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Abstract

While digital multimedia are entering all walks of life, breakthroughs in machine understanding of multi-
modal information such as video, images, speech, language, and various forms of hand-written or mix-printed
text, can lead to numerous applications that will signi�cantly expand the application base of computer tech-
nology, and improve human life, scienti�c and engineering research, education, and human resource base.
However, machine understanding of multimodal information in its general form proves to be an extremely
challenging task facing the research community today, despite the fast and sustained advance of computers
in their speed, storage capacity, performance-to-price ratio, and installation base. The principal investi-
gator (PI) has been investigating persisting di�culties encountered by the existing basic methodology |
manually-modeling-knowledge and spoonfeeding-knowledge (MMKSK). Researchers in each sub�eld have
been manually developing knowledge-level theories and methods, and using them to write programs or build
hardware. Then, they manually \spoon feed" knowledge into the systems at the programming level, hoping
that these systems will be sophisticated and complete enough one day to understand single-modal or multi-
modal information. In sharp contrast, however, each human child learns to acquire such capabilities through
everyday activities in the real-world environment, from birth to toddler age, to school age, and through his or
her entire life. As developmental psychologist Jean Piaget observed and categorized, each human individual
undergoes four stages of cognitive development: sensory motor (birth to age 2); preoperational (age 2 to 6);
concrete operational (age 6 to 12); formal operational (age 12 and beyond). No knowledge-level manual-
modeling seems to be able to handle the complexity of cognitive knowledge that human-level performance
requires, and no spoon-fed knowledge can practically handle the richness and amount of multimodal interac-
tions that are essential to the success of human's cognitive development. In order to avoid the fundamental
limit of the current MMKSK methodology, the PI proposes a fundamental shift to the new direction termed
\living machines". This document describes the PI's three-phase endeavor to develop autonomous learning
machines and train them in the human's real-world. The objectives include development of a systematic the-
ory and a practical methodology for machines to learn autonomously while interacting with its environment,
on a daily basis, via its sensors and e�ectors, on-line in real time, under interactive guidance from human
teachers. This three-phase endeavor has now entered the second phase. This new direction of research is
expected to result in long-lasting and sustained pay-o�s in developing machine capability of understanding
multimodal information and that of using such a capability.
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1 EXECUTIVE SUMMARY

1.1 The Grand Challenge

Despite the power of modern computers, whose principle was �rst introduced in 1936 by Alan Turing in his
now celebrated paper [83], we have seen a paradoxical picture of arti�cial intelligence: Computers have done
very well in those areas that are typically considered very di�cult (by humans), such as playing chess games
(e.g., Kasparov vs. Deep Blue [39]); but they have done poorly in areas that are commonly considered easy
(by humans), such as vision (see, e.g., a report of discussions on challenges in computer vision during an
NSF workshop [56]). It seems a relatively simpler task to write a program to solve a symbolic problem where
the problem is well-de�ned and the input is human-preprocessed symbolic data. However, it is very di�cult
for a computer to solve a problem that is not de�nable mathematically while using the raw sensory data in
their original form.

On one hand, the computer industry has enjoyed fast and sustained advances in speed, storage capacity,
performance-to-price ratio, and installation base. These advances have brought digital media into all walks
of life. Now, all forms of digital media, video, audio, images, and text, have become ubiquitous, from living
rooms, to classrooms and to corporate oors. These mass-market phenomena of once-expensive digital tech-
nology has opened an unprecedented possibility for developing reasonably-priced multimodal human-machine
communication systems and multimodal understanding machines. Breakthroughs in machine understanding
of multimodal information, such as video, images, speech, language, and various forms of hand-written or
mix-printed text, can lead to numerous long-awaited applications.

