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Abstract—In this paper, we propose an object learning system
that incorporates sensory information from an automotive radar
system and a video camera. The radar system provides coarse
attention for the focus of visual analysis on relatively small areas
within the image plane. The attended visual areas are coded and
learned by a three-layer neural network utilizing what is called
in-place learning: Each neuron is responsible for the learning of
its own processing characteristics within the connected network
environment, through inhibitory and excitatory connections with
other neurons. The modeled bottom-up, lateral, and top-down
connections in the network enable sensory sparse coding, unsu-
pervised learning, and supervised learning to occur concurrently.
This paper is applied to learn two types of encountered ob-
jects in multiple outdoor driving settings. Cross-validation results
show that the overall recognition accuracy is above 95% for the
radar-attended window images. In comparison with the uncoded
representation and purely unsupervised learning (without top-
down connection), the proposed network improves the overall
recognition rate by 15.93% and 6.35 %, respectively. The proposed
system is also compared favorably with other learning algorithms.
The result indicates that our learning system is the only one that is
fit for incremental and online object learning in a real-time driving
environment.

Index Terms—Biologically inspired neural network, intelligent
vehicle system, object learning, sensor fusion, sparse coding.

I. INTRODUCTION

HE FIELD of intelligent vehicles has been rapidly grow-

ing over the last two decades [1]. Their examples include
both fully autonomous driving vehicles [2]-[4] and advanced
driver-assistance systems [5], [6], such as adaptive cruise
control, lane departure warning, and the collision avoidance
system. The success of intelligent vehicle systems depends
on a rich understanding of the complex road environment,
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which contains many signals and cues that visually convey
information, such as traffic lights, road signs, other vehicles,
and pedestrians, to name a few. To take correct and intelligent
actions under these driving conditions, recognition of the varied
objects becomes one of the most critical tasks.

Vision and radar systems have complimentary properties
for object validation. As one type of active sensor, a radar
system has shown the good performance of object detection in
driving environments. It provides fairly accurate measurements
of the object distance and velocity and remains robust under
various weather conditions. However, radars installed on a
vehicle do not have enough lateral resolution to model object
shapes, leading limitations when recognizing object types. On
the contrary, video cameras called passive sensors are able to
provide sufficient lateral resolution to analyze objects. The cues
of shapes and, furthermore, the appearance, give more details
for the characteristics of different objects.

The fusion of radar and vision information has been widely
discussed and utilized in intelligent vehicle systems. Early
fusion framework analyzed radar positions in a vision-based
lane recognition system to achieve better lane estimation
(e.g., [7]-[10]). Afterward, radar-vision approaches are more
focused on the fusion at the target (e.g., vehicle and pedes-
trian) level. Grover et al. [11] extracted low-level blob
features in a single radar map and a single night-vision
image. The fusion was performed in polar coordinates to
determine vehicle localization based on angular positions.
Kato et al. [12] fused radar tracks and motion stereos together
to identify the distance and vertical boundaries of objects in
an urban road environment. Sole et al. [13] treated video and
radar sensors as two independent sources of target acquisition:
Matched targets were validated by definition and did not re-
quire further processing, whereas unmatched radar targets were
processed via motion and texture analysis for further validation.
Alessandretti ef al. [14] estimated regions of interest (ROIs)
from radar returns, where vertical symmetries were used to
search vehicles in the attended small areas. Using the similar
mechanism of ROI provided by radars, Kadow er al. [15]
and Bertozzi et al. [16] developed an optimized symmetry
measure and new motion stereos, respectively, to detect and
track other vehicles. Recently, Wu er al. [17] fused information
from a stereo-camera and millimeter-wave radar to estimate
the location, pose, and motion information of a threat vehicle
within range up to 20 m.

However, the quantitative evaluation (e.g., average accuracy
rate) of object recognition/detection is missing in most of the
aforementioned work. In addition, the aforementioned fusion
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Outline of the system architecture. The camera and the radar system work together to generate a set of attended window images, containing environment

objects. A teacher communicates with the system through an interface to train the class labels of objects. A three-layer network provides the processing and
learning of the extracted window images. The number of neurons in each layer is specified at a 3-D grid (see Fig. 4 for the set of parameters). Layer 1 encodes
the local input fields of each window image using self-developed orientation-selective features. Neurons in layer 2 learn the sparse-coded object representations,

which are associated with layer 3 with the teacher’s output tokens.

works mainly detected key objects (i.e., vehicles or pedestrians)
using object-specific features, such as blobs, edges, symme-
tries, and motion. The object-specific (or called task-specific)
perceptual approach is not suited to provide perceptual aware-
ness in complex environments with various objects of interest.

