tr>
<tr>
<td>Extends:</td>
</tr>
</tbody>
</table>

4.3 Use Cases

<table>
<thead>
<tr>
<th>Use case: Listen for Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors: Radar.</td>
</tr>
<tr>
<td>Type: Primary</td>
</tr>
<tr>
<td>Description: ACC gets a signal when a lead car presents within 400 feet in front of the car.</td>
</tr>
<tr>
<td>Cross-reference: The radar unit has a range of about 400 feet. The radar unit provides a “lead vehicle detected” signal when a vehicle is present. “Lead vehicle detected” is not present when no vehicle is within detection range.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended by:</td>
</tr>
<tr>
<td>Extends:</td>
</tr>
</tbody>
</table>
4.4 Use Cases

<table>
<thead>
<tr>
<th>Use case:</th>
<th>Get Current Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors:</td>
<td>Engine Control Unit, Radar.</td>
</tr>
<tr>
<td>Type:</td>
<td>Essential</td>
</tr>
<tr>
<td>Description: In order to compute brake rate, ACC asks current speed of the host car from engine control unit and the closing speed of the lead car and distance between them when it gets a signal from a radar listener.</td>
<td></td>
</tr>
<tr>
<td>Cross-reference: The radar unit provides the distance to the lead vehicle and the closing speed between the car and the lead vehicle.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended by: Compute Brake Rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extends:</th>
</tr>
</thead>
</table>

4.5 Use Cases

<table>
<thead>
<tr>
<th>Use case:</th>
<th>Compute Brake Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors:</td>
<td>Radar, Engine Control Unit, Brake.</td>
</tr>
<tr>
<td>Type:</td>
<td>Essential</td>
</tr>
<tr>
<td>Description: ACC computes a brake rate with current info from engine control unit and radar unit when the speed of vehicle is over 25 M.P.H. ACC displays it’s activity on a driver’s display when it acts.</td>
<td></td>
</tr>
<tr>
<td>Cross-reference: The system must not be active at or under 25 M.P.H. A signal is present when cruise is engaged. Brakes can be applied with deceleration of 0 to 12ft/sec2 in increments of 1ft/sec2. A driver’s display must indicate when automatic braking is occurring and when speed is being limited to avoid the danger zone.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended by: Set Brake Rate</td>
</tr>
</tbody>
</table>

| Extends: | Get Current Info |
4.6 Use Cases

Use case: Set Brake Rate

Actors: Radar, Engine Control Unit, Brake

Type: Primary

Description: ACC takes over control of the vehicle.

Cross-reference: The car shall never closer to the lead vehicle than 2 seconds of separation. Either the cruising speed (if cruise is set) or the speed determined by the driver’s accelerator be resumed when possible.

Uses:

Extended by:

Extends: Compute Brake Rate

4.7 Object Model

![ACC Object Diagram](image)

Figure 2: ACC Object Diagram
4.7.1 Class Overview

Figure 2 shows the Objects in use in the system, their relationships and interactions. This section will briefly describe those relationships and interactions.

- There are essentially 5 components shown in Figure 2, the ACC, the Radar unit, the UI, the Brakes, and the Engine Control Unit.
- The ACC calls the setBrake() method of the Brakes to decelerate the host vehicle, using information it has recieved from the Radar unit and the Engine Control Module.
- The Brakes, in turn, update the current speed in the Engine Control Unit to decelerate at the rate provided by the ACC.
- The UI provides the driver the ability to accelerate and decelerate the car by interacting with the ECM and Brakes to change the speed. It also displays information provided by the ACC, such as imminent collision warnings.
- Two of these main units are composed of multiple objects, the ACC and the Engine Control Module.
- The ACC contains a separate object called the Radar Listener. This Listener controls comm-unication between the ACC and the Radar unit by listening for interrupts from the Radar unit.
- The Engine Control Module consists of two other objects, the Cruise Control and the Manual Throttle Control. The Cruise Control handles Cruise functions for the engine and interacts with the UI to be set and the ACC to be reset after the ACC has been engaged. The Manual Throttle Control interacts with the UI to allow the driver manual control of the acceleration of the Host Car when the Cruise Control unit is not engaged.

4.7.2 Data Dictionary

This section defines all the objects, methods, and attributes that are found in the Object Diagram 2 and is subdivided by object.

