Problem 1. Perhaps the easiest kind of surface to define is the graph of a function. Let $U \subset \mathbb{R}^{d-1}$ be open and let $\phi \in C^1(U, \mathbb{R})$. The graph of ϕ is the set

$$S = \{(y, \phi(y)) | y \in U \} \subset \mathbb{R}^d.$$

We may think of S also as a parameterized $d-1$ surface given by the map

$$\Phi(y) = (y, \phi(y)).$$

Show that

$$\int_{S} f(x) \, dV_{d-1}(x) = \int_{U} f(\Phi(y)) \left[1 + \sum_{j=1}^{d-1} \left(\frac{\partial \phi}{\partial y_j}(y) \right)^2 \right] \, dy$$

for any continuous function f defined on a neighborhood of S.

(You may assume that $f \circ \Phi$ has compact support in U. Here V_{d-1} is the $d-1$ dimensional volume measure on S. Recall that the j-dimensional volume measure on a parameterized j-surface $\Phi \in C^1(U, \mathbb{R}^d)$ with U open in \mathbb{R}^j was defined in class via the formula

$$\int_{\Phi(U)} f(x) \, dV_j(x) = \int_{U} f(\Phi(y)) \sqrt{\det d\Phi(y)^T} \, d\Phi(y) \, dy.$$)
Problem 2. This problem concerns integration on spheres in \mathbb{R}^d. Given $r > 0$ and x_0 in \mathbb{R}^d, let

$$S_r(x_0) := \{x| |x - x_0| = r\}$$

denote the $d-1$-sphere of radius r with center x_0. The unit $d-1$-sphere centered at 0 is also denoted

$$S^{d-1} := S_1(0) = \{x \in \mathbb{R}^d| |x| = 1\}.$$

1. Let $B^{d-1} = \{y \in \mathbb{R}^{d-1}: |y| < 1\}$ and let $\Phi_\pm : B_{d-1} \to \mathbb{R}^d$ be the maps

$$\Phi_\pm(y) = \left(y, \pm \sqrt{1 - |y|^2}\right).$$

So $\Phi_+(B^{d-1}) = S^{d-1}_+$ and $\Phi_-(B^{d-1}) = S^{d-1}_-$ are the upper and lower hemispheres

$$S^{d-1}_+ := \{x \in S^{d-1}| x_d > 0\}, \quad S^{d-1}_- := \{x \in S^{d-1}| x_d < 0\}.$$

Show that Φ_+ and Φ_- are C^1, one-to-one and that their derivatives have full rank at every point of B^{d-1}.

2. Prove that S_{d-1} is an oriented $d-1$-surface. (Hint: the maps $\Phi_\pm(y)$ defined on the unit ball B_{d-1} give coordinates for the upper and lower hemispheres. Use similar maps to define a complete coordinate atlas. You will need to modify the chart functions to get consistent orientation.)

3. Prove that

$$\int_{S^{d-1}} f(\omega) dV_{d-1}(\omega) = \int_{B^{d-1}} \left[f(\Phi_+(y)) + f(\Phi_-(y))\right] \frac{1}{\sqrt{1 - |y|^2}} dy$$

for any continuous function $f : S^{d-1} \to \mathbb{R}$. (Hint: first show this if f has compact support in the upper or lower hemispheres. Now use an approximation argument to obtain the result for general f.)

4. Show that

$$\int_{S_r(x_0)} f(y)dV_{d-1}(y) = r^{d-1} \int_{S^{d-1}} f(x_0 + r\omega) dV_{d-1}(\omega)$$

and, in particular, that

$$V_{d-1}(S_r(x_0)) = r^{d-1} V_{d-1}(S^{d-1}).$$
Problem 3. Polar coordinates in \(\mathbb{R}^d \) are obtained writing a point \(x \in \mathbb{R}^d \setminus \{0\} \) as \(x = r \omega \) where \(r = |x| \) and \(\omega = \frac{x}{|x|} \in S_{d-1} \).