In the proposed work, we take the advantage of radar-
vision integration to achieve an efficient attention selection on
candidate targets and employ a generic object learning network
to identify object classes without using the low-level and mid-
level object-specific features. A cortex-inspired neural network
integrates three-way computations (i.e., bottom-up, top-down,
and lateral) to code object samples in an overcomplete space
and learn the distribution of coded “key” object patterns for
favorable recognition performance. Its in-place learning mech-
anism provides the incremental learning optimality and com-
paratively low operational complexity, even for a very large
network.

A successful implementation here requires a combination of
the following challenges, where no existing work as we know
can meet them all: 1) a general radar-vision fusion framework
with non-task-specific learning; 2) visual sensory sparse coding
via statistical independence of developed features; 3) incremen-
tal object learning adaptive to the changing of environments
and objects; 4) online real-time speed due to low computation
complexity; and 5) integration of supervised learning (via top-
down propagation) and unsupervised learning (via bottom-up
propagation) in any order suited for development.

All the preceding properties, coupled with a nurturing and
challenging environment, as experienced through sensors and
effectors, allow the automatic perceptual awareness to emerge
in intelligent vehicles.

II. ARCHITECTURES

An outline of the system architecture is shown in Fig. 1.
The eventual goal is to enable a vehicle-based agent to develop
the ability of perceptual awareness, with applications including
autonomous driving and advanced driver assistance. Percep-
tual awareness is a conceptual and symbolic understanding of
the sensed environment, where the concepts are defined by a

TABLE 1
SENSOR SPECIFICATIONS OF THE RADAR SYSTEM
Key parameters Specification
Refreshing rate 10 Hz

No. of targets max. of 20 targets

Max. range 150m + max (5%, 1.0m)
Field of view 180° (< 30m); 15° (> 30m)
Range rate +56m/s + 0.75m/s
TABLE 11
SENSOR SPECIFICATIONS OF THE VIDEO CAMERA
Key parameters | Specification
Refreshing rate 15 Hz
Field of view 45°
Resolution 320 x 240

common language' between the system and the teachers or
users. In this paper, a teacher points out sensory examples of
particular conceptual object classes (e.g., vehicle, pedestrian,
traffic lights, and other objects that are potential driving haz-
ards). The system learns to associate a symbolic token with the
sensed class members, even those that have not been exactly
sensed before but instead share some common characteristics
(e.g., a van can be recognized as a vehicle by the presence
of a license plate, wheels, and tail lights). More complicated
perceptual awareness beyond recognition involves abilities such
as counting and prediction.

III. COARSE ATTENTION SELECTION

Two kinds of external (outward looking) sensors are used
in the proposed architecture. One is the radar system, which
is composed of one long-range radar and four short-range
radars. It is utilized to find attended targets (with possible false
alarms) in the environment. The other senses vision modality.
Information from this sensor is used to develop the ability to
recognize objects and identify false alarms. Tables I and II
specify the sensor parameters of radar and vision modalities,
respectively.

As shown in Fig. 2 (right), a group of target points in 3-D
world coordinates can be detected from the radar system, with

I The language can be as simple as a predefined set of tokens or as complex
as human spoken languages.
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Fig. 2. Projection of valid radar points (green) onto the image plane, where
window images are extracted for further recognition (best viewed in color).

a detection range up to 150 m. Each radar point is presented by a
triangle that is associated with a bar, whose length and direction
indicate the relative speed of an object. As a rudimentary but
necessary attention selection mechanism, we discarded radar
returns more than 80 m in distance ahead or more than 8§ m
to the right or left outside the vehicle path (e.g., the red triangle
points in Fig. 2 (right) are omitted).

Based on the estimation of the maximum height (3.0 m) and
maximum width (3.8 m) of environment targets, a rectangular
target window (with a fixed size of 3.0 x 3.8 m?) is generated
to be centered at each valid radar point. All the target windows
at each time ¢ are then projected onto the corresponding image
via perspective mapping transformation. The transformation
is performed by the calibration data that contain the intrinsic
and extrinsic parameters of each camera. For example, if the
radar-returned object distance (to the host vehicle) is larger, the
attention window in the image is smaller, and vice versa.

For each attention window, the pixels are extracted as a single
image, and most of the nontarget or background pixels [e.g., the
part of sky, road, and side grass in Fig. 2 (upper left)] have been
filtered out. Each image is normalized in size [in this case to
56 rows and 56 columns, as shown in Fig. 2 (bottom left)]. To
avoid stretching small images, if the attention window could
fit, it was placed in the upper left corner of the size-normalized
image, and the other pixels are set to be uniform gray.