ACC - (Automated Cruise Control) An automatic collision avoidance system which reads data from the Radar and the Engine Control Module to determine when and at what rate braking is necessary to avoid collision with a leading vehicle. The ACC will maintain at least 2 seconds of sepeation with the leading car, but will not initialize unless the host car is travelling faster than \(\frac{25 \text{ ft}}{\text{sec}} \). When the ACC is active and decelerating, the ACC alerts the driver and when the leading car is no longer a threat, returns the host car either to its Cruise Control or Manual Control state from prior to braking.

calcSafeRate - This method determines the appropriate rate of deceleration to match the speed of the host vehicle to that of the leading vehicle and position it a safe distance (2 seconds of separation) away. Its calculations are based on the distance and relative speed of the leading vehicle from radarInfo and it is limited to integral rates of deceleration from \(0 \frac{\text{ft}}{\text{sec}^2} \) to \(12 \frac{\text{ft}}{\text{sec}^2} \). If the
host car is in the danger zone it recommends the full deceleration of $12 \frac{ft}{sec^2}$, otherwise it uses the formula:

$$rate = \frac{1}{2} \frac{Relative\Speed^2}{Distance to Lead Car - (2\text{sec of separation})(Leading\ Car\ Speed)}$$

to determine a decimal deceleration rate, which it then rounds up to the nearest integer.

Cruise - This integer variable holds the Cruise Control speed of the car prior to the activation of the ACC so that the host car can resume its original Cruising Speed when the ACC returns control. This value is provided by calling the Cruise Control method getCruiseSpeed().

currentSpeed - This integer variable holds the current speed of the host vehicle as provided by the getSpeed() method of the Engine Control Module for use in deceleration calculations.

radarInfo - An array of two integers, the first representing the current distance to the leading vehicle, the second its relative speed. These data are provided by the method updateInfo() of the Radar unit.

wasCruiseOn - This boolean variable holds the value returned from the Cruise Control by getCruise() to determine if the ACC should resume a Cruising Speed or manual acceleration when it returns control of the host car.

Brakes - These take in deceleration rates from the driver of the host vehicle and from the ACC and decrease the speed of the host car accordingly. The Brakes constantly decelerate the vehicle at the BrakeRate, which is 0 when neither the driver nor the ACC is decelerating.

BrakeRate - This integer variable holds the current rate at which the Brakes should slow the car.

setBrake(rate) - This method sets the BrakeRate variable to equal rate.

Cruise Control - This is a component of the Engine Control Module responsible for maintaining the speed of the host car automatically when it is engaged.

CruiseOn - This boolean is true when the driver has engaged the Cruise Control and false when the Cruise Control is turned off.

CruiseSpeed - This is the Speed the driver of the host car wishes the Cruise Control to maintain.

getCruise() - This method returns the value of CruiseOn, to determine if the Cruise Control is on or not.

getCruiseSpeed() - This method returns the value of CruiseSpeed.

setCruise(boolean) - This method is used to turn the Cruise Control on and off by setting the value of CruiseOn.
setCruiseSpeed(speed) - This method is used to set the CruiseSpeed.

Engine Control Module - The ECM is responsible for accelerating and maintaining Engine Speed, as well as managing the Cruise Control and providing information about the current speed of the host vehicle to other units.

accelerate(speed) - This is the function the Engine Control Module employs to gradually bring the engine up to speed.

currentSpeed - This integer variable holds the current speed of the engine.

getSpeed() - This function returns the value of currentSpeed to objects wishing to know the current speed of the host car.

Manual Throttle Control - This object is engaged when the Cruise Control is off and control of the acceleration of the engine of the host vehicle is turned over to the driver.

Radar - The Radar unit is a sensor mounted on the front of the host vehicle which can detect the presence of an object in its path within 400ft. It also determines the speed of that object relative to the speed of the host vehicle. When the Radar unit acquires a target (which is assumed to be a leading vehicle) it interrupts the Radar Listener to notify the ACC. It sends a similar signal to the Radar Listener when the target has been lost.

currentInfo - This is an array of two integers, the first of which denotes the relative speed of a detected object, the second the distance to the object.

getInfo() - This function returns the value of currentInfo.

LeadCarDetected - This is a boolean variable which is true when the Radar detects an object within 400ft. and false otherwise.

updateData() - This function is called repeatedly to update the values in currentInfo with realworld data.

Radar Listener - This is a component of the ACC which listens for interrupt signals from the Radar unit to signify the acquisition and loss of targets.

detected - This boolean variable is true when the Radar unit has notified the Listener that it has acquired a target and false when the Listener is notified otherwise.

listen() - The main function of the listener, this waits for an interrupt, then updates the value of detected and goes back to waiting for an interrupt.

UI - This is an implementation specific User Interface which provides controls and notifications to the driver. Some important notifications are the activities of the ACC, crash warnings, and the current state of the Cruise Control.
4.8 Dynamic Model

Figure 3 shows the concurrent State Diagrams for the component objects of the Host Car. These State Diagrams show the response of each object to events and conditions that may occur during their lifetime, and are discussed individually below.

