
1

IncrementalHierarchicalDiscriminantRegression
JuyangWeng

Departmentof ComputerScienceandEngineering
Michigan StateUniversity
EastLansing,MI 48824

(weng@cse.msu.edu)
and

Wey-ShiuanHwang
RudolphTechnologies,Inc.

OneRudolphRoad
Flanders,NJ 07836

(whwang@rudolphtech.com)
September28, 2006

2

Abstract

This paperpresentsIncrementalHierarchicalDiscriminant Regression(IHDR) which incrementallybuilds a
decisiontree or regressiontree for very high dimensionalregressionor decisionspacesby an online, real-time
learningsystem.Biologically motivated,it is an approximatecomputationalmodel for automaticdevelopmentof
associative cortex, with both bottom-upsensoryinputs and top-down motor projections.At eachinternal nodeof
the IHDR tree, information in the output spaceis usedto automaticallyderive the local subspacespannedby the
most discriminatingfeatures.Embeddedin the tree is a hierarchicalprobability distribution model usedto prune
very unlikely casesduring thesearch.Thenumberof parametersin thecoarse-to-�neapproximationis dynamicand
data-driven,enablingthe IHDR tree to automatically�t datawith unknown distribution shapes(thus, it is dif�cult
to selectthe numberof parametersup front). The IHDR tree dynamicallyassignslong-termmemoryto avoid the
loss-of-memoryproblem typical with a global-�tting learning algorithm for neural networks. A major challenge
for an incrementallybuilt tree is that the numberof samplesvariesarbitrarily during the constructionprocess.An
incrementallyupdatedprobability model,called samplesize dependentnegative-log-likelihood(SDNLL) metric is
usedto deal with large-samplesize cases,small-samplesize cases,and unbalanced-samplesize cases,measured
amongdifferentinternalnodesof theIHDR tree.We reportexperimentalresultsfor four typesof data:syntheticdata
to visualizethe behavior of the algorithms,large faceimagedata,continuousvideo streamfrom robot navigation,
andpublicly availabledatasetsthat usehumande�ned features.

Keywords: online learning, incremental learning, cortical development, discriminant analysis, local invariance,
plasticity, decision trees, high dimensional data, classification, regression, and autonomous development.

1

I. INTRODUCTION

The cerebral cortex performs regression with numerical inputs and numerical outputs. At an appropriate temporal
scale, the firing rate (or frequency of the spikes) has been modeled as a major source of information carried by
the signals being transmitted through the axon of a neuron [1, pages 21-33]. A cortical region develops (adapts
and self-organizes) gradually through its experience of signal processing. Pandya & Seltzer [2] proposed that there
are four types of cortex: primary, association, multimodal, and paralimbic. The association cortex lies between the
primary cortex and motor areas [3, pages 183-188]. The mathematical model described here can be considered as
a coarse, approximate computational model for the development of the association cortex, whose main goal is to
establish the association (i.e., mapping) between the primary sensory cortex and motor cortex. However, a lot of
puzzles about the biological brain are unknown. The computational model described here does not intend to fit all
biological details.

Classification trees (class labels as output) and regression trees (numerical vectors as output) have two purposes:
indexing and prediction. The indexing problem assumes that every input has an exactly matched data item in the tree,
but the prediction problem does not assume so and, thus, requires superior generalization. The prediction problem
has the indexing problem as a special case, where the input has an exact match. Indexing trees, such as K-D trees
and R-trees, have been widely used in database for known data retrieval with a goal to reach a logarithmic time
complexity. Prediction trees, also called decision trees, have been widely used in machine learning to generate a
set of tree-based prediction rules for better prediction for unknown future data. Although it is desirable to construct
a shallow decision tree, the time complexity is typically not an issue for decision trees. The work presented here
is required for a real-time, online, incrementally learning artificial neural network system [4]. Therefore, both
goals are thought: fast logarithmic time complexity and superior generalization. Further, we require the tree to be
built incrementally, since the tree must be used for operation while data arrive incrementally, such as in a system
that takes real-time video streams. Thus, in the work presented here we concentrate on trees and, in particular,
incrementally built trees.

Traditionally, classification and regression trees use a univariate split at each internal node, such as in CART, [5],
C5.0, [6] and many others. This means that the partition of input space by each node uses hyper-planes that are
orthogonal to the axes of the input space X . Multivariate linear splits correspond to partition hyper-planes that are
not necessarily orthogonal to any axis of the input space and thus, potentially can cut along the decision boundaries
more appropriately for better prediction or generalization. Trees that use multivariate splits are called oblique trees.
As early as the mid-70s, Friedman [7] proposed a discriminating node-split for building a tree which resulted in
an oblique tree. The OC1 by Murthy et al. [8] and SHOSLIF tree by Swets & Weng [9] are two methods for
constructing oblique trees. For an extensive survey of decision trees, see a survey by [10].

The OC1 uses an iterative search for a plane to find a split. The SHOSLIF uses the principal component analysis
(PCA) and linear discriminant analysis (LDA) to directly compute splits. SHOSLIF uses multivariate nonlinear
splits corresponding to curved partition surfaces with any orientation. Why is discriminant analysis such as LDA
important? LDA uses information of the output space in addition to the information in the input space to compute
the splits. PCA only uses information in the input space. Consequently, variations in the input space that are totally
useless for output (e.g., pure noise components) are also captured by the PCA. A discriminant analysis technique,
such as LDA, can disregard input components that are irrelevant to output (e.g., pure noise components).

The problem gets harder when the output is a multidimensional analogue signal, as is the case with a real-time
motor controlled by a robot. The class label is unavailable and thus, the LDA method is not directly applicable.
Developed concurrently with the incremental version presented here, the Hierarchical Discriminant Regression
(HDR), by the same authors [11], performs clustering in both output space and input space, while clusters in the
output space provide virtual labels for membership information in forming clusters in the input space. An HDR
tree uses multivariate nonlinear splits, with multivariate linear splits as a special case.

A. Incremental regression

The problem becomes even harder if the learning must be fully incremental. By fully incremental, we mean
that the tree must be updated with every input vector. It is not unreasonable to assume that the brain is fully
incremental: it must function and update for every sensory input. In an incremental learning system, the data
frames arrive sequentially in time. Each frame (vector) x(t) is a sample (snapshot) of the changing world at time t.

2

Since the streams of observation are very long and often open-ended, the system must be updated using one frame
at a time. Each frame is discarded as soon as it is used for updating. The major reasons for sequential learning
include: (a) The total amount of data is too much to be stored. (b) Batch processing (including block-sequential
processing, where the system is updated with each temporal block of data) takes time and introduces time delay
between the time when the first batch is collected and the time the next batch is collected. (c) Updating a tree is
fast, significantly faster than constructing the entire tree. Thus, the latency between updating using a frame and
using the updated tree is short.

Since incremental learning works under a more restricted condition (e.g., all the training data are not available
all at once), the design of an effective incremental algorithm is typically more challenging than a batch version.
In the neural network community, incremental learning is common since the network alone does not have space to
store all the training data. Further, incremental learning is a must for simulating what is called autonomous mental
development [12] [13].

Due to the fact that incremental learning operates under more restrictive conditions, typically one should not
expect an incremental learning system to out-perform a batch learning method in terms of, e.g., error rate. But, our
experimental results presented in Section V indicated that the difference of error rates between HDR and IHDR is
small, and in a test (Table III) the error of IHDR is smaller.

However, we can also take advantage of the incremental learning nature: (a) Perform while being built. The
tree can work before all the data are available. (b) Concentration on hard cases. The later training samples can be
collected based on the performance of the current tree, allowing for the collection of more training cases for weak
cases or hard-to-learn cases. (c) Dynamic determination of the number of training samples. Given a classification
or regression task, it is very difficult to determine how many training samples are needed. Incremental learning
enables dynamic determination of the total number of samples needed based on current system performance. (d)
The same sample (micro-cluster in the leaf nodes of IHDR), received at different times, can be stored at different
positions of the tree, potentially improving the performance.

The batch processing version of HDR appeared in [11]. This paper presents the Incremental HDR (IHDR). We
concentrate on the incremental nature of the technique and refer the reader to [11] for issues common to HDR and
IHDR. In other words, IHDR follows the learning principle of typical neural networks — incremental learning. The
incrementally generated IHDR tree is a kind of network. Unlike traditional neural networks, such as feed forward
networks and radial basis functions, the IHDR network has the following characteristics:

1) A systematic organization of long-term memory and short-term memory. The long-term memory corresponds
to information in shallow nodes and micro-clusters (also called primitive prototypes, when the meaning of
micro-clusters is alluded) in leaf nodes which are not visited often. The short-term memory corresponds
to micro-clusters in leaf nodes that are visited often, so that the detail is forgotten through incremental
averaging. The long-term memory prevents catastrophic loss of memory in, e.g., back-propagation learning
for feed-forward networks.

2) A dynamically, automatically determined (not fixed) set of system parameters (degrees of freedom). The
parameters correspond to the mean and covariance matrix of probability models in all of the internal nodes
and the dynamically created micro-clusters in leaf nodes. The dynamically determined degrees of freedom
present severe local minima that might result from a network with a fixed number of layers or a fixed number
of nodes in each layer, when it intends to minimize the error of fitting for desired outputs. IHDR does not
use fitting at all.

3) A course-to-fine distribution approximation hierarchy so that coarse approximation is finished at parent nodes
before finer approximation by their children. The imperfection of the boundaries determined by early frozen
ancestor nodes are corrected and refined by their later children. Such a scheme also contributes to the avoidance
of the local minima problem: limited experience (the total number of micro-clusters in all leaf nodes) may
result in lack of detail in regression but not local minima in overall fitting.

4) Fast local update through the tree without iteration. Some existing methods, such as evolutionary computation
and simulated annealing can deal with local minima, but they require iterative computations which are not
suited for the real-time updating and performance.

We did not find, in the literature, an efficient technique that performs discriminant analysis incrementally while
satisfying all of the seven stringent requirements discussed below. As far as we know, there was no prior published
incremental statistical method suited for constructing a regression tree for high dimensional input space based on

3

discriminant analysis. By high dimensional space we mean that the dimension ranges from a few hundred to a few
thousand and beyond. The number of samples can be smaller than the dimension. When the number of samples is
smaller than the input dimension (i.e., the number of features), [5] and [8] described the situation as data underfits
the concept and thus, disregarded the situation.

This high dimensional, small sample case becomes very important with increased use of high dimensional digital
multimedia data, such as images and video, where each pixel value is a component of the input vector. 1 These
applications give rise to high dimensional data with strong correlations among components of input. CART, C5.0,
OC1, and other published tree classifiers that we know perform reasonably well for relatively low-dimensional
data that was prepared by humans. Each component of such training data is a human-defined feature and thus,
correlation among these features are relatively low. However, they are not designed for highly-correlated, directly-
sensed, high-dimensional data such as images and video. Further, the elements in such a high-dimensional vector
are highly correlated, since pixels are highly correlated. The SHOSLIF tree is for high input dimension and has an
incremental version, [18], but it uses PCA for the splits. It is technically challenging to incrementally construct a
classification or regression tree that uses discriminant analysis due to the complex nature of the problem involved.