There may be more than one object in each window im-
age, but for the purpose of object identification, the image
is assigned with only one label. The labeled radar windows
create a set of selected areas, whereas the rest of the image
is ignored. This is called coarse attention selection: finding
candidate areas purely based on the physical characteristics of
radar returns. The attended window images may still contain
some information unrelated to the object, such as “leaked-in”
background behind the object. However, our object learning
scheme does not require good segmentation of the object itself
but instead depends on the discriminant statistical distributions
of the scenes in each window image. The proposed system
can learn to detect and recognize multiple objects within the
image captured by the video camera, as long as a radar point is
returned for each one.
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Fig. 3. General structure of the network connection. Neurons are placed
(given a position) on different layers in an end-to-end hierarchy—from sensors
to motors. Only the connections to a centered cell are shown, but all the other
neurons in the feature layer have the same default connections.

IV. OBJECT LEARNING NETWORK

The attended window images are coded and learned through
the proposed neural network (see Fig. 1) via three layers, up
until the motor output, where each neuron in the motor layer
corresponds to one object class. Fig. 3 shows the general struc-
ture of the network connection with three consecutive layers.
Every neuron at layer [ is connected with the following four
types of connection weights:

1) bottom-up weight vector w( ) that links connections from
its bottom-up field in the previous level;

2) top-down weight vector wél) that links connections from
its top-down field in the next level;

3) lateral weight vector wﬁ ) that links inhibitory connec-

tions from neurons in the same layer (larger range);

4) lateral weight vector wé) that links excitatory connec-

tions from neurons in the same layer (smaller range).

Note that each linked weight pair (7, j) shares the same value,
ie., W,El U= Wy, D' Moreover, this work does not use explicit
lateral connectlons "but instead uses an approximate method:
the top-k winners (i.e., k largest responses), along with their
excitatory neighbors, update and fire. The suppressed neurons
are considered laterally inhibited, and the winning neurons are
considered laterally excited.

The object learning network is incrementally updated at
discrete times t = 0,1, 2, ..., taking inputs sequentially from
sensors and effectors, computing responses of all neurons,
and producing internal and external actions through experi-
ence. Fig. 4 shows an example of network computation, layer
by layer, as well as key parameters used in the network
implementation.

As described in Algorithm 1, layer 1 of the proposed network
develops earlier than other layers, which is inspired from the
biological fact that early cortical regions in the brain (e.g., pri-
mary visual cortex) would develop earlier than the later cortical
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Layer 3
Layer 2 N:2x1xl
Layer 1 N:15x15x1 X:15x15x1
N:6x6x431 X:6x6x431 L2Xx1x1
X:16x16 Z:2x1x1 E:1x1x1
Image input IL1x1x431 L15x15x1 k1
Pixels: 56 x 56 Elx1x1 E3x3x1 000
k: 91 ki1
a: 0.0 a: 0.3

Parameters: N: No. neurons X: Bottom-up fields Z: Top-down fields
I: Inhibitory fields E: Excitatory fields
k: Top-k winners in /  a: Top-down influence

Fig. 4. Example of layer representations (i.e., responses) in the proposed
neural network, including a specific set of resource parameters implemented
(best viewed in color). Green and red directed lines show the bottom-up and
top-down connections to the firing neurons, respectively. It is noted that the
bottom-up fields of layer-1 neurons are 16 x 16 local areas over the entire
56 x 56 image plane, with a stagger distance per 8 pixels, and the top-down
fields are not available in layers 1 and 3. In addition, neural representations in
layer 1 are reshaped to 36 x 431 for visualization purposes.

regions [18]. Givent = 1,2,...,7 (7 = 500000 in this appli-
cation), the network receives 56 x 56-pixel (which is the same
as the attention window dimension) natural image patches,
which were randomly selected from the 13 natural images.>
Neurons are learned through the in-place learning algorithm
described in Algorithm 2, however, without supervision on
motors. After 500 000 updates of layer-1 neurons, their bottom-
up features tends to converge. Then, the network perceives
radar-attended images, and all the layers are developed through
the same in-place learning procedure in Algorithm 2, whereas
supervised signals from a teacher are given in motor layer 3.

The network performs an open-ended online learning while
internal features “emerge” through interaction with its extra-
cellular environment. All the network neurons share the same
learning mechanism, and each learns on its own, as a self-
contained entity using its own internal mechanisms. In-place
learning, representing a new and deeper computational under-
standing of synaptic adaptation, is rooted in the genomic equiv-
alence principle [19]. It implies that there cannot be a “global,”
or multicell, goal to the learning, such as the minimization of
mean-square error for a precollected (batch) set of inputs and
outputs. Instead, every neuron is fully responsible for its own
development and online adaptation while interacting with its
extracellular environment.