On the other hand, however, the Grand Challenge that the research community faces is grim. There
is no breakthrough in sight toward machine understanding of multimodal information in general settings,
including vision, speech and language, and hand-written general text. In fact, each sensing modality has
already met tremendous di�culties. For example, although there have been some limited applications in
controlled settings [25], the computer vision community has seen a wave of pessimism toward solving the
challenging problems of visual understanding in general settings, as indicated by several invited talks at
ICPR (International Conference on Pattern Recognition), 1996 presented by some very well-known senior
researchers in the �eld. The di�culties encountered in vision might not be surprising if one realizes that it is
the most di�cult sensing modality in human. In fact, a half of the cerebral cortex in the human brain is given
over to visual processing. As is well known, a huge portion of human knowledge is acquired through vision.
The speech recognition �eld has some limited applications for recognizing words and short sentences in a
controlled setting [1] [86]. However, further advances applicable to general settings requires understanding
the situation, context, speaker's intention, speaker characteristics, language and the meaning of what is said
[34] [113]. In the natural language understanding �eld, we have seen various low-level applications in language
processing from text inputs, such as spell checkers, grammar checkers and natural language search [14], but
these low-level applications do not require true understanding of text. It has been well known that language
understanding requires not only syntax but also semantics and \common sense" knowledge. Several grandiose
language knowledge-bases are being developed, such as the common-sense knowledge-base, CYC [45] [46] and
lexical database, WordNet [54]. However, it is an open question whether a machine can really understand
anything in a pure text form without its own experience. Is linking from one string of letters to another
true \understanding"? Can the system use text properly in, e.g., language translation? Language discourse
and language translation are good tests of language understanding. However, tremendous di�culties persist
in these subjects. Like speech recognition, hand-written character recognition without understanding the
meaning of the context cannot go very far.

Facing the Grand Challenges and with seemingly minimal hope of a signi�cant breakthrough in existing
methodology, the research community must seek and encourage fundamental changes in the way we approach
these problems.

The conceptualization and development of the PI's theory and methodology on living machines have
bene�ted a lot from related �elds such as psychology, neurophysiology, evolutionary biology, ecology, cy-
bernetics, machine intelligence, system sciences, statistics, robotics, and control theory. A huge volume of
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incomplete yet very rich and illuminating facts about human cognitive development has demonstrated that
this �eld should adopt a fundamentally di�erent paradigm, a paradigm that is probably not well accepted by
the establishment in the �eld now, but will lead to fundamental breakthroughs toward meeting the Grand
Challenge.

1.2 Living Machines

The new paradigm is to develop general-purpose living machines (or just living machines for short). In order
to distinguish the concept of living machines from other robots or virtual machines, a characterization is
necessary. A machine is called a \living machine" if it has the following properties.

Sensing and action The machine must use its own sensors and e�ectors. The sensors may include all those
that can sense the world around it (i.e., environment) without human's manual processing, such as
cameras, microphones and many other types of sensors. The keyboard is excluded because it requires
humans to type. The e�ectors are things that can change the environment in some way under computer
control. They include mobile drive systems, robot manipulators, camera positioners, speakers, printers,
displays, etc. The level of performance that a living machine can reach depends very much on the type
of sensors and e�ectors that are used.

Knowledge-free representation Due to the tremendous volume and the vast variety of knowledge that
the Grand Challenge requires, the living machine's program-level representation should not be con-
strained by, or embedded with, handcrafted knowledge-level world models or system behaviors1. No
manually built model or behavior is general enough to handle either the high complexity of the general
real-world or the high complexity of the system behavior required by the Grand Challenge. Thus, those
systems that are embedded with human handcrafted world models or programmed-in behaviors (e.g.,
the series of robots developed by Brooks [8], autonomous agents such as ALIVE [48] and arti�cial life
systems such as arti�cial graphics �shes [78]) cannot go much beyond what has been modeled.

Low-level physical channels Certain low-level innate functionalities are built into the system, especially
those that are innate in human, such as pain avoidance (which can be simulated by a negative feedback
from a human teacher) and love for food (which can be simulated by a positive feedback from a human
teacher). Thus, human can inuence the behavior at this \physical" level. The physical channels also
include override channels through which a human teacher can impose certain actions when needed
(e.g., for simulating hand-in-hand teaching without using a compliant robot arm).

Reinforcement learning The machine must be able to learn the right thing according to feedback. It
avoids actions that are associated with negative feedbacks and chooses actions that are associated with
positive ones. Those feedbacks are received either directly from human teachers through the low-level
physical feedback channel (mainly for early learning), or indirectly from the machine's association with
what it has already learned (mainly for later learning).

Self-organizing High-level knowledge and behaviors are learned and practiced based on rich and vast build-
up of low-level knowledge and behaviors. However, there is no static de�nition to decide which one
is low level and which is high. It depends on how each individual living machine learns. Roughly
speaking, if a piece is learned based on another piece that has already learned, the former is at a higher
level than the latter. However, such a dependency is not always one way.

