Motivation

Recommender systems can mitigate the information overload problem by suggesting users’ personalized items

- **Challenges of Existing Recommender Systems**
 - Recommendation procedure as static process
 - Making recommendations following fixed greedy strategy
 - Maximizing the immediate (short-term) reward from users

- **Why Reinforcement Learning?**
 - Continuously updating the recommendation strategies
 - Maximizing the long-term reward from users

- **Why Negative Feedback?**
 - Positive: click or purchase
 - Negative: skip
 - What users may not like

Goal: find a recommendation policy \(\pi : S \rightarrow A \), which can maximize the cumulative reward for the recommender system

Problem Statement

- **Markov Decision Process (MDP)**
 - Browsing history
 - User’s feedback (skip, click, or purchase)
 - State transition from \(s \) to \(s' \)
 - Discount factor \(\gamma \in [0, 1] \)

- **State:** \(s = (s_1, ..., s_N) \) is the previous \(N \) clicked or purchased items,
- **Transition:** from \(s \) to \(s' \):
 - If the user skips the item, then \(s' = (s_1, ..., s_N) \)
 - If the user clicks/purchases the item, then \(s' = (i_1, ..., i_N) \)

- **Goal:** find a recommendation policy \(\pi : S \rightarrow A \), which can maximize the cumulative reward for the recommender system

Basic DQN Model

- **State:** \(s = (i_1, ..., i_N) \) is the previous \(N \) clicked or purchased items
- **Transition:** from \(s \) to \(s' \):
 - If the user skips the item, then \(s' = (s_1, ..., s_N) \)
 - If the user clicks/purchases the item, then \(s' = (i_1, ..., i_N) \)

- **Q-function:**
 \[
 Q(s, a) = E_{s'} \left[r + \gamma \max_{a'} Q(s', a') | s, a \right]
 \]

- **Q-learning update:**
 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') | s, a \right] - Q(s, a)
 \]

The Proposed Framework

- **The Architecture of DEERS**
 - State \(s = (s_1, s_2) \), where \(s_1 = (j_1, ..., j_N) \) is the previous \(N \) clicked or purchased items,
 - Transition from \(s \) to \(s' \):
 - If the user skips the item, then \(s' = (s_1, ..., s_N) \)
 - If the user clicks/purchases the item, then \(s' = (i_1, ..., i_N) \)

- **RNN with GRU to capture users’ sequential preference**
 - Recommend an item that is similar to the clicked/purchased items (left part), while dissimilar to the skipped items (right part)

- **The Pairwise Regularization Term**
 - RA often recommends items belong to the same category, while users click/purchase a part of them and skip others

Experiment

- **Dataset from JD.com**
- **Baselines**
 - Collaborative filtering
 - Factorization Machines
 - RNN with GRU
 - DEERS-p (only positive feedback)

- **It can be observed:**
 - CF and FM perform worse than GRU and DEERS, since CF and FM ignore the temporal sequence of the users’ browsing history
 - GRU performs worse than than DEERS-p, since GRU maximizes the immediate reward for recommendations
 - DEERS performs better than DEERS-p because DEERS integrates both positive and negative items (or feedback)

Conclusion

- **We design a novel architecture to capture both positive and negative feedback simultaneously**
- **We design a pairwise regularization term to maximize the difference of Q-values between competing items**
- **This work is supported by the National Science Foundation (NSF) under grant number IIS-1714741 and IIS-1715940**