Algorithm 1: Network processing procedure

I: fort=1,2,...,7do

2: Grab a whitened natural image patch s(t).

3: for/ =1do

4: Get the bottom-up fields x(¢) from s(¢). The top-
down fields z(t) are set to 0.

2 Available at http://www.cis.hut.fi/projects/ica/imageica/.

5: (y(¢+1), L(t+1)) = In-place(x(t), y (t), z(¢) | L(t)),
where L(t) presents the state of current layer I,
including its bottom-up and top-down weighs,
neural ages, etc.

6: end for

7: end for

8 fort=7+1,7+2,...do

9: Grab the attention window image s(¢).

10: Impose the motor vector (labeled) m(¢) to layer 3.

11: for1 <[ <3do

12: if { = 1 then

13: Get the bottom-up fields x(¢) from s(t). The
top-down fields z(t) are set to 0.

14: else if [ = 2 then

15: Get the bottom-up fields x(¢) from the previous
layer representation (responses) and the top-
down fields z(t) from m(¢).

16: else

17: Get the bottom-up fields x(¢) from the previous
layer representation (responses). The top-down
fields z(¢) are set to 0.

18: end if

19: y@t+1), L¢+1)) =In-placex(t), y(t), z(t)|L(t)).

20: end for

21: end for

In the succeeding sections, we will go through critical com-
ponents of the neural network to achieve robust and efficient
object recognition. Section V will address the statistical op-
timality of neurons’ weight adaptation in both spatial and
temporal aspects. Section VI will explain how the sparse coding
scheme is performed by layer 1 and why such a coding scheme
is favorable compared with its original pixel representation.
Section VII will describe the abstraction role of top-down
connections to form the bridge representation in layer 2, along
with its perspective to reducing within-object variance and,
thereby, facilitating object recognition.

Algorithm 2: In-place learning procedure: (y (¢ + 1), L(t +

1)) = In-place(x(t), y (¢), z(t) L(1)).

1: forl <i< N;do

2: Compute the preresponse of neuron ¢ from bottom-up
and top-down connections

l l
wi (1) - x(t)

A1) ,
l l
i <"

g (t+1) =g | (1~

)
wi (1) -2 (t)
(RGO

6]

where x\" (t) and z\) (t) are bottom-up and top-down

4 %

input fields of neuron ¢. g; is a sigmoid function with
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piecewise linear approximation. ¢y is a layer-specific
weight that controls the influence of the top-down part.
end for
4: Simulate lateral inhibition, and decide the winner, i.e.,

(O8]

j = arg max g}i(l)(t +1).
eI

5: The cells in excitatory neighborhood E(*) are also con-
sidered as winners and added to the winner set 7.
6: The responses yy) of winning neurons are copied from

their preresponses g)](-l).

7:  Update the number of hits (cell age) n; for the winning
neurons: n; «<— n; + 1. Compute p(n;) by the amnesic

function
O, if nj <t
,u(n]) = c(nj - tl)/(tg - tl), lftl < n; S t2 (2)
C+(7Lj7t2)/7', ifty <t
where  parameters t; =20, {ty =200, c¢=2,

and r = 2000 in our implementation.
8: Determine the temporal plasticity of winning neurons,
based on each age-dependent u(nj), ie.,

®(n;) = (1 + p(ny)) /n;.

9: Update the synaptic weights of winning neurons using
its scheduled plasticity, i.e.,

wi (t+1) = (1 - B(ny)) wi (1)

+0(ny)xV )yt +1). 3)

10: All other neurons keep their ages and weight
unchanged.

V. LEARNING OPTIMALITY

In this section, we will discuss the learning optimality of
the in-place learning algorithm previously described. Given the
limited resource of N neurons, the in-place learning divides the
bottom-up space X into N mutually nonoverlapping regions,
such that

X=R{URyU---URpy

where R; N R; = ¢, if i # j. Each region is represented by
a single unit feature vector wp,, ¢ = 1,2,..., N, and all the
vectors are not necessarily orthogonal. The in-place learning
decomposes a complex global problem of approximation and
representation into multiple, simpler, and local ones so that
lower order statistics (means) are sufficient. The proper choice
of N is important for the local estimation of X. If N is too
small, the estimation becomes inaccurate. On the other hand, if
N is too large, it is possible to overfit the space X.
From (3), a local estimator wy,, can be expressed as

Awyp, = ®(n;) [x;()yi(t + 1) — wp, (1)) . )

When Awyp, = 0, meaning that the learning weight wy,,
converges, we have

x; ()i (t + 1) = w, (1). )

Considering a layer (e.g., layer 1 of the proposed network) in
which the top-down connections are not available,® (5) can be
rewritten as

x;(t) - wp, (1)