B. Regression requirements

With the demand of online, real-time, incremental, multi-modality learning with high-dimensional sensing by an
autonomously learning embodied agent, we require a general purpose regression technique that satisfies all of the
following seven (7) challenging requirements:

1) It must take high-dimensional inputs with very complex correlation between components in the input vector
(e.g., an image vector has over 5000 dimensions). Some input components are not related to output at all
(e.g., posters on a wall are not related to navigation).

2) It must perform one-instance learning. An event represented by only a single input sensory frame must be
learned and recalled. Thus, iterative learning methods, such as back-propagation learning, are not applicable.

3) It must adapt to increasing complexity dynamically. It cannot have a fixed number of parameters like a
traditional neural network, since the complexity of the desired regression function is unpredictable.

4) It must deal with the local minima problem. If the tree currently being built sticks into a local minima,
the tree being built is a failed tree. In online real-time learning of open-ended autonomous development
of an agent, such a failed case means that the agent failed to develop normally. Traditionally, a variety
of engineering methods have been used to alleviate the problem of local minima, e.g., (a) simultaneously
keeping multiple networks, each starting with a different random initial guess, and only the best performing
network is selected, (b) simulated annealing, and (c) evolutionary computation. However, these methods are
not applicable to real-time online development where every system must develop normally.

5) It must be incremental. The input must be discarded as soon as it is used for updating the memory. It is
impossible to save all the training samples since the space required is too large.

6) It must be able to retain most of the information of the long-term memory without catastrophic memory loss.
However, it must also forget and neglect unrelated details for memory efficiency and generalization. With an
artificial network with back-propagation learning, the effect of old samples will be lost if these samples do
not appear later.

7) It must have a very low time complexity in computing and updating so that the response time is within a
fraction of second for real-time learning, even if the memory size has grown very large. Thus, any slow
learning algorithm is not applicable here. Of course, the entire tree construction process can extend to a long
time period.

Some existing artificial neural networks can satisfy some of the above requirements, but not all.
For example, consider feed forward neural networks with incremental back-propagation learning. They perform

incremental learning and can adapt to the latest sample with a few iterations (not guarantee to fit well), but they do
not have a systematically organized long-term memory, and thus, early samples will be forgotten in later training.
Cascade-Correlation Learning Architecture [19] improves them by adding hidden units incrementally and fixing their

1This correspondsto a well-acceptedandhighly successfulapproachcalledtheappearance-basedapproach,with which thehumansystem
designerdoesnot de�ne featuresat all but ratherappliesstatisticalmethodsdirectly to high-dimensional,preprocessedimageframes,as
seenin the work of [14], [15], [16] and,[17].

4

weights to become permanent feature detectors in the network. Thus, it adds long-term memory. Major problems
for them include the high-dimensional inputs and local minima.

We present IHDR to deal with the above 7 requirements altogether, which is a very challenging task of design.
Further, we deal with the unbalanced sample problem in that some regions of input space have a large number
of samples, while other regions have sparse samples. A sample-size dependent likelihood measure is proposed to
make suboptimal decisions for different sample sizes, which is critical for an incremental algorithm; it must perform
reasonably well while being constructed. We present experimental results that demonstrate the performance of the
new IHDR technique and compare it with some major published methods.

II. THE IHDR METHOD

We first discuss briefly classification and regression.

A. Unification of classification and regression

The tasks of discriminant analysis can be categorized into two types according to their output: class-label
(symbolic) output and numerical output. The former case is called classification and the latter case is called
regression. A classification task can be defined as follows.

Definition 1: Given a training sample set L = f (xi , li) j i = 1, 2, . . . , ng, where xi 2 X is an input (feature)
vector and li is the symbolic label of xi , the classification task is to determine the class label of any unknown input
x 2 X .

A regression task is similar to the corresponding classification one, except that the class label l i is replaced by
a vector yi in the output space, yi 2 Y, i = 1, 2, . . . , n. The regression task can be defined as follows.

Definition 2: Given training set L0 = f (xi , yi) j i = 1, 2, . . . , ng and any testing vector x 2 X , the regression
task is to estimate the vector y(x) 2 Y from x 2 X .

Regression tasks are very common. As long as the output of the system needs to control effectors that take
graded values, the learning problem is regression. Examples include motors, steering wheels, brakes, and various
machines in industrial settings. The biological cortex also performs regression.

In a classification problem, the class labels themselves do not provide information in terms of how different two
classes are. Any two different classes are just different, although some may differ more than others in the original
application. This is not the same for a regression problem. Any two different regression output vectors have their
natural distance.

Furthermore, we can cast a classification problem into a regressive one so that we can conveniently form coarse
classes by merging some original classes. These coarse classes are useful for performing coarse-to-fine classification
and regression using a decision tree, as we will explain later in this paper.

The biological cortex does only regression, not classification per se. In the applications presented later in this
paper, we used the IHDR regressor to deal with both regression (e.g., navigation) and classification (e.g., face
recognition). For the purpose of understanding, here we outline three ways to cast a classification task into a
regression one. More detail is available in [11].

1) Canonical mapping. Map n class labels into an n-dimensional output space. For the i-th class, the
corresponding output vector yi is an n-dimensional vector which has 1 as its i-th component and all the other
components are zero. For incremental learning, this method has a limitation since the maximum number of
classes is limited to n.

2) Embedding cost matrix. If a cost matrix [cij] is available, the n class labels can be embedded into an (n � 1)-
dimensional output space by assigning vector yi to class i, i = 1, 2, . . . , n, so that jjyi � yj jj is as close to
cij , the cost of confusing classes i and j, as possible. This process is not always practical since a pre-defined
cost matrix [cij] is not always easy to provide. This also means that the number of classes is limited for the
incremental learning case.

3) Class means in input space. Each sample (xij , li) belonging to class li is converted to (xij , yi), where yi ,
the vector class label, is the mean of all xij that belong to the same class li . In the incremental learning,
the mean is updated by using an amnesic average as described in Section III-F. This is often a desirable
method since the distance in the output space is closely related to the distance in the input space. In all of
the classification experiments presented later, we used this mapping.

5

On the other hand, one cannot map a numeric output space into a set of class labels without losing the numeric
properties among an infinite number of possible numerical vectors. Therefore, a regression problem is more general
than the corresponding classification problem.

B. Technical motivation

In the remainder of this paper, we consider a general regression problem: incrementally approximating a mapping

h : X 7! Y

constructed from a set of training samples f (xi , yi) j xi 2 X , yi 2 Y, i = 1, 2, . . . , ng. By incremental
approximation, we mean that the incremental developer d takes the previous mapping h(i � 1) and input the sample
(xi , yi) to produce the updated mapping h(i) :

h(i) = d(h(i � 1) , xi , yi)

for i = 1, 2,
With the high-dimensional input space X , many components are not related to the desired output at all. A

straightforward nearest neighbor classifier, using the Euclidean distance in X space, will fail miserably. Fig. 1
illustrates a 2-D example. Fig. 1(a) shows the decision boundary of the straightforward nearest neighbor rule called
the Voronoi diagram. Its error rate is high (about 50%) as shown in Fig. 1(c). If the discriminating feature, X1 in
this example, is detected and a nearest neighbor classifier is used in this discriminating subspace (1-D), the error
rate is drastically smaller as shown in Fig. 1(d).

1X

X 2

1X

X 2

(a)

(c)

1X

X 2

1X

X 2

(b)

(d)

Fig. 1. The importanceof �nding thediscriminatingfeatures.(a) The trainingsamplesaremarkedassmall circles.Thecolors
indicate the correspondingoutput. The Voronoi diagramis shown by line segments.(c) A large classi�cation error resulted
from thestraightforwardnearestneighborclassi�er. Misclassi�edareasaremarkedby a darkshade.(b) Only thediscriminating
featureX 1 is usedby the nearestneighborrule. (d) Misclassi�ed areasof nearestneighborrule using X 1 only, which are
smallerthan(c).

The phenomenon illustrated in Fig. 1 becomes more severe in high-dimensional space because there are more
dimensions (like X2) that distract the Euclidian distance used by the nearest neighbor classifier. Therefore, it is
necessary to automatically derive discriminating features by the regressor.

If yi , in the incrementally arriving training samples (xi , yi), is a class label, we could use the linear discriminant
analysis (LDA) as in [20]’s work since the within-class scatter and between-class scatter matrices are all defined.
Unfortunately, if each class has a small number of training samples, the within-class scatter matrix is poorly
estimated and often degenerate, and thus, the LDA is not very effective. If the classification problem is cast into a
regression one, it is possible to form coarse classes, each having more samples, which enables a better estimation
of the within-class scatter matrix. However, if yi is a numerical output, which can take any value for each input

6

component, it is a challenge to figure out an effective discriminant analysis procedure that can disregard input
components that are either irrelevant to output or contribute little to the output.

Such a challenge becomes intertwined with other challenges when a discriminant analysis must be performed
incrementally, in a sense that samples are provided one at a time and the mapping approximator must be updated
for each training sample.

With these challenges in mind, we introduce a new hierarchical statistical modeling method. Consider the mapping
h : X 7! Y , which is to be approximated by a regression tree called an IHDR tree for the high-dimensional space
X . Our goal is to automatically derive discriminating features, although no class label is available (other than the
numerical vectors in space Y). In addition, for the real-time requirement, we must process each sample (x i , yi) to
update the IHDR tree using a minimal amount of computation.

C. Outline

For notation simplicity, we consider a complete tree where each node has q-children, and the tree has L levels.
Thus, the tree has ql nodes at level l with the root at l = 0. Mathematically, the space Y is incrementally partitioned
into ql mutually non-intersecting regions at level l:

Y = Yl ;1 [Yl ;2 [� � � [Yl ;ql

l = 1, 2, ..., L, where Yl ;i \ Yl ;j = φ if i 6= j. The partitions are nested. That is, the region Yl ;j at level l is further
partitioned into q regions at level l + 1:

Yl ;j = Yl+1 ;(j � 1)q+1 [Yl+1 ;(j � 1)q+2 [� � � [Yl+1 ;j q (1)

for j = 1, 2, ..., ql . Denote the center of region Yl ;j by a vector ȳl ;j computed as the mean of the samples in region
Yl ;j . The subregions f Yl+1 ;(j � 1)q+1 , Yl+1 ;(j � 1)q+2 , ..., Yl+1 ;j qg of Yl ;j are the Voronoi diagram of the corresponding
centers

f ȳl+1 ;(j � 1)q+1 , ȳl+1 ;(j � 1)q+2 , ..., ȳl+1 ;j qg

at level l + 1.
Given any training sample pair (x, y), its label at level l is determined by the location of y in Y . If y 2 Y l ;j for

some j, then x has a label j at level l. Among all the sample pairs in the form (x, y), all the x’s that share the
same label j at level l form the jth x-cluster at level l, represented by the center x̄ l ;j .