1. Let \(f \) be a continuous compactly supported function on the upper half space \(\mathbb{H}^d_+ = \{ x \in \mathbb{R}^d | x_d > 0 \} \). Prove that

\[
\int_{\mathbb{H}^d_+} f(x) \, dx = \int_0^\infty \int_{S_{d-1}^+} f(r \omega) \, dV_{d-1}(\omega) \, r^{d-1} \, dr.
\]

(Hint: let \(x = r \Phi_+(y) \) with \(\Phi_+ \) as in the previous problem. Now use the change of variables formula to write the integral as an integral over \(r \) and \(y \). Then rewrite the integral over \(y \) as an integral over the upper hemisphere \(S_{d-1}^+ \).)

2. Now prove that

\[
\int_{\mathbb{R}^d} f(x) \, dx = \int_0^\infty \int_{S_{d-1}} f(r \omega) \, dV_{d-1}(\omega) \, r^{d-1} \, dr
\]

for any continuous compactly supported function \(f \) on \(\mathbb{R}^d \). (Hint: you may want to assume first that the support of \(f \) is contained in \(\mathbb{R}^d \setminus \{0\} \) and proceed to the general case using a limit.)

3. Use polar coordinates to show that

\[
V_d(B_r(0)) = \frac{V_{d-1}(S_{d-1}^{d-1})}{d} r^d
\]

where \(B_r(0) = \{ x \in \mathbb{R}^d | |x| < r \} \).
Problem 4. The goal of this exercise is to compute the $d-1$ Volume of the $d-1$ sphere.

1. Start by finding the exact value of the integral

$$\int_{\mathbb{R}^d} e^{-|x|^2} dx.$$

(Hint: Show that $\int_{\mathbb{R}^d} e^{-|x|^2} dx = \left(\int_{\mathbb{R}} e^{-x^2} dx\right)^d$ and then use exercise 2 from the last homework.)

2. Now show that

$$\int_{\mathbb{R}^d} e^{-|x|^2} dx = V_{d-1} \left(S^{d-1}\right) \int_0^\infty r^{d-1} e^{-r^2} dr.$$

3. Put the results together to prove that

$$V_{d-1} \left(S^{d-1}\right) = \frac{2\pi^{d/2}}{\Gamma \left(\frac{d}{2}\right)}.$$ \hspace{1cm} (1)

4. Use eq. (1) to show that $\Gamma \left(\frac{1}{2}\right) = \pi^{1/2}$. (Hint: what is $V_0 \left(S^0\right)$?)

5. Derive explicit formulas for $V_{d-1} \left(S^{d-1}\right)$ in dimensions $d = 2, 3, 4, 5, \text{ and } 6.$
Problem 5. A C^2 function f is called harmonic if $\Delta f = 0$, where

$$\Delta f = \nabla \cdot \nabla f = \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j^2}.$$

Let f be C^2 and harmonic in an open subset U of \mathbb{R}^n. The goal of this exercise is to prove the mean value property for f

$$\frac{1}{V_d(B_r(x))} \int_{B_r(x)} f(y) \, dy = f(x) \tag{2}$$

for any r sufficiently small that $B_r(x) \subset U$.

1. Show that

$$\frac{1}{V_d(B_r(x))} \int_{B_r(x)} f(y) \, dy = \frac{d}{r^d} \int_0^r A_x(\rho) \rho^{d-1} d\rho$$

where

$$A_x(r) = \frac{1}{V_{d-1}(S^{d-1})} \int_{S^{d-1}} f(x + r\omega) dV_{d-1}(\omega).$$

2. Prove that

$$\lim_{r \to 0} A_x(r) = f(x).$$

3. Show that

$$\frac{d}{dr} A_x(r) = \frac{1}{V_{d-1}(S^{d-1})} \int_{S^{d-1}} \nabla f(x + r\omega) \cdot \omega \, dV_{d-1}(\omega),$$

and use the divergence theorem (a corollary of Stoke’s theorem we proved in class) together with the fact that f is harmonic to prove that $\frac{d}{dr} A_x(r) = 0$ provided $B_r(x) \subset U$.

4. Conclude that

$$A_x(r) = f(x)$$

provided $B_r(x) \subset U$ and use this to prove eq. (2).