W, (D] [[x: (@]

x;(t) = wp, (1) (6)

such that

xi(1)x; (H)w, (t) = [|wo, ()] [xi (&)W, (). (D)

Averaging both sides of (7) over x;(t), which is conditional
on wp, staying unchanged (i.e., converged), we have

C Wp, = A Wh, (8)

where C is the covariance matrix of inputs x;(¢) over time ¢,
and the scalar A = )", ||wp, (¢)]|||xi(¢)||. Equation (8) is the
standard eigenvalue—eigenvector equation, which means that,
if a weight wy,, converges in a local region of the bottom-up
space X, the weight vector becomes one of the eigenvectors,
given an input covariance matrix. For this reason, the in-
place neural learning becomes a principal component analyzer*
[21], which is mathematically optimal to minimize the squared
mapping/representational error, such that

wp, = argmin > [|(x,(1) - wn,) wh, —x,(8)[2. ()
Wb, 7

In addition, the multisectional function z(n) in (2) performs
straight average 1(n) = 0 for small n to reduce the error coef-
ficient for earlier estimates. Then, p(n) enters the rising section
and linearly changes from ¢; to t. In this section, neurons
compete for different partitions by increasing their learning
rates for faster convergence. Finally, n enters the third section,
i.e., the long adaptation section, where 1(n) increases at a rate
of about 1/r, meaning that the second weight (1 + p(n))/n
in (2) approaches a constant 1/r to trace a slowly changing
distribution. This kind of plasticity scheduling is more suited
for practical signals with unknown nonstationary statistics,
where the distribution does follow the independent identically
distributed assumption in the whole temporal phase.

In summary, the in-place learning scheme balances dual
optimalities for both limited computational resource (spatial)
and limited learning experience at any time (temporal).

1) Given the spatial resource distribution tuned by neural
computations, the developed features (weights) minimize
the representational error.

3The functional role of top-down connection will be specifically discussed in
Section VII.

4Although not shown here, Oja et al. [20] has proven that it is the first
principal component that the neuron will find, and the norm of the weight vector
tends to 1.
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Fig. 5. Developed layer-1 features (431) in one neural column arranged in a
2-D grid. Each image patch shows a bottom-up weight (16 x 16 dimensions)
of one neuron.

2) The recursive amnesic average formulation enables auto-
matic determination of optimal step sizes in this incre-
mental nonstationary problem.

Because the in-place learning does not require explicit search
in high-dimensional parameter space nor compute the second-
order statistics, it also presents high learning efficiency. Given
each n-dimensional input x(t), the system complexity for up-
dating m neurons is O(mn). It is not even a function of the
number of inputs ¢, due to the nature of incremental learning.
For the network meant to run in online development, this low
update complexity is very important.

VI. SENSORY SPARSE CODING

In this section, we will discuss the important characteristics
of the aforementioned dual optimalities in learning natural
images, i.e., a mixture of super-Gaussian sources [22]. As
discussed in [23], when the input is the super-Gaussian mixture,
the spatial optimality of minimizing representation error in the
in-place learning can function as an independent component
analysis algorithm [24], and its temporal optimality performs
with surprising efficiency [25]. Such independent components
would help separate the non-Gaussian source signals into addi-
tive subcomponents with mutual statistical independence.

An example of developed independent components (i.e.,
bottom-up weights of our layer 1) is shown as image patches in
Fig. 5. Many of the developed features resemble the orientation
selective cells that were observed in the V1 area, as discussed
in [27]. The mechanism of top-k winning is used to control
the sparseness of the coding. In the implemented network, k
is set as 91 to allow about a quarter of the 431 components to
be active for one bottom-up field in a window image. Although
the developed features appear like Gabor filters, the inside
independent statistics of these developed features are not
available in any formula-defined Gabor functions.

Because the object appearance in radar-attended window
images could potentially vary quite a bit (the object invariance
issue) and a “leaked-in” background may pose an amount of
noise, it is computationally inefficient to present and recognize
objects using millions of pixels. The developed independent
features in layer 1 (considered as independent causes) code

the object appearance from raw pixel space (56 x 56) to an
overcomplete sparse® space (431 x 36). Such a sparse coding
leads to lower mutual information among coded representations
than pixel appearance, where the redundancy of input is trans-
formed into the redundancy of firing pattern of cells [27]. This
allows object learning to become a compositional problem, i.e.,
a view of a novel object is decomposed as a composite of a
unique set of independent events. As shown in the experiment
in Section VIII, the sparse coding decomposes highly correlated
redundant information in the pixel inputs and forms the sparse
representations, where statistical dependence is reduced, and
“key” object information for later recognition is preserved.