In reality, the IHDR tree is updated incrementally from arriving training samples (x i , yi). Therefore, it is typically
not a complete tree.

D. Double clustering

Each internal node of the IHDR tree incrementally maintains y-clusters and x-clusters, as shown in Fig. 2. There

X space Y space

Virtual label

Virtual label

Virtual label

The plane for the
discriminating
feature subspace

1

12

2

3

3
4

4

5

5 6

6

7

7

8
8

9

9

10

10
11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21
22

22

23

23

Fig. 2. The Y-clustersin spaceY andthe correspondingx-clustersin spaceX . The numberof eachsampleindicatesthe time
of arrival.

are a maximum of q (e.g., q = 20) clusters of each type at each node.

7

X space Y spaceNoise

Signal

Virtual label

Virtual label

The line for the
discriminating
feature subspace

1

12
2

3

3

4 4

5

5

6

6

7

7

8
8

9

9

10

10

11

11

12

12

13

13

14 14

15 15

16

16

17

17

18

18

Fig. 3. The discriminatingsubspaceof the IHDR tree disregardscomponentsthat are not relatedto outputs.In the �gure,
the horizontalcomponentis a componentin the input space,but is irrelevant to the output.The discriminatingfeaturespace,
the linear spacethat goesthroughthe centersof the x-clusters(representedby a vertical line), disregardsthe irrelevant input
components.The numberof eachsampleindicatesthe time of arrival.

Mathematically, the clustering of X of each node is conditioned on the class of Y space. The distribution of each
x-cluster is the probability distribution of random variable x 2 X conditioned on random variable y 2 Y . Therefore,
the conditional probability density is denoted as p(xjY 2 ci), where ci is the i-th y-cluster, i = 1, 2, ..., q.

The q y-clusters determine the virtual class label of each arriving sample (x, y) based on its y part. The virtual
class label is used to determine which x-cluster the input sample (x, y) should update using its x part. Each x-cluster
approximates the sample population in the X space for the samples that belong to it. It may spawn a child node
from the current node if a finer approximation is required. The incremental updating is done in the following way.
At each node, y in (x, y) finds the nearest y-cluster in Euclidean distance and updates (pulling) the center of the
y-cluster. This y-cluster indicates to which corresponding x-cluster the input (x, y) belongs. Then, the x part of
(x, y) is used to update the statistics of the x-cluster (the mean vector and the covariance matrix). The statistics
of every x-cluster are then used to estimate the probability for the current sample (x, y) to belong to the x-cluster,
whose probability distribution is modeled as a multi-dimensional Gaussian at this level. In other words, each node
models a region of the input space X using q Gaussians. Each Gaussian will be modeled by more small Gaussians
in the next tree level if the current node is not a leaf node.

Moreover, the centers of these x-clusters provides essential information for discriminating subspace, since these
x-clusters are formed according to the virtual labels in the Y space. We define the most discriminating feature
(MDF) subspace D as the linear space that passes through the centers of these x-clusters. A total of q centers of
the q x-clusters give q � 1 discriminating features which span (q � 1)-dimensional discriminating space D .

Why is it called the most discriminating space? For example, suppose that there are two components in the input,
one contains signals relevant to outputs, and the other is irrelevant to the output as shown in Fig. 3. Although the
latter component contains information probably useful for other purposes, it is “noise” as far as the regression task
is concerned. Because the centers of the x-clusters have similar coordinates in the “noise” direction and different
coordinates in the signal direction, the derived discriminating feature subspace that goes through the centers of the
x-clusters successfully catches the signal component and discards the “noise” component, as illustrated in Fig. 3.
Other directions are not as good as the MDF direction. Of course, an irrelevant component can be in any orientation
and does not have to be along an input axis. The presented technique is a general technical that deals with any
orientation.

E. Adaptive local quasi-invariance

When high-dimensional input vectors are represented by vectors (clusters) in lower dimensional feature subspaces,
the power of features in disregarding irrelevant factors in the input as discussed above is displayed as invariance
in the regressor’s output.

IHDR is typically used to classify a temporal series of input samples, where consecutive input frames are not
totally irrelevant (e.g., during tracking of an object). Suppose that input samples (x, y) are received consecutively
in time, where x is the input observation and y is the desired output. The consecutive vectors x(t) and x(t+1) may
correspond to an image of a tracked object (e.g., moving away, moving along a direction, rotating, deformation,

8

(a)

(b)

Fig. 4. Automatically sort out a temporal“mess” for local quasi-invariance.A sign,−; |; ◦ or +, indicatesan input sample
(x; y), whoseposition indicatesthe position of x in the input spaceX andwhosesign type indicatesthe correspondingy in
the output spaceY . Input samplesare observed but are not storedin the IHDR tree. (a) A “mess” of temporaltransitions:
A 2-D illustration of many-to-many temporaltrajectoriesbetweensamples(consecutively �ring neuronpatterns).(b) Cleaner
transitionsbetweenfewer primitive prototypes(blackcircles),enabledby IHDR. Thethick dashedcurve indicatesthenonlinear
partitionof the input space,X , by thegrandparent(internalnode).Thetwo thin dashedcurvesindicatethenext-level nonlinear
partition by its two children(internalnodes).The two thick straightlines denotethe mostdiscriminatingsubspacesof the two
children,respectively. The spreadof samplesin the directionorthogonalto the solid line representsmany typesof variations.
A solid black cycle indicatesa primitive prototype(context state)in oneof the four leaf nodes.An arrow betweentwo states
indicatesobserved temporaltransitions.

facial expression, lighting changes, etc). Invariance in classification requires that the classifier classifies the different
inputs (e.g., views) of the tracked object as the same object. This kind of quasi-invariance is adaptive and local.
By adaptive, we mean that the quasi-invariance is derived from sensorimotor experience (i.e., the (x, y) pairs), not
hand-designed. By local, we mean that the quasi-invariance is applicable to a local manifold in the input space,
not the entire input space. By quasi, we mean that the invariance is approximate, but not absolutely true.

In the literature, there has been no systematic methods that can effectively detail with all kinds of local quasi-
invariance in an incremental learning setting. For example, if we compare two vectors using Euclidian distance
kx(t + 1) � x(t)k, the variation of every pixel value will be summed in such a distance.

The most discriminating feature subspace derived using the above method can acquire such adaptive local quasi-
invariance. Suppose that a series of training samples are received by the IHDR tree (xt , yt), t = 1, 2, ...,. For
simplicity, we assume that the output yt takes only four values a1, a2, a3 and a4, represented by four different
signs in Fig. 4. Because of the variations that are irrelevant to the output, the trajectory of x1, x2, ... shown in
Fig. 4(a) is a mess. That is, there is no clearly visible invariance.

The labels generated by the y-clusters allow x-clusters to be formed according to output. In each internal node,
the most discriminating subspace is created, shown as thick line segments in Fig. 4(b). Irrelevant factors while
an object is tracked, such as size, position, orientation, deformation, lighting, are automatically disregarded by the
feature subspace. There is no need to hand-model what kind of physical invariance that the tracked object exhibits.
This is a significant advantage of such internally generated representation (hierarchical feature subspaces). In each
leaf node of the IHDR tree, these samples are not stored. They participate in the amnesic average of the primitive
prototypes in the leaf node. As shown in Fig. 4(b), due to the nonlinear decision boundaries determined by the
parents, not many primitive prototypes are needed in a leaf node if the leaf node is pure (samples are from a single
y-cluster).

9

F. Clusters as observation-driven states

When the IHDR is used to generate actions from a series of temporally related input vectors f x1, x2, ..., xt , ...g,
the x-cluster that IHDR tree visited at time t = i is useful as a (context) state of the system at time t = i+1. From
Fig. 4(b) we can see that the transition diagrams among the primitive prototypes (i.e., context states) are similar
to a traditional Markov Decision Process (MDP). However, this is an Observation-driven Markov Decision Process
(OMDP) as discussed in [21]. The major differences between the OMDP and a traditional MDP include:

1) The states in OMDP are automatically generated from sensory inputs, i.e., observation-driven. The states in
a traditional MDP are based on the hand-constructed model about a known task.

2) The states in OMDP are vectors without specified meanings (i.e., distributed numerical representation), while
those in a traditional MDP are symbols with hand-assigned meanings (i.e., atomic symbolic representation).

3) The number of states in OMDP is fully automatically determined. The number of states in a traditional MDP
is hand-selected.

4) The states in OMDP are adaptive local quasi-invariant in the most discriminating feature subspaces, while
states in a traditional MDP are not necessarily so.

5) The OMDP is supported by the hierarchy of most discriminating subspaces in IHDR which is fully
automatically and incrementally constructed, while that for a multilevel traditional MDP is hand-designed.

These properties are necessary for automatically generating a task-specific (or context-specific) internal represen-
tation through experiences, but during the programming time the programmer of IHDR does not know what tasks
that the system will end up learning later, as discussed in [13].

G. Biological view

Fig. 5 illustrates an IHDR tree. Each node in the IHDR tree corresponds to a cortical region. The space X ,
represented as d-dimensional vectors, is first partitioned coarsely by the root. The root partitions the space X into
q subregions (q = 4 in the figure), each corresponds to one of its q children. Each child partitions its own smaller
region into q subregions again. Such a coarse-to-fine partition recursively divides input space into increasingly
small input regions through the learning experience. The q neurons (called x-clusters) in each node correspond to q
feature detectors. With incrementally arriving input vectors (xi , yi), these q neurons perform competitive incremental
updates for these y-clusters and x-clusters. If a leaf node has received enough samples, it spawns q children. In the
leaf node, a collection of micro-clusters in the form (xi , yi) are kept.

If x is given, but y is not, a search process is carried through the IHDR tree until a leaf node is reached. The
algorithm finds the nearest neighbor xi of x among the micro-clusters of the form (xi , yi) in the leaf node. The
corresponding yi in (xi , yi) is the estimated output: yi = h(x).

III. THE IHDR ALGORITHM

The algorithm incrementally builds an IHDR tree from a sequence of training samples (xt , yt), t = 0, 1, 2,
The deeper a node is in the tree, the smaller the variances of its x-clusters. When the number of samples in a node
is too small to give a good estimate of the statistics of q x-clusters, this node is a leaf node.

The mode of IHDR program is run as follows.
Procedure 1: IHDR Algorithm. Initialize root. For t = 0, 1, 2, ..., do the following:
� Grab the current sample (xt , yt).
� If yt is given, call update-tree(root, xt , yt), otherwise call compute-response(root, xt , y) and output y.

The following sections explain procedures update-tree and compute-response.