![Figure 3: ACC Dynamic Model](image)

4.8.1 State Diagrams

ACC Figure 4 depicts the workings of the ACC unit in a state diagram.

- The ACC begins in an Idle state, doing nothing until the Radar Listener reports a leading vehicle has been detected. If the host car is travelling at over 25 ft/sec then the ACC will collect the information about the Cruise Control and then move into the Engaged composite state.

- The Engaged state is a composite of several states.

 - The starting state is the Running state. Because of its null transition to the Updating state, this state is essentially redundant, but serves to clarify the document.

 - The ACC then moves on to the Updating state, where it gets the current information from the Radar and Engine Control Modules. The ACC determines if it is Gaining or Not Gaining on the Leading Car.

 - If the ACC is Gaining, it determines if it is currently in the Safe Zone or in the Danger Zone. If it is in the Danger Zone, it tells the brakes to decelerate at 12 ft/sec^2 and returns to the Running state to begin the process again. If it is not in the Danger Zone, it calculates the best deceleration rate using the function calcSafeRate() and tells the brakes to decelerate at that rate.
If the ACC is Not Gaining on the Leading Vehicle, it determines if it is in the Safe Zone or the Danger Zone. If it is in the Danger Zone, it will decelerate at its maximum rate of $12 \frac{ft}{sec^2}$ and return to Running. If the ACC determines it is in the Safe Zone, it will merely return to running to begin reassessing the data.

If detected becomes false at any time in this Composite state, the ACC transitions out of Engaged and into Exiting.

- From the Exiting state, the ACC checks the information it got from the Cruise Control to determine how to reset the car. If the Cruise Control was previously engaged, then the ACC resets it and returns to Idle, otherwise, it merely returns to Idle.

![ACC State Diagram](image)

Figure 4: ACC State Model

Brakes Figure 5 depicts the workings of the Brakes unit in a state diagram.

- The Brakes have only one state, the Idle state.
- On entering the Idle state, the Brakes update the Speed of the Engine via the Engine Control Module based on the current value of Brake Rate.
- Two transitions can occur:
 - A call to `setBrake(rate)` can occur. If this happens, the Brakes set Brake Rate = rate, and then return to Idle.

- A timeout can occur. After some implementation-determined time, the Brakes transition back to the Idle state, where they update the speed again.

Brake State Diagram

```
setBrake(rate)[/Brake Rate = rate

Idle

do/Change Speed = Engine Speed - Brake Rate
do/Engine Control.setEngineSpeed(Change Speed * 0.1)

timeout(.1s)[/]
```

Engine Control Module Figure 6 depicts the workings of the Engine Control Module in a state diagram.

- The Engine Control Module begins in state State. Here it can process requests to get and set the value of Cruise or to get the value the current Speed.

- When setSpeed(speed) function is called, the ECM transitions in the Accelerating state. It cycles here, gradually increasing the Current Speed until it has reached the value of (speed) and then returns to State.
Radar Listener Figure 7 depicts the workings of the Radar Listener in a state diagram.

- The Radar Listener begins in the state Waiting to Acquire, where it waits for the Radar unit to acquire a target and interrupt it. When it is interrupted, it updates the value of detected and moves to the state Waiting to Lose.
- In Waiting to Lose, the Radar Listener waits for the Radar unit to lose its target and send an interrupt. When it receives this interrupt, it returns to the Waiting to Acquire state.
Figure 7: Radar Listener State Model

Radar Listener State Diagram

- Waiting to Aquire
- Waiting to Lose

Figure 8: Radar State Model

Radar

Figure 8 depicts the workings of the Radar unit in a state diagram.

- The Radar unit begins in the Idle state, its only state.
- Every .001 seconds (or some other value, depending on implementation) it updates its values based on the real world information it gets from the car ahead of it.
- When a leading car is detected or lost, the Radar unit interrupts the Radar Listener to inform the ACC and returns to Idle.
- When a call to getInfo() is made, the Radar unit returns the current relative speed and distance of the leading vehicle and then goes back to the Idle state.
4.8.2 Sequence Diagrams

Radar, RadarListener, and ACC Sequence Diagram The sequence of communication between the Radar, RadarListener, and the ACC is shown in Figure 9. This depicts a typical sequence of target acquisition, ACC running, and target loss.
When the Radar unit detects a lead vehicle, it interrupts the sleeping Radar Listener. The Radar Listener then initializes the ACC and goes back to sleep.

While running, the ACC communicates with the Radar unit to get current information on the leading car. This can iterate multiple times.

When the Radar unit has lost the lead car, it once again interrupts the Radar Listener, which stops the ACC and goes back to sleep.

Figure 9: Radar - Radar Listener - ACC Sequence Diagram