It is worth mentioning that, as natural images hold the vast
inequities in variance along different directions of the input
space, we should “sphere” the data by equalizing the variance in
all directions [22]. This preprocessing is called whitening. The
whitened sample vector s is computed from the original sample
s’ as s = Ws', where W = VD is the whitening matrix. V
is the matrix where each principal component vy, vy, ..., Vv,
is a column vector, and D is a diagonal matrix where
the matrix element at row and column i is (1/v/;). (\;
is the eigenvalue of v;.) Whitening is very beneficial to uncover
the true correlations within the natural images since it avoids the
derived features to be dominated by the larger components.

VII. ToP-DOWN ABSTRACTION

As described in Section II, the coded representation in layer
1 is fed forward to layer 2, which is associated with feedback
top-down connections from supervised signals in layer 3. The
top-down connections coordinate the neural competition and
representations through two abstraction roles.

1) The top-down connections provide a new subspace where
the relevant information (the information that is important
to distinguish motor outputs) will have a higher vari-
ance than the irrelevant subspace. Since higher variance
subspace will recruit more neurons due to the Neuronal
Density Theorem [28], the representation acuity becomes
higher in the relevant subspace and more suited for the
classification task(s). Fig. 6 shows this top-down con-
nection role. As shown in Fig. 6(c), the neurons largely
spread along the relevant direction and are invariant to ir-
relevant information. The classes are correctly partitioned
in the subspace (partitioned at the intersection with the
dashed line) after the top-down connection, but before
that, the classes in Fig. 6(a) are mixed in the bottom-up
subspace X.

2) Via the top-down connections, neurons form topographic
cortical areas according to the abstract classes called
topographic class grouping. That is, based on the avail-
ability of neurons, the features represented for the same
motor class are grouped together to reduce the relative
within-class variance and lead to better recognition.

5By overcomplete, it means that the number of code elements is greater
than the dimensionality of the input space. By sparse, it means that only a few
neurons will fire for a given input.
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(@)

Fig. 6. Top-down connection role (best viewed in color). Here, bottom-up
input samples contain two classes, which are indicated by samples “+” and
“o,” respectively. To clearly see the effect, we assume that only two neurons
are available in the local region. (a) Class mixed using only the bottom-up
inputs. The two neurons spread along the direction of larger variance (irrelevant
direction). The dashed line is the decision boundary based on the winner of
the two neurons, which is a failure partition case. (b) Top-down connections
boost the variance of relevant subspace in the neural input and thus recruit more
neurons along the relevant direction. (c) Class partitioned. In particular, during
the testing phase, although the top-down connections become unavailable and
the winner of the two neurons uses only the bottom-up input subspace X, the
samples are correctly partitioned according to the classes (see dashed line).

Consider the within-class variance w3 of input
space X
wg(:iE{Hx—iiHﬂxeci}pi, (10)
i=1
and its total variance
ok = E{lx—xI*} (1n)

where X; is the mean of inputs in each class, and X is
the mean of all the inputs. p; denotes the probability of a
sample belonging to the class c;. Thus, the relative within-
class variance of input space X can be written as

w
X
TX = —5 .
O'X

12)

From the aforementioned Neuronal Density Theorem,
we know that the neurons will spread along the signal
manifold to approximate the density of expanded input
space X x Z. Due to the top-down propagation from the
motor classes, we have w% /0% < w% /0%, such that the
expanded input space X X Z has smaller relative within-
class variance than that in X, i.e.,

2 2
wy +wy

13
0§(+0% (13)

rXxz = <Trx.

Note that, if top-down space Z consists of one label for
each class, the within-class variance of Z is zero: w2Z =0,
but the grand variance o7 is still large.

Overall, the preceding two abstraction properties work to-
gether to transform the meaningless (iconic) inputs into the
internal representation with abstract class meanings.

VIII. EXPERIMENTAL RESULTS

In this section, we will conduct multiple experiments based
on the described system architecture and its learning advan-
tages. An equipped vehicle is used to capture real-world images
and radar sequences for training, and testing purposes. Our data
set is composed of ten different “environments,” i.e., stretches
of roads at different looking places and times. Fig. 7 shows
a few examples of corresponding radar and image data in
different environment scenarios. In each environment, multiple
sequences were extracted. Each sequence contains some similar
but not identical images (e.g., different scales, illumination,
and view point variation). The proposed learning architecture
is evaluated for a prototype of a two-class problem: vehicles
and other objects, which can be extendable to learn any types
of objects defined by external teachers. There are 1763 sam-
ples in the vehicle class and 812 samples in the other object
class. Each large image from the camera is 240 rows and
320 columns. Each radar window is size-normalized to 56 by
56 and intensity-normalized to {0 1}.