A. Update tree

The following is the incremental algorithm for updating the tree. Given the root of the tree and the training
sample (x, y), update the tree using a single training sample (x, y). Each call to update-tree may grow the tree.
This procedure handles adaptive cortical plasticity (tree layers). The system parameters: q is the number of maximum
children for each internal node. bs is the number of samples needed per scalar parameter (e.g., bs = 20).

Procedure 2: Update-tree(root, x, y).
1) Initialization. Let A be the active node waiting to be searched. A is initialized to be the root.

10

+

+

+

+
+

+

++

+

+
+

+ +
++

+

+ + +
+

+

+

+

++ +
+

+

+

+
+

+

+

+

+ +

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+ + +

+ +

+

+

+
+

+

+

+

+
+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+

+
+

+

+ +
+

+

+

+ +

+

+

+

+
+

+

+++
+

+

+
+

+

+
+

+

+
+

+

++

+

+

+

+ +
+

+

+
+ + +

+

+
+

+
++ +

++
+ ++

+

+

+

+ +

+

+
+ +

+

+

+
+

+

+
++

+
+

+

+

+ + +

+ +

+

+

+
+

+
+

++

+

+

+
+

+

+

+

+

+

+

+
+ +

+

+
+

+
+

+

+

+

+
+

+

+ ++ +

+

+ +

+

+

+

+

+

+

+

+ +
+

+
+

+

+

+
+

+
+

+
+

+

+ +

+
+ +

+

+ +

+
+ +

+

+

+ +
+

+

+

+

++
++

+

+

+ +

+

+

+

+ +

+

+

+

+

+ +

+

+
+

+
+

+
++

+

+

+

+

+

+
+

+

+

+
+ + +

+

+ +

+

+

+

+

++

+
+

+

+
+ +

+

+
+

+

+

+
+

+
++

+

+

+

+

+
+

+

+

+

+

+

+ + +

+

+
++

+
+

+

+

+

+

+

+
+

+

++

+

+

+

+

+ +
+

+

+
+

+ +
+

+

+

++

+

+

+
+ +

From sensory input

To motor
From external
motor teaching

Direction
of sensory
projections
(x−signals)

Direction
of motor
projections
(y−signals)

+

Fig. 5. Illustration of an IHDR tree incrementallydeveloped(self-organized)from learningexperience.The sensoryspace
is representedby sensoryinput vectors,denotedby “+”. The sensoryspaceis repeatedlypartitionedin a coarse-to-�neway.
The upperlevel andlower level representthe samesensoryspace,but the lower level partitionsthe space�ner thanthe upper
level does.An ellipse indicatesthe spacefor which the neuronat the centeris responsible.Eachnode(cortical region) hasq
featuredetectors(neurons)(q = 4 in the �gure), which collectively determineto which child node(cortical region) the current
sensoryinput belongs(excites).An arrow indicatesa possiblepathof the signal �o w. In every leaf node,prototypes(marked
by “+”) arekept, eachof which is associatedwith the desiredmotor output.

2) Tree search. While A is not a leaf node, do the following.

a) Compute response. Compute the response for all neurons in A from input x, by computing the
probabilities described in Subsection IV-C. That is, the response of a node (neuron) is the probability
for x to belong to the input region represented by the node.

b) Compete. Among maximum of q neurons in A, the neuron that has the maximum response wins.
c) The child of A that corresponds to the winning neuron is set as the new A, the next active node.

3) If A is an internal node and is marked as plastic, update A by calling update-note(A, x, y) to update the
partition of the region that A represents.

4) If A is a leaf node, update the matched micro-cluster of A by calling update-cluster-pair(C, x, y), where C
is the set of all micro-clusters in A.

5) If A is a leaf node, spawn if it necessary: For the leaf node A, if the number of samples, n, received is larger
than a threshold automatically computed based on NSPP = 2(n � q)/q2 > bs to be explained later, turn A
into an internal node and spawn q leaf nodes as q children of A by distributing the micro-clusters of A into
its children.

11

As indicated above, an internal node is marked as plastic or non-plastic. A plastic internal node may allow significant
changes in its region’s partition which may imply that many previous samples were incorrectly allocated to its
subtrees according to the new partition. Therefore, every internal node is marked plastic until it has spawn l levels
of nodes (e.g., l = 2).

B. Update node

The above procedure update-node in the update-tree is explained below. Given a node N and a training sample
(x, y), it updates the node N using (x, y). This procedure handles adaptive plasticity for cortical patches (within a
tree node).

Procedure 3: Update-node(N,x, y).
1) Update y-clusters. Let c be the set of y-clusters in node N . Update y-clusters by calling update-clusters(y, c),

which returns the index i of the closet cluster yi .
2) Update the i-th x-cluster associated with yi . That is, update the mean of the x-cluster using x, employing

amnesic average to be explained later in Section III-F.
3) Update the subspace of the most discriminating features of the node N , since the i-th x-cluster has been

updated.

C. Update clusters

The above procedure requires the procedure update-clusters. Given sample y and the set of clusters c = f y i j
i = 1, 2, ..., ng, the procedure, update-clusters, updates the clusters in c. This procedure is partially responsible for
handling adaptive plasticity for neurons (clusters). The parameters include: q is the bound on the number of clusters
in the set c; δy > 0 is the resolution in the output space Y .

Procedure 4: Update-clusters(y, c).
1) Find the nearest neighbor yj in the following expression

j = argmin1� i � n fk yi � ykg,

where argmin denotes the argument j that reaches the minimum.
2) If n < q and ky � yj k > δy (to prevent very similar or even the same samples to form different cluster

centers), increment n by one, set new cluster yn = y, add yn into c and return. Otherwise, do the following.
3) Update a certain portion p (e.g., p = 0.2, i.e., pulling top 20%) of nearest clusters using the amnesic average

explained in Section III-F and return the index j.

D. Update cluster pair

The procedure update-tree also requires the procedure update-cluster-pair, which is only for a leaf node. Given
a sample (x, y) and the set of cluster pairs C = f (xi , yi) j i = 1, 2, ..., ng in the leaf node, the procedure update-
cluster-pair updates the best matched cluster in C . This procedure is partially responsible for handling adaptive
plasticity for each output neuron (micro-cluster). The parameters include: bl > 0 is the bound on the number of
micro-clusters in a leaf node; δx > 0 is the resolution in the input space X .

Procedure 5: Update-cluster-pair(C, x, y).
1) If n < bl and kx� xj k > δx (to prevent very similar or even the same samples to form different cluster centers),

increment n by one, create a new cluster (xn , yn) = (x, y), add (xn , yn) into C , and return. Otherwise, do
the following incremental clustering.

2) Find the nearest neighbor xj in the following expression

j = argmin1� i � n fk xi � xkg.

3) Update cluster xj by adding the new sample x using amnesic average.
4) Update cluster yj by adding the new sample y using amnesic average.
5) Return the updated C .

12

E. Compute response

When the desired output y is not given, IHDR calls the procedure compute-response. Given the root of the tree
and sample x, the procedure compute-response computes the response of the tree to produce the final output y.
The system parameters include q, the number of maximum children for each internal node.

Procedure 6: Compute-response(root, x, y).
1) Do steps “initialization” and “tree search” the same way as the corresponding steps in procedure update-tree,

which finds the leaf node A.
2) Compute the output y. Let the set of micro-clusters in A to be c = f (xi , yi) j i = 1, 2, ..., ng. Find the best

match in the input space:
j = argmin1� i � n fk x � xi kg.

Assign output y to be the associated yj , i.e., y = yj , and return.

F. Amnesic average

The amnesic average is motivated by the scheduling of neuronal plasticity which should adaptively change with
on-going experience. It is also motivated by the mathematical notion of statistical efficiency in the following sense:
To estimate the mean vector θ of a distribution (e.g., the mean vector of observations xt , t = 1, 2, 3, ..., as the
synaptic weight vector of the neuron), the sample mean is the most efficient estimator for a large class of time-
invariant distributions (e.g., exponential distributions such as Gaussian). By definition, the most efficient estimator
Γ has the least expected error variance, EkΓ � θk2, among all possible estimators. However, since the distribution
of observations is typically not time-invariant in practice, the amnesic average is needed to adapt to the slowly
changing distribution while keeping the estimator to be quasi-optimally efficient.

From the algorithm point of view, in incremental learning, the initial centers of each state clusters are largely
determined by early input data. When more data are available, these centers move to more appropriate locations. If
these new locations of the cluster centers are used to judge the boundary of each cluster, the initial input data was
incorrectly classified. In other words, the center of each cluster contains some earlier data that do not belong to
this cluster. To reduce the effect of the earlier data, the amnesic average can be used to compute the center of each
cluster. The amnesic average can also track the dynamic change of the input environment better than a conventional
average.

The average of t input data x1, x2, ..., xt is given by:

x̄(t) =
1

t

t
∑

i =1

xi =
t

∑

i =1

1

t
xi . (2)

In the above expression, every xi is multiplied by a weight 1/t and the product is summed. Therefore, each xi

receives the same weight 1/t. This is called an equally weighted average. If x i arrives incrementally and we need
to compute the average for all the inputs received so far, it is more efficient to recursively compute the current
average based on the previous average:

x̄(t) =
(t � 1)x̄(t � 1) + xt

t
=

t � 1

t
x̄(t � 1) +

1

t
xt . (3)

In other words, the previous average x̄(t � 1) gets a weight (t � 1)/t and the new input xt gets a weight 1/t. These
two weights sum to one. The recursive equation Eq. (3) gives an equally weighted average. In amnesic average,
the new input gets more weight than old inputs as given in the following expression:

x̄(t) =
t � 1 � µ

t
x̄(t � 1) +

1 + µ

t
xt . (4)

where µ � 0 is an amnesic parameter. The two weights still always sum to one. For example µ = 1, which means
that the weight for the new sample is doubled.

The amnesic weight for the new data (1+µ)/t will approach zero when t goes to infinity. This means that when
t grows very large without bound, the new data would hardly be used and thus the system will hardly adapt. We
would like to enable µ to change dynamically. Thus, we denote µ as µ(t).

13

We use two transition points, t1 and t2. When t � t1, we like to let µ(t) = 0 to fully use the limited data. When
t1 < t � t2, we let µ change linearly from 0 to c (e.g., c = 1). When t2 < t, we let µ(t) to grow slowly and its
growth rate gradually approaches 1/m. The above discussion leads to the following expression for µ(t):

µ(t) =

0 if t � t1

c(t � t1)/(t2 � t1) if t1 < t � t2

c + (t � t2)/m if t2 < t

Since limt !1 (1+µ(t))/t = 1/m, when t grows without bound, the weight for the new data x(t) is approximately
the same as that of the non-amnesic average with m data points. Such a growing µ(t) enables the amnesic average
to track the non-stationary random input process xt , whose mean changes slowly over time.