A. Sparse Coding Effect

To verify the functional role of sparse coding discussed in
Section VI, we captured 800 radar-attended window images
from our driving sequences and presented them in an object-by-
object order. Each object possibly appears in several window
images with sequential variations. The correlation matrix of
800 window images is plotted in Fig. 8(a), indicating the
high statistical dependence among the samples, particularly
across different objects. Each image is then coded for a sparse
representation in layer 1. The correlation matrix of generated
sparse representations is plotted in Fig. 8(b). It shows the
advantage in two aspects. 1) Object samples are decorrelated,
i.e., cross-object correlation is dramatically reduced. 2) Object
information per class is maintained, i.e., within-object samples
keep the high correlation.

B. Top-Down Abstraction Effect

To evaluate the functional role of top-down abstraction dis-
cussed in Section VII, we first define the empirical “probabil-
ity” of a neuron’s firing across classes

S TI0)

i€l1,2,...,c (14)

where n(i) is the winning age of a neuron fired on a motor
class 7.

As shown in Fig. 9 and discussed in Section VII, neurons
tend to distribute along the classes (i.e., “relevant information”).
When the number of available neurons are larger than the
number of classes, the neurons representing the same class are
grouped together, leading to the lower within-class variance,
i.e., simpler class boundaries. Through the mechanism of top-
down abstraction, the network is able to develop both effective
and efficient internal neural distributions.
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FrameSeqID | FrameNum | FrameTime | ID1 | ID2 | ... | LongDistl | LongDist2 | ... | LateralDist1 | LateralDist2 | ... | Confidencel | Confidence2 | ...
L0815 01| 1081 | 108518 |133|104|..| 26.8 | 126.9 -3.2 0.3 15 9
L0815_04| 915 91865 |143(242|..| 30.2 11.5 -0.2 10.2 15 15
=+
L0815_05| 466 46821 |101| 34 76.8 104 | . 5 -0.1 15 15
\/
L0815_08| 836 83940 |139|157|..| 215 69.3 2.9 -5.2 15 15 -

Fig. 7.
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(®)
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(a)
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Fig. 8. Correlation matrix of (a) 800 window images in pixel space and
(b) their corresponding sparse representations in layer-1 space (best viewed in
color).

W “Vehicle”
W "“Other objects”

(@) (b)

Fig.9. Two-dimensional class map of 15 X 15 neurons in layer 2 (best viewed
in color) (a) without top-down connections and (b) with top-down connections.
Each neuron is associated with one color, presenting a class with the largest
empirical “probability” p;.

C. Cross Validation

In this experiment, a tenfold cross validation is performed to
evaluate the system performance. All the samples are shuffled
and partitioned to ten folds/subsets, where nine folds are used
for training, and the last fold is used for testing. This process
is repeated ten times, leaving one fold for evaluation each time.
The cross-validation result is shown in Fig. 10(c). The average
recognition rate of the vehicle samples is 96.87% and 94.01%
of the other object samples, where the average false positive and
false negative rates are 2.94% and 6.72%, respectively. Com-
pared with the performance without sparse coding in layer 1
[see Fig. 10(a)], we found that, on average, the recognition
rate improves 16.81% for positive samples and 14.66% for

Examples of radar data and corresponding images in the time sequence. It also shows some examples of different road environments in the experiment.

negative samples, respectively. Compared with the performance
without top-down supervision from layer 3 [see Fig. 10(b)],
the recognition rate improves 5.83% for positive samples and
7.12% for negative samples, respectively.

D. Performance Comparison

In the aspect of open-ended visual perceptual development,
an incremental (learning one image perception per time), online
(cannot turn the system off to change or adjust), real-time (fast
learning and performing speed), and extendable (the number
of classes can increase) architecture is expected. We compare
the following incremental learning methods in MATLAB to
classify the extracted window images (56 x 56) as vehicles
and other objects: 1) K -nearest neighbor (K-NN), with K = 1
and using an L1 distance metric for baseline performance;
2) incremental support vector machines (I-SVMs) [29];
3) incremental hierarchical discriminant regression (IHDR)
[30]; and 4) the proposed network described in this paper.
We used a linear kernel for I-SVM, as suggested for high-
dimensional problems [31]. We tried several settings for a
radial basis function kernel; however, the system training be-
comes extremely slow, and the performance improvement is not
obvious.

Instead of randomly selecting samples in cross validation, we
used a “true disjoint” test, where the time-organized samples
are broken into ten sequential folds. Each fold is used for
testing per time. In this case, the problem is more difficult since
sequences of vehicles or objects in the testing fold may have
never been seen. This truly tests generalization.