The update expression for incrementally computing sample covariance matrix is as follows:

Γ(t)
x =

t � 1 � µ(t)

t
Γ(t � 1)

x +
1 + µ(t)

t
(xt � x̄(t))(xt � x̄(t))> (5)

The amnesic function µ(t) changes with t as we discussed above.
Note that the above expression assumes t degrees of freedom, instead of t � 1 in the batch computation of the

sample covariance matrix, for the following reason: Even with a single sample x1, the corresponding covariance
matrix should not be estimated as a zero vector, since x1 is never exact if it is measured from a physical event.
For example, the initial variance matrix Γ

(1)
x can be estimated as σ2I , where σ2 is the expected digitization noise

in each component and I is the identity matrix of the appropriate dimension.
This is the archival journal version of IHDR which explains IHDR in its entirety with significant new material.

IHDR has been used in several applications as a component, where the presentations of the IHDR part were partial
and brief. IHDR was used for vision-based motion detection, object recognition (appearance classification), and
size dependent action (appearance regression) in [22]. IHDR was used for recognition of hand-written numerals
and detection of orientation of natural images in [23].

IV. DISCRIMINATING SUBSPACE AND OPTIMAL CLASS BOUNDARY

Each internal node automatically drives the subspace of the most discriminating features (MDF) for superior
generalization. The MDF subspace is tuned to each internal node for characterizing the samples assigned to the
node. For our partition purpose, each child of the internal node represents a class. Probability-based optimal class
boundary is needed to partition the input space of the internal node, based on the MDF subspace.

A. Discriminating subspace

Due to a very high input dimension (typically at least a few thousand), for computational efficiency, we should
not represent data in the original input space X . Further, for better generalization characteristics, we should use
discriminating subspaces D in which input components that are irrelevant to output are disregarded.

We first consider x-clusters. Each x-cluster is represented by its mean as its center and the covariance matrix as
its size. However, since the dimension of the space X is typically very high, it is not practical to directly keep the
covariance matrix. If the dimension of X is 3000, for example, each covariance matrix requires 3000 � 3000 =
9, 000, 000 numbers! We adopt a more efficient method that uses subspace representation.

As explained in Section II-A, each internal node keeps up to q x-clusters. The centers of these q x-clusters are
denoted by,

C = f c1, c2, ..., cq j ci 2 X , i = 1, 2, ..., qg. (6)

The locations of these q centers tell us the subspace D in which these q centers lie. D is a discriminating space
since the clusters are formed based on the clusters in output space Y .

The discriminating subspace D can be computed as follows. Suppose that the number of samples in cluster
i is ni and thus the grand total of samples is n =

∑q
i=1 ni . Let C̄ be the mean of all the q x-cluster centers.

C̄ = 1
n

∑q
i=1 ni ci . The set of scatter vectors from their centers then can be defined as si = ci � C̄ , i = 1, 2, ..., q.

These q scatter vectors are not linearly independent because their sum is equal to a zero vector. Let S be the set
that contains these scatter vectors: S = f si j i = 1, 2, ..., qg. The subspace spanned by S, denoted by span(S),
consists of all the possible linear combinations from the vectors in S, as shown in Fig. IV-A.

14

1 2

3

1
s

2s

s3

X1

X3

X2
cc

c

C

Fig. 6. The linearmanifold representedby C̄ +span(S), thespannedspacefrom scattervectorstranslatedby thecentervector
C̄.

The orthonormal basis a1, a2, ..., aq� 1 of the subspace span(S) can be constructed from the radial vectors
s1, s2, ..., sq using the Gram-Schmidt Orthogonalization (GSO) procedure:

Procedure 7: GSO Procedure. Given vectors s1, s2, ..., sq� 1, compute the orthonormal basis vectors
a1, a2, ..., aq� 1.

1) a1 = s1/ks1k.
2) For i = 2, 3, ..., q � 1, do the following:

a) a0
i = si �

∑i � 1
j =1 (sT

i aj)aj .
b) ai = a0

i /ka0
i k.

In the above procedure, a degeneracy occurs if the denominator is zero. In the first step, the generacy means s1

is a zero vector. In the remaining steps, it means that the corresponding vector s i is a linear combination of the
previous radial vectors. If a degeneracy occurs, the corresponding si should be discarded in the computation for the
basis vectors. The number of basis vectors that can be computed by the GSO procedure is the number of linearly
independent radial vectors in S.

Given a vector x 2 X , we can compute its scatter part s = x � C̄. Then compute the projection of x onto the
linear manifold by f = MT s, where M = [a1, a2, . . . , aq� 1]. We call the vector f the discriminating features of
x in the linear manifold S. The mean and the covariance of the clusters are then computed on the discriminating
subspace.

The Fisher’s linear discriminant analysis by [20] finds a subspace that maximizes the ratio of between-cluster
scatter and within-cluster scatter. Since we decided to use the entire discriminating space D , we do not need
to consider the within-cluster scatter here in finding D since probability will be used in defining distance. This
simplifies the computation for discriminating features. Once we find this discriminating space D , we will use size-
dependent negative-log-likelihood (SDNLL) distance as discussed in Section IV-B to take care of the reliability of
each dimension in D using information that is richer than the within-cluster scatter.

B. The probability-based metrics

The subspace of the most discriminating features is automatically derived from a constraint that the dimension
allowed is q � 1. Within this subspace, we need to automatically determine the optimal class boundaries for every
child node, based on the estimated probability distribution. Different models of probability distribution correspond
to different distance metrics.

To relate the distance metrics with the response of neurons, we model the response of a neuron from an input
x as g(1/d(x, c)) where d(x, c) is distance from x and the center vector c (i.e., the synaptic vector) of the neuron,
and g is a smooth sigmoidal nonlinear function.

Let us consider the negative-log-likelihood (NLL) defined from Gaussian density of dimension q � 1:

G(x, ci) =
1

2
(x � ci)

T Γ� 1
i (x � ci) +

q � 1

2
ln(2π) +

1

2
ln(jΓi j). (7)

15

We call it Gaussian NLL for x to belong to the cluster i. ci and Γi are the cluster sample mean and
sample covariance matrix, respectively, computed using the amnesic average in Section III-F. Similarly, we define
Mahalanobis NLL and Euclidean NLL as:

M(x, ci) =
1

2
(x � ci)

T Γ� 1(x � ci) +
q � 1

2
ln(2π) +

1

2
ln(jΓj), (8)

E(x, ci) =
1

2
(x � ci)

T ρ2I � 1(x � ci) +
q � 1

2
ln(2π) +

1

2
ln(jρ2I j), (9)

where Γ is the within-class scatter matrix of each node — the average of the covariance matrices of the q clusters:

Γ =
1

q � 1

q� 1
∑

i =1

Γi , (10)

computed using the same technique of the amnesic average.
Suppose that the input space is X and the discriminating subspace for an internal node is D . The Euclidean NLL

treats all of the dimensions in the discriminating subspace D the same way, although some dimensionalities can
be more important than others. It has only one parameter ρ to estimate. Thus, it is the least demanding among the
three NLL in the richness of the observation required. When very few samples are available for all of the clusters,
the Euclidean likelihood is the suited likelihood.

The Mahalanobis NLL uses the within-class scatter matrix Γ computed from all of the samples in all of the q
x-clusters. Using Mahalanobis NLL as the weights for subspace D is equivalent to using Euclidean NLL in the
basis computed from Fisher’s LDA procedure. It decorrelates all dimensions and weights each dimension using
a different weight. The number of parameters in Γ is q(q � 1)/2, and thus, the Mahalanobis NLL requires more
samples than the Euclidean NLL.

The Mahalanobis NLL does not treat different x-clusters differently because it uses a single within-class scatter
matrix Γ for all of the q x-clusters in each internal node. For Gaussian NLL, L(x, c i) in Eq. (7) uses the covariance
matrix Γi of x-cluster i. In other words, the Gaussian NLL not only decorrelates the correlations but also applies a
different weight at a different location along each rotated basis. However, it requires that each x-cluster has enough
samples to estimate the (q � 1) � (q � 1) covariance matrix. Thus, it is the most demanding on the number of
observations. Note that the decision boundary of the Euclidean NLL and the Mahalanobis NLL is linear, but by
the Gaussian NLL, it is quadratic.

C. Automatic soft transition among different matrices

In the ominivariate trees [24], [25], each internal node performs batch analysis to choose among three types of
splits: univariate, linear multivariate, and nonlinear multivariate. However, IHDR cannot perform such batch analysis,
due to the challenge of incrementally arrived samples. Different distance metrics are needed at every internal node
based on the number of available samples in the node. Further, the transition between different metrics must be
gradual and automatic.

We would like to use the Euclidean NLL when the number of samples in the node is small. Gradually, as the
number of samples increase, the within-class scatter matrix of q x-clusters are better estimated. Then, we would
like to use the Mahalanobis NLL. When a cluster has very rich observations, we would like to use the full Gaussian
NLL for it. We would like to make an automatic transition when the number of samples increase. We define the
number of samples ni as the measurement of maturity for each cluster i. n =

∑q
i =1 ni is the total number of

samples in a node.
For the three types of NLLs, we have three matrices, ρ2I , Γ, and Γi . Since the reliability of the estimates are

well indicated by the number of samples, we consider the number of scales received to estimate each parameter,
called the number of scales per parameter (NSPP), in the matrices. The NSPP for ρ2I is (n � 1)(q � 1), since the
first sample does not give any estimate of the variance and each independent vector contains q � 1 scales. For the
Mahalanobis NLL, there are (q � 1)q/2 parameters to be estimated in the (symmetric) matrix Γ. The number of
independent vectors received is n � q because each of the q x-clusters requires a vector to form its mean vector.
Thus, there are (n � q)(q � 1) independent scalars. The NSPP for the matrix Γ is (n� q)(q� 1)

(q� 1)q=2 = 2(n� q)
q . To avoid

16

the value becoming negative when n < q, we take NSPP for Γ to be max
{

2(n� q)
q , 0

}

. Similarly, the NSPP for Γi

for the Gaussian NLL is 1
q

∑q
i=1

2(ni � 1)
q = 2(n� q)

q2 . Table I summarizes the result of the NSPP values of the above
derivation. The procedure update-tree used NSPP for Gaussian NLL.

TABLE I

CHARACTERISTICS OF THREE TYPES OF SCATTER MATRICES

Type Euclidean� 2 I Mahalanobis� Gaussian� i

NSPP (n − 1)(q− 1) 2(n−q)
q

2(n−q)
q2

A bounded NSPP is defined to limit the growth of NSPP so that other matrices that contain more scalars
can take over when there are a sufficient number of samples for them. Thus, the bounded NSPP for ρ2I is
be = minf (n � 1)(q � 1), nsg, where ns denotes the soft switch point for the next, more complete matrix to take
over. To estimate ns, we consider a series of random variables drawn independently from a distribution with a
variance σ2, the expected sample mean of n random variables has an expected variance σ2/(n � 1). We can choose
a switch confidence value α for 1/(n � 1). When 1/(n � 1) = α, we consider that the estimate can take about a
50% weight. Thus, n = 1/α+1. As an example, let α = 0.05 meaning that we trust the estimate with 50% weight
when the expected variance of the estimate is reduced to about 5% of that of a single random variable. This is
like a confidence value in hypothesis testing except that we do not need an absolute confidence and a relative one
suffices. We then get n = 21, which leads to ns = 21.

The same principle applies to Mahalanobis NLL and its bounded NSPP for Γ is bm =

min
{

max
{

2(n� q)
q , 0

}

, ns

}

. It is worth noting that the NSPP for the Gaussian NLL does not need to be bounded,
since among our models it is the best estimate with increasing number of samples beyond. Thus, the bounded
NSPP for Gaussian NLL is bg = 2(n� q)

q2 .
How do we realize automatic transition? We define a size-dependent scatter matrix (SDSM) W i as a weighted

sum of three matrices:
Wi = weρ

2I + wmΓ + wgΓi , (11)

where we = be/b, wm = bm/b, wg = bg/b and b is a normalization factor so that these three weights sum to 1:
b = be + bm + bg. Using this size-dependent scatter matrix Wi , the size-dependent negative log likelihood (SDNLL)
for x to belong to the x-cluster with center ci is defined as:

L(x, ci) =
1

2
(x � ci)

T W � 1
i (x � ci) +

q � 1

2
ln(2π) +

1

2
ln(jWi j). (12)

With be, bm , and bg changing automatically, (L(x, ci)) transits smoothly through the three NLLs. It is worth
noting the relation between the LDA and SDNLL metric. The LDA in space D with original basis η gives a basis
ε for a subspace D0 � D . This basis ε is a properly oriented and scaled version for D so that the within-cluster
scatter in D0 is a unit matrix, [20] (Sections 2.3 and 10.2). In other words, all of the basis vectors in ε for D0

are already weighted according to the within-cluster scatter matrix Γ of D . If D 0 has the same dimension as D ,
the Euclidean distance in D0 on ε is equivalent to the Mahalanobis distance in D on η, up to a global scale
factor. However, if the covariance matrices are very different across different x-clusters and each of them has
enough samples to allow a good estimate of every covariance matrix, the LDA in space D is not as good as the
Gaussian likelihood because covariance matrices of all x-clusters are treated the same in the LDA, while Gaussian
likelihood takes into account such differences. The SDNLL in (12) allows automatic and smooth transition between
three different types of likelihood: Euclidean, Mahalanobis and Gaussian, according to the predicted effectiveness
of each likelihood. Hwang & Weng [11] demonstrated that SDNLL effectively deals with various sample cases,
including small, moderate, large, and unbalanced samples.

D. Computational considerations

Due to the challenge of real-time computation, an efficient non-iterative computational scheme must be designed
for every internal node.

17

The matrix weighted squared distance from a vector x 2 X to each x-cluster with center c i is defined by,

d2(x, ci) = (x � ci)
T W � 1

i (x � ci), (13)

which is the first term of Eq.(12).
This distance is computed only in (q � 1)-dimensional space using the basis M . The SDSM W i for each x-cluster

is then only a (q � 1) � (q � 1) square symmetric matrix, of which only q(q � 1)/2 parameters need to be estimated.
When q = 6, for example, this number is 15.

Given a column vector v represented in the discriminating subspace with an orthonormal basis whose vectors
are the columns of matrix M , the representation of v in the original space X is x = Mv.

To compute the matrix weighted squared distance in Eq.(13), we use a numerically efficient method, Cholesky
factorization, [26] (Sec. 4.2). The Cholesky decomposition algorithm computes a lower triangular matrix L from
W so that W is represented by W = LLT as stated in the following procedure.

Procedure 8: Cholesky factorization: Given an n � n positive definite matrix A = [a ij], compute lower triangular
matrix L = [lij] so that A = LLT .

1) For i = 1, 2, ..., n do:
a) For j = 1, 2, ..., i � 1 do:

lij = (aij �
j � 1
∑

k=1

lik lj k)/lj j ,

b) lii =
√

aii �
∑i � 1

k=1 l2ik .
With the lower triangular matrix L, we first compute the difference vector from the input vector x and each

x-cluster center ci : v = x � ci . The matrix weighted squared distance is given by:

d2(x, ci) = vT W � 1
i v = vT (LLT)� 1v = (L� 1v)T (L� 1v). (14)

We solve for y in the linear equation Ly = v and then y = L� 1v and d2(x, ci) = (L� 1v)T (L� 1v) = kyk2. Since
L is a lower triangular matrix, the solution for y in Ly = v is trivial since we simply use the back-substitution
method as described in [27] (page 42).

Typically, many different clusters in leaf nodes point to the same output vector as the label. To get the class
label quickly, each cluster (or sample) (xi , yi) in the leaf node of the regression tree has a link to label li so that
when (xi , yi) is found as a good match for the unknown input x, li is directly the output as the class label. There
is no need to search for the nearest neighbor in the output space for the corresponding class label.

Therefore, the incrementally constructed IHDR tree gives a coarse-to-fine probability model. If we use a Gaussian
distribution to model each x-cluster, this is a hierarchical version of the well-known mixture-of-Gaussian distribution
models: the deeper the tree is, the more Gaussians are used and the finer these Gaussians are. At shallow levels,
the sample distribution is approximated by a mixture of large Gaussians (with large variances). At deep levels, the
sample distribution is approximated by a mixture of many small Gaussians (with small variances). The multiple
search paths guided by probability allow a sample x, that falls in-between two or more Gaussians at each shallow
level, to explore the tree branches that contain its neighboring x-clusters. Those x-clusters to which the sample (x, y)
has little chance to belong to are excluded from further exploration. This results in the well-known logarithmic
time complex for tree retrieval: O(d log n) where n is the number of leaf nodes in the tree, and d is the dimension
of the input vector, assuming that the number of samples in each leaf node is bounded above by a constant (e.g.,
50). See [11] for the proof of the logarithmic time complexity.

V. THE EXPERIMENTAL RESULTS

Several experiments were conducted using the proposed incremental algorithm. First, we present the experimental
results using synthetic data. Then we show the power of the method using real face images as high dimensional
input vectors for classification. For the regression problem, we demonstrated the performance of our algorithm for
autonomous navigation where input is the current image and output is the required steering signal.

18

A. For synthetic data

The purpose of using synthetic data is to examine the near optimality potential of our new algorithm with the
known distributions as a ground truth (but our algorithm does not know the distribution).

The synthetic experiment presented here is for 3-D, where the discriminating space D is 2-D. There were 3
clusters, each being modeled by a Gaussian distribution with means, respectively, (0, 0, 0), (5, 0, 0), (0, 5, 0) and
covariance matrices

1 0 0
0 1 0
0 0 1

 ,

4 0 0
0 1 0
0 0 1

 ,

4 0 0
0 2.25 0
0 0 1

 .

There are 500 samples per class for training and testing, respectively.
Fig. 7 plots these samples in (x1, x2) plane, along with the decision boundaries from five types of distance

metrics: (1) The Bayesian ground-truth decision rule (Bayesian-GT) where all the ground truths about distributions
are known (i.e., the rule does not use samples). (2) The Euclidean distance measured from a scalar covariance
matrix ρ2I . (3) The Mahalanobis distance using a single estimated covariance matrix Sw . (4) The Gaussian NLL
(Beyesian-Sample) using estimated full sample covariance matrices for all clusters. (5) Our SDNLL.

0 5 10
−4

−2

0

2

4

6

8

10

12
B G L

M E

0 5 10
−4

−2

0

2

4

6

8

10

12

(a) (b)

Fig. 7. Training samplesin (x1; x2) planeand the decisionboundariesestimatedby differentdistancemetrics.(a) A small-
samplecase.Lines `B': Bayesian-GT. Lines `E': Euclideandistance.Lines `G': GaussianNLL. Lines `M': Mahalanobis
distance.Lines `L': our SDNLL. (b) A large-samplecase.Note that circular markersalong the boundaryarenot samples.

Table II shows the classification errors of (1) Bayesian-GT, (2) Bayesian-Sample, and (3) the new SDNLL. It
shows that the classification errors are very similar among all the measurements. Of course, our adaptive method
SDNLL would not be able to reach the error rates of the impractical Bayesian-GT and non-adaptive Bayesian-
Sample if there are not enough samples per class.

TABLE II

ERROR RATES FOR 3-D SYNTHETIC DATA

Bayesian-GT Bayesian-Sample SDNLL
class1 7% 7.2% 4%
class2 6.8% 8.2% 4.6%
class3 1.6% 2.0% 4.8%

B. For real face data

A critical test of the presented algorithm is to directly deal with high-dimensional, multi-media data, such as
images, video, or speech. We present the results for images here. Each image of m rows and n columns is

19

considered a mn-dimensional vector, where each component of the vector corresponds to the intensity of each
pixel. Statistical methods have been applied directly to these vectors of high dimension. This type of approach has
been very successful in the field of computer vision and now has been commonly called appearance-based methods,
[15], [28] and [17]. Although appearance-based methods themselves do not have invariance in position, size, and
orientation when applied to appearance-based object recognition, they have been well-accepted for their superior
performance when input images are preprocessed images with roughly normalized position and size.

The first experiment used face images from the Weizmann Institute in Israel. The image database was constructed
from 28 human subjects, each having thirty images: all combinations of two different expressions under three
different lighting conditions with five different orientations. An example of the face images from one human
subject is shown in Fig 9. The preprocessed images have a resolution of 88 � 64, resulting in a input dimension of
5632. The task here is to classify images into a person’s ID as class label. We used the mean of all training images
of each person as the corresponding y vector. For this classification problem, a node does not spawn children as
long as it contains only samples of the same class (pure node).

Fig. 8. Face imagesfrom the WeizmannInstitute. The training imagesof one subject.3 lightings, 2 expressions,and 3
orientationsare includedin the training set.

Fig. 9. Face imagesfrom the WeizmannInstitute. The testing imagesof one subject.3 lightings, 2 expressions,and 2
orientationsare includedin the testingset.

For our disjoint test, the data set was divided into two groups: training set and testing set. The training set
contains 504 face images. Each subject contributed 18 face images in the training set. The 18 images include three
different poses, three different lightings, and two different expressions. The remaining 336 images were used for
the testing set. Each subject had 12 images for testing, which include two different poses, three different lightings,
and two expressions. In order to present enough training samples for the IHDR algorithm to build a stable tree,
we artificially increased the samples by presenting training samples to the program 20 times (20 epochs). Table III
compares different appearance-based methods. Table IV completes a 2-fold cross-validation with Table III. In other
words, the test and training sets in Table III exchange their roles in Table IV. We used 95% sample variance in
determining the number of basis vectors (eigenvectors) in the principal component analysis (PCA). The 95% of
variance results in about 98 eigenvectors which are much less than that of NN (5632-D!). The PCA organized with
a binary tree was faster than straight NN as shown in the Table III. It is the fastest algorithm among all of the
methods we tested but the performance is worse than those of the PCA and NN. The accuracy of the LDA is the
third best. Our new IHDR method is faster than the LDA and resulted in the lowest error rate.