The results are summarized in Table III. K-NN performs
fairly well but is prohibitively slow. IHDR utilizes the advan-
tage of K-NN with an automatically developed tree structure,
which organizes and clusters the data well. It is extremely use-
ful for the fast retrieval due to its logarithmic complexity. IHDR
performs the recognition better than K-NN and is much faster
for real-time training and testing. However, IHDR typically
takes much memory. It allows sample merging of prototypes,
but in such a case, it saved every training sample and thereby
did not efficiently use memory. [-SVM performed the worst on



410

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

1 1 1 : : : M :

0.9 0.9 0.9
g o8 £ 08 g o8
e c c
2 o 8
£ 07 £ o €07
I8 —=— vehicle samples 2 —a— vehicle samples = —a— vehicle samples
3 —=— non-vehicle samples 51 —s— non-vehicle samples 3 —=— non-Vvehicle samples
© 06 x 06 0.6

0.5 0.5 0.5

04 2 4 6 8 10 04 2 4 6 8 10 04 2 4 6 10

Testing fold Testing fold Testing fold
(@) (b) ©

Fig. 10. Ten-fold cross validation (best viewed in color) (a) without sparse coding in layer 1, (b) without top-down connection from layer 3, and (c) of the

proposed work.

TABLE 1II
AVERAGE PERFORMANCE AND COMPARISON OF LEARNING METHODS OVER “TRUE DISJOINT” TEST

Learning Overall “Vehicle” “Other objects” Training time Testing time
method accuracy accuracy accuracy per sample per sample
K-NN 78.45 +12.64% | 74.43+13.55% | 90.44 + 8.33% n/a 891 £ 13.4ms
ISVM 71.54 £ 9.82% 73.23 £9.36% | 69.32+10.24% | 161.2 + 18.3ms 2.4+ 0.3ms
THDR 80.21 £6.14% | 74.78 £10.24% | 89.43 +£5.38% 4.2+ 1.9ms 6.4+ 2.3ms

Proposed network 87.01+ 1.43% 89.32+ 1.64% 82.33 £ 6.54% 112 £+ 8.2ms 42.3 £ 7.2ms

our high-dimensional data with amount of noise, but the testing
speed is fastest since its decision making is only based on a
small number of support vectors. A major problem with [-SVM
is lack of extendibility. By only saving support vectors to make
the best two-class decision boundary, it throws out information
that may be useful in distinguishing other classes added later.

Overall, the proposed network is able to perform the recog-
nition better than all other methods using only 15 x 15 layer-2
neurons with a top-down supervision parameter o = 0.3. It is
also fairly fast and efficient in terms of memory. The proposed
work does not fail in any criteria, although it is not always the
“best” in each category. The proposed work also has its major
advantages in extendibility. New tasks, more specifically new
object classes, can be added later, without changing the existing
learning structure of the network.

E. Incremental and Online Learning

The proposed neural network is incrementally updated by
one piece of training data at a time, and the data are discarded
as soon as it has been “seen.” The incremental learning enables
the recognition system to learn while performing online. This is
very important for the intelligent vehicle systems, particularly
when information among input images is huge and highly
redundant. The system only needs to handle information that
is necessary for decision making.

An incremental online teaching interface is developed in
C++ using a personal computer with 2.4-GHz Intel Core2
Duo central processing unit and 4-GB memory. The teacher
could move through the collected images on the order of their
sequence, provide a label to each radar window, train the agent
with current labels, or test the agent’s developed knowledge.
Even in this nonparallelized version, the speed is in real-time
use. The average speed for training the entire system (not just
the algorithm) is 12.54 sample/s, and the average speed for
testing is 15.12 sample/s.

IX. CONCLUSION

In this paper, we have proposed and demonstrated a generic
object learning system based on the automobile sensor fusion
framework. Early attention selection is provided by an efficient
integration of multiple sensory modalities (vision and radar).
Extracted attended areas have been sparsely coded by the neural
network using its layer-1 features that were developed from
the statistics of natural images. Layer 2 of the network further
learns in reaction to the coupled sparse representation and
external class representations, where each cell in the network is
a local class-abstracted density estimator. The proposed system
architecture allows incremental and online learning, which is
feasible for real-time use of any vehicle robot that can sense
visual information, radar information, and a teacher’s input.

For future work, we would like to test the system per-
formance on the other critical objects (e.g., pedestrians and
traffic signs) in various driving environments. Since the radar
system is robust for various weather conditions, the sensor fu-
sion framework can potentially extend to some severe weather
conditions, such as rain or snow. Currently, it is assumed that
each frame is independent of the next. Relaxing this assumption
may lead to the exploration of temporal information of images,
which should benefit the effectiveness of the learning system.
We hope that these improvements will eventually lead to a
vehicle-based agent that can learn to be aware of any type of
object in its environment.
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