For comparison, we also applied the support vector machines (SVM) by [29] to this image set. The support
vector machines utilizes a structural risk minimization principle, [30]. It results in a maximum separation margin
and the solution depends only on the training samples (support vectors) which are located on the supporting planes.
The SVM has been applied to both classification and regression problems. We used the SVM software obtained
from Royal Holloway, University of London, by [31], for this experiment. To avoid excessively high dimension that

20

SVM is unable deal with, we applied the PCA first to provide feature vectors for the SVM.2 The best result we
obtained, by tuning the parameters of the software, is reported in Table III. The data showed that the recognition
rate of the SVM with the PCA is similar to that of the PCA alone. However, the SVM with the PCA is faster than
the PCA. This is because the SVM has more compact representation and the PCA alone needs to conduct linear
search for every training sample. However, the SVM is not suited for the real-time, incremental learning that our
applications require because its training is extremely slow [32], in addition to its inferior performance shown in
Tables III and IV.

The error rate of the proposed IHDR algorithm was compared with some major tree classifiers. CART of [5]
and C5.0 of [33] are among the best known classification trees3. However, like most other decision trees, they are
univariate trees in that each internal node used only one input component to partition the samples. This means
that the partition of samples is done using hyperplanes that are orthogonal to one axis. We do not expect that this
type of tree can work well in a high dimensional or highly correlated space. Thus, we also tested a more recent
multivariate tree OC1 of [10]. We realize that these trees were not designed for high-dimensional spaces like those
from the images. Therefore, to fully explore their potential, we also tested the corresponding versions by performing
the PCA before using CART, C5.0, and OC1 and called them CART with the PCA, C5.0 with the PCA, and OC1
with the PCA, respectively, as shown in Tables III and IV.

Further, we compared the batch version of our HDR algorithm. Originally we expected the batch method to
out-perform the incremental one. However, the error rate of the IHDR tree turned out lower than that of the HDR
tree for this set of data. A major reason for this is that the same training samples may distribute in different leaf
nodes for the IHDR tree because we ran several iterations during training. For the batch version, each training
sample can only be allocated to a single leaf node.

TABLE III

THE PERFORMANCE FOR WEIZMANN FACE DATA SET 1

Method Error rate Avg. testingtime (msec)
PCA 12.8% 115

PCA tree 14.58% 34
LDA 2.68% 105
NN 12.8% 164

SVM with PCA 12.5% 90
C5.0 with PCA 45.8% 95
OC1 with PCA 44.94% 98

HDR tree 1.19% 78
IHDR tree 0.6% 74

TABLE IV

THE PERFORMANCE FOR WEIZMANN FACE DATA SET 2 (SWAPPING TRAINING AND TEST SETS FROM SET 1)

Method Error rate Avg. testingtime (msec)
PCA 15.3% 81

PCA tree 17.4% 29
LDA 9.52% 75
NN 13.5% 108

SVM with PCA 7.41% 69
C5.0 with PCA 42.3% 73
OC1 with PCA 41.5% 72

HDR tree 3.37% 56
IHDR tree 3.97% 53

2The software failed whenwe usedthe original imageinput with dimension5362.
3We have also experimentedthe samedata set using CART implementedby OC1. The performanceis signi�cantly worse than those

reportedin the Table III.

21

For a large sample test, we performed an experiment on the FERET (Face Recognition Technology) face image
set from [34]. The FERET face image set was developed under the FERET project sponsored by the US Army
Research Laboratory. Not all of the images of the FERET project were available publicly due to the need to
keep some of the test sets. We used the front view images that were made publicly available to us during our
participation with blind FERET tests. It contains face images of 34 individuals, under different lighting conditions
and expressions. Each person had three face images for the purpose of training. The other face image was used for
testing.

A face normalization program was used to translate, scale, and rotate each face image into a canonical image of
88 rows and 64 columns so that eyes are located at prespecified positions as shown in Fig 10.

To reduce the effect of background and non-facial areas, image pixels are weighted by a number that is a function
of the radial distance from the image center. Further, the image intensity is masked by a linear function so that
the minimum and maximum values of the images are 0 and 255, respectively. Fig 10 shows the effect of such a
normalization procedure.

A summary of comparison is listed in Table V. Notice that the training time is measured for the total time to
train the corresponding system. The testing time is the average time per query. To make a fair comparison, training
and testing times for the PCA are included in C5.0 with the PCA, OC1 with the PCA, and CART with the PCA.
As shown, none of these existing decision trees can deal with the FERET set well, not even the versions that use
the PCA as a preprocessing step. The batch version of the proposed algorithm (HDR) tree shares the same error
rate as the IHDR tree. The HDR tree is faster than the IHDR in both training and testing. This is because we ran
several epochs for the IHDR tree and the IHDR tree has more redundant information inside.

(a) (b) (c)

(e) (f) (g)

Fig. 10. The demonstrationof the imagenormalizationprocess.(a), (e) The original imagefrom the FERETdataset.(b), (f)
The normalizedimage.(c), (g) The masked image.

In order to display how the IHDR tree converges, Fig 11 shows the error rates vs. epoch plot. Each epoch means
that the training set is fed into the algorithm once, one image at a time. As can be seen, the resubstitution error
rate converges to zero at the 5th epoch. The testing error rate reaches zero at 6th epoch.

C. Autonomous navigation by a robot

All of the tasks above are classification tasks. We present the result for a regression task. Our vision-based
navigation system accepts an input image, X , and outputs the control signal, C , to update the heading direction of
the vehicle. The navigator can be denoted by a function f that maps the input image space X to control signal space

22

TABLE V

THE PERFORMANCE OF DECISION TREE FOR THE FERET TEST

Method Error rate Time (sec)
Training Testing Training Testing

CART 10% 53% 2108.00 0.029
C5.0 41% 41% 21.00 0.030
OC1 6% 56% 2206.00 0.047

CART with PCA 11% 53% 10.89 0.047
C5.0 with PCA 6% 41% 9.29 0.047
OC1 with PCA 5% 41% 8.89 0.046

HDR tree 0% 0% 12.25 0.027
IHDR tree 0% 0% 23.41 0.041

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Epochs

E
rr

or
 ra

te

Resub

Test

Fig. 11. The performanceplot of theFERETfacetest1. Theplot of error ratevs. numberof epochs.The“Resub” line means
the resubstitutionerror rate.The “Test” line representsthe testingerror rate.

C. The learning process of the autonomous navigation problem can then be realized as a function approximation.
This is a very challenging task since the function to be approximated is for a very high-dimensional input space
and the real application requires the navigator to perform in real-time.

We applied our algorithm to this challenging problem. Some of the example input images are shown in Fig 12.
As can be seen in the images, surface specularity, floor tile patterns, various doors and windows along the straight
sections and turning corners pose an extremely challenging computer vision task for traditional vision systems. Our
method uses the entire image directly and the feature basis vectors of subspaces are automatically derived online
instead of manually designed off-line. Totally, 318 images with the corresponding heading directions were used for
training. Desired heading direction, which must keep the robot in the center of straight hallways and turn properly
at 6 kinds of corners, was recorded online at each time. The resolution of each image is 30 by 40. We used the other
204 images to test the performance of the trained system. Fig. 13 shows the maximum error rates and the mean
error rates versus the number of training epochs. Both the maximum error and the mean error converge around the
15th epoch. Fig. 14 gives plots of the histograms of the error rates at different epochs. As shown, even after the
first epoch, the performance of the IHDR tree is already reasonably good due to our coarse-to-fine approximation
scheme using the tree. With the increase of the epochs, we observed the improvement of the maximum error and
mean error. The improvement stopped at the 15th epoch because the algorithm did not use any new training samples
in that epoch and the system has perfectly fit the existing training data set. Our test on a real mobile robot has
shown that a system of such an error level of epoch 5 can navigate the robot very reliably for hours even with
passers-by until the on board batteries are exhausted.

We also compare our experimental results with two artificial neural networks (ANN) with a consideration that the
pattern-by-pattern training mode of artificial neural networks is also an incremental learning method. A two-layer

23

-21 -19 -17 -15 -13 -11 -9 -7

-5 -3 -1 0 1 3 5 7

9 11 13 15 17 19 21 23

Fig. 12. A subsetof imagesusedin autonomousnavigation problem.The numberright below the imageshows the needed
headingdirection(in degrees)associatedwith that image.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

M
ax

. e
rr

or
(d

eg
re

e)

Epochs

Resub

Test

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

M
ea

n
er

ro
r(

de
gr

ee
)

Epochs

Resub

Test

(a) (b)

Fig. 13. Error ComparisonamongIHDR, FF and RBF for Vision-BasedNavigation. (a) The plot for maximumerror rates
vs. epochs.(b) The plot for meanerror ratesvs. epochs.The solid line representsthe error ratesfor resubstitutiontest.The
dashedline representsthe error ratesfor the testingset.

feed-forward (FF) network and a radial basis function (RBF) network were used to train and test for the mapping
from the image space to control signal space using the same data set as used in our IHDR tree algorithm. The
results are listed in Table VI which shows that the mean error of FF was 60% larger (2.00/1.25 = 1.6) than that
of IHDR while that of RBF was 47% larger. The maximum error of IHDR was slightly larger, but the difference
was not significant to draw a general conclusion here.

D. For data with manually extracted features

We have also further investigated how our IHDR algorithm performs on lower dimensional real data, such as
those publicly available data sets that use human defined features. We tested our algorithm on two publicly available
data sets, and we report the comparison results for these data sets.

1) Letter image recognition data: There are 26 classes which correspond to 26 capital letters. Each sample has
16 numeric features. 15000 samples were used for training and 5000 samples were used for testing.

2) Satellite image dataset: There are six decision classes representing different types of soils from satellite
images. Each sample has 36 attributes. The training set includes 4435 samples and the testing set includes
2000 samples.

24

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
er

ce
nt

ag
e

�20 �10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
er

ce
nt

ag
e

(a) (b)

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

�20 �10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
er

ce
nt

ag
e

(c) (d)

Fig. 14. The histogramsof the error rates.Plot (a), (b), (c), and (d) correspondto the histogramsat epoch1, 6, 11, 20,
respectively.

We listed the results of our HDR and IHDR algorithms with those published in the StatLog project from [35]
as Tables VII and VIII. For these lower dimensional data sets, the performance of our IHDR tree algorithm is
comparable with other best existing ones.

VI. CONCLUSIONS

IHDR is an approximation for fully automatic development of an associative cortex with bottom-up sensory
pathways, top-down motor projections. Various automatic, adaptive plasticities occur in different cortical regions
(layers), cortical patches (nodes) and neurons (clusters). The proposed IHDR technique is for the very challenging
7 simultaneous requirements: high-dimensional inputs, one-instance learning, adaptation to increasing complexity,
avoidance of local minima, incremental learning, long-term memory, and logarithmic time complexity. The proposed
IHDR technique is applicable to both regression and classification problems.

We propose to cluster in both output and input spaces. Clusters in the output space provide coarse-to-fine virtual
class labels from clusters in the input space. Thus, discriminant analysis is possible. To deal with high-dimensional
input space, in which some components are not very useful and some can be very noisy, a discriminating subspace
is incrementally derived at each internal node of the tree. Such a discriminant subspace is especially necessary for
high dimensional input space. A size-dependent probability-based distance metric SDNLL is proposed to deal with
large sample cases, small sample cases, and unbalanced sample cases, which occur at different nodes at different
levels with different observation richness.

25

TABLE VI

THE PERFORMANCE FOR VISION-BASED NAVIGATION

Algorithm Meanerror (degree) Max. error (degree)
Resubstitution Testset Resubstitution Testset

FF 1.02 2.00 10 12
RBF 1.53 1.84 12 12

IHDR tree 0.00 1.25 0 13

TABLE VII

TEST RESULTS ON LETTER IMAGE RECOGNITION DATA

Algorithm Error rate Time (sec)
Training Testing Training Testing

Alloc80 0.065 0.064 39575 ?
KNN 0 0.068 15 2135

** HDR tree 0 0.070 212.7 30
* IHDR tree 0 0.072 1150 41

LVQ 0.057 0.079 1487 48
QuaDisc 0.101 0.113 3736 1223

Cn2 0.021 0.115 40458 52
BayTree 0.015 0.124 276 7
NewId 0 0.128 1056 2
IndCart 0.010 0.130 1098 1020

C4.5 0.042 0.132 309 292
Dipol92 0.167 0.176 1303 80
Radial 0.220 0.233 ? ?

LogDisc 0.234 0.234 5062 39
Ac2 0 0.245 2529 92

Castle 0.237 0.245 9455 2933
Kohonen 0.218 0.252 ? ?

Cal5 0.158 0.253 1033 8
Smart 0.287 0.295 400919 184

Discrim 0.297 0.302 326 84
BackProp 0.323 0.327 277445 22

Bayes 0.516 0.529 75 18
Itrule 0.585 0.594 22325 69

Default 0.955 0.960 ? ?
Cascade 1.0

Cart 1.000

Our experimental study with the synthetic data has showed that the method can achieve near-Bayesian optimality
for both low-dimensional data and high-dimensional data with low-dimensional data manifolds. With the help of
the decision tree, the retrieval time for each sample is of logarithmic complexity making real-time performance a
reality even for high-dimensional inputs. The output of the system can be both class label or numerical vectors,
depending on how the system trainer gives the training data. The experimental results have demonstrated that the
algorithm can deal with a wide variety of sample sizes with a wide variety of dimension. The presented IHDR
technique enables real-time, online, interactive training where the number of training samples is too large to be
stored or to be processed in a batch, but the resulting IHDR tree does not need to store all of the training samples.

REFERENCES

[1] E. R. Kandel,J. H. Schwartz, andT. M. Jessell,Eds.,Principles of Neural Science, 4th ed. New York: McGraw-Hill, 2000.
[2] D. N. PandyaandB. Seltzer, “Associationareasof the cerebralcortex,” Trends in Neurosciences, vol. 5, pp. 386–390,1982.
[3] B. Kolb and I. Q. Whishaw, Fundamentals of Human Neuropsychology, 3rd ed. New York: Freeman,1990.
[4] J. Weng,W. S. Hwang,Y. Zhang,C. Yang,andR. Smith, “Developmentalhumanoids:Humanoidsthat develop skills automatically,”

in Proc. First IEEE Conf. on Humanoid Robots. MIT, Cambridge,Massachusetts:IEEE Press,Sept.7-8 2000.
[5] L. Breiman,J. Friedman,R. Olshen,andC. Stone,Classification and Regression Trees. New York: Chapman& Hall, 1993.
[6] J. Quinlan,C4.5: Programs for Machine Learning. SanMateo,California: MorganKaufmann,1993.

26

TABLE VIII

TEST RESULTS ON SATELL ITE IMAGE DATASET

Algorithm Error rate Time (sec)
Training Testing Training Testing

KNN 0.089 0.094 2105 944
LVQ 0.048 0.105 1273 44

** HDR tree 0 0.108 2.36 0.41
Dipol92 0.051 0.111 746 111
Radial 0.111 0.121 564 74

Alloc80 0.036 0.132 63840 28757
* IHDR tree 0 0.135 220 0.85

IndCart 0.023 0.138 2109 9
Cart 0.079 0.138 330 14

BackProp 0.112 0.139 72495 53
BayTree 0.020 0.147 248 10
NewId 0.067 0.150 226 53
Cn2 0.010 0.150 1664 36
C4.5 0.040 0.150 434 1
Cal5 0.125 0.151 764 7

QuaDisc 0.106 0.155 157 53
Ac2 ? 0.157 8244 17403

Smart 0.123 0.159 27376 11
LogDisc 0.119 0.163 4414 41
Cascade 0.112 0.163 7180 1
Discrim 0.149 0.171 68 12
Kohonen 0.101 0.179 12627 129

Castle 0.186 0.194 75 80
Bayes 0.308 0.287 75 17

Default 0.758 0.769
Itrule ? 100.00

[7] J. H. Friedman,“A recursive partitiondecisionrule for nonparametricclassi�cation,” IEEE Trans. on Computers, vol. 26, pp. 404–408,
April 1977.

[8] S. K. Murthy, S. Kasif, andS. Salzberg, “A systemfor induction of oblique decisiontrees,” Journal of Artificial Intelligence, vol. 2,
pp. 1–33,August1994.

[9] D. L. Swets and J. Weng, “Hierarchical discriminant analysis for image retrieval,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 21, no. 5, pp. 386–401,1999.

[10] S.K. Murthy, “Automaticconstructionof decisiontreesfrom data:A multi-disciplinarysurvey,” Data Mining and Knowledge Discovery,
vol. 2, no. 4, pp. 345–389,1998.

[11] W. S. Hwang and J. Weng, “Hierarchical discriminantregression,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1277–1293,2000.

[12] J. Weng,J. McClelland,A. Pentland,O. Sporns,I. Stockman,M. Sur, andE. Thelen,“Autonomousmentaldevelopmentby robotsand
animals,” Science, vol. 291, no. 5504,pp. 599–600,2001.

[13] J. Weng,“Developmentalrobotics:Theoryandexperiments,” International Journal of Humanoid Robotics, vol. 1, no. 2, pp. 199–235,
2004.

[14] M. Kirby andL. Sirovich, “Application of the karhunen-lo�eve procedurefor the characterizationof humanfaces,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103–108,Jan.1990.

[15] M. Turk andA. Pentland,“Eigenfacesfor recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86,1991.
[16] H. Muraseand S. K. Nayar, “V isual learningand recognitionof 3-D objectsfrom appearance,” International Journal of Computer

Vision, vol. 14, no. 1, pp. 5–24,January1995.
[17] D. L. SwetsandJ.Weng,“Using discriminanteigenfeaturesfor imageretrieval,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 18, no. 8, pp. 831–836,1996.
[18] J. Weng and S. Chen,“Incrementallearning for vision-basednavigation,” in Proc. Int’l Conf. Pattern Recognition, vol. IV, Vienna,

Austria, Aug. 25-301996,pp. 45–49.
[19] S.E. FahlmanandC. Lebiere,“The cascade-correlationlearningarchitecture,” Schoolof ComputerScience,CarnegieMellon University,

Pittsburgh, PA, Tech.Rep.CMU-CS-90-100,Feb. 1990.
[20] K. Fukunaga,Introduction to Statistical Pattern Recognition, 2nd ed. New York: AcademicPress,1990.
[21] J. Weng and S. Zeng, “A theory of developmentalmental architectureand the dav architecturedesign,” International Journal of

Humanoid Robotics, vol. 2, no. 2, pp. 145–179,2005.
[22] C. YangandJ. Weng,“Visual motion basedbehavior learningusinghierarchicaldiscriminantregression,” Pattern Recognition Letters,

vol. 23, no. 8, pp. 1031–1038,2002.
[23] J. Weng and W. Hwang, “Online image classi�cation using IHDR,” International Journal on Document Analysis and Recognition,

vol. 5, no. 2-3, pp. 118–125,2002.

27

[24] O. T. Yildiz andE. Alpaydin, “Omnivariatedecisiontree,” IEEE Trans. on Neural Networks, vol. 12, no. 6, p. 15391546,2001.
[25] Y. H. Li, D. Ming, andR. Kothari, “Classi�ability-basedomnivariatedecisiontrees,” IEEE Trans. on Neural Networks, vol. 16, no. 6,

pp. 1547–1560,2005.
[26] G. H. Golub andC. F. van Loan, Matrix Computations. Baltimore,Maryland:The JohnsHopkinsUniversity Press,1989.
[27] W. Press,B. Flannery, S. Teukolsky, andW. Vetterling,Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. New York:

CambridgeUniversity Press,1986.
[28] H. Muraseand S. K. Nayar, “Illumination planning for object recognitionin structuredenvironments,” in Proc. IEEE Conf. Comp.

Vision Pattern Recognition, Seattle,Washington,June1994,pp. 31–38.
[29] C. J. C. Burges,“A tutorial on supportvectormachinesfor patternrecognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,

pp. 121–167,1998.
[30] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
[31] C. Saunders,M. O. Stitson,J. Weston,L. Bottou, B. Schlkopf, and A. Smola, “Support vector machinereferencemanual,” Royal

Holloway, University of London,Egham,UK, Tech.Rep.CSD-TR-98-03,March. 1998.
[32] G. B. Huang,K. Mao, C. K. Siew, and D. S. Huang, “Fast modular network implementationfor supportvector machines,” IEEE

Transactions on Neural Networks, vol. 16, no. 6, pp. 1651–1663,2005.
[33] J. Quinlan,“Introduction of decisiontrees,” Machine Learning, vol. 1, no. 1, pp. 81–106,1986.
[34] P. J. Phillips, H. Moon, P. Rauss,and S. A. Rizvi, “The FERET evaluationmethodologyfor face-recognitionalgorithms,” in Proc.

IEEE Conf. Comp. Vision Pattern Recognition, SanJuan,PuertoRico, June1997,pp. 137–143.
[35] D. Michie, D. Spiegelhalter, and C. T. (eds),Machine Learning, Neural and Statistical Classification. Chichester:Ellis Horwood,

1994.