Autonomous learning During autonomous learning, the machine has a certain degree of autonomy in
the learning environment, similar to the way humans learn at home or at school. When doing so,
the machine autonomously interacts with the environment around it, including humans. Although a
human teacher may show the machine how to do a job, and sometimes may even use a hand-in-hand
demonstration, the human does not have a full control of all the aspects of the learning machine, e.g.,

1An example of knowledge-level model is a hand-coded program section that determines something like: \If there are two
dark areas of a similar size on a horizontal line, they might be human eyes." An example of knowledge-level behavior is a
hand-coded program section in a system that does something like: \if the distance sensed from the forward sonar is smaller
than a certain number, turn away."
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what to see, what to remember, what to do, or how to interact with human. The human may evaluate
how well the living machine is doing. In contrast, the other end of the spectrum is spoon-fed learning, in
which a human teacher completely controls what the learning system receives as input, what objective
function to minimize, and what the expected output is. Both the autonomous and spoonfed learning
may include supervised and unsupervised learning [24] [33].

Real-time For practical reasons, the learning machine must learn while performing in real-time, on-line,
and learn incrementally and directly from its second-to-second activities, on a daily basis.

The PI calls this type of general-purpose autonomous learning machines \living machines" because they
\live" in the human environment and interact with the environment (including humans) on a daily basis.
The emphasis of the term is not \life", but rather, the daily autonomous learning activities that are associated
with a biological living thing, especially human, such as playing, communicating with humans and learning
to perform tasks. Such machines are fundamentally di�erent from a nonliving regular machine, such as an
automobile or a computer, since they do not operate autonomously.

1.3 Why Living Machines?

This is a question whose answer is very broad. Here, a brief description of the major reasons is given. The
history will explain it better in the future.

1.3.1 Each modality must be learned

The cognitive knowledge that is required to communicate with humans in single or multiple modalities in
a general setting is too vast in amount and too complicated in nature to be manually modeled adequately
and manually spoon-fed su�ciently into a program. Probably few will question the fact that language is
learned. Therefore, vision, the modality that many human individuals do not feel requires much learning
(i.e., learned subconsciously), is appropriate to demonstrate the importance of learning. How complete is a
child's vision system when he or she is born? In fact, as early as the late 19th century, German psychiatrist
Paul Emil Flechsig had shown that certain regions of the brain, among them V1, have a mature appearance
at birth, whereas other cortical areas including V2, V3, V4, and V5 regions, continue to develop, as though
their maturation depended on the acquisition of experience [114]. A lot of studies have been done since then.
It is known that learning plays a central role in the development of human's versatile visual capabilities
and it takes place over a long period (e.g., Carey [12], Hubel [30], Anderson [4], Martinez & Kessner [32]).
Human vision appears to be more a process of learning and recalling than one that relies on understanding
of the physical processes of image formation and object-modeling (e.g., the \Thatcher's illusion" [79] and
the overhead light source assumption in shape from shading [64]). Neurologist Oliver Sacks' report [68]
indicated that a biologically healthy, adult human vision system that has not learned cannot function as
we take for granted. A large amount of evidence seems to suggest that except for low-level processing such
as edge detection, many middle- and high-level sensory and motor behaviors in humans are learned on a
co-occurrent basis from very early days of childhood and they continuously improve through later learning.
The biological brain is so much determined by learning that the normal biological visual cortex is reassigned
to tactile sensory functions in the case of the blind. Many researchers in the �eld have realized that the visual
knowledge required by the human-level performance is certainly too vast and too complex to be adequately
modeled by hand. Letting a machine learn autonomously by itself is probably the only way to meet the
Grand Challenge. In other words, we should move from \manual labor" to \automation." Intuitively, manual
modeling is hard and costly, while automation is more e�ective in productivity and less costly than human
labor. Furthermore, it is extremely di�cult, if not impossible, to build an adult human brain that has
learned. It appears more reasonable to build a machine \infant brain" that can simulate, to some degree,
brain's learning after the birth.
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1.3.2 The machine must sense and act

The question is then how to automate this learning process. In the �eld of traditional arti�cial intelligence
(AI), the main emphasis of the establishment has been symbolic problem solving (see Minsky's collection
of annotated bibliography [55]). Later, due to the need of common sense knowledge in reasoning systems,
some grandiose projects have been launched to manually feed reasoning rules with symbolic, common sense
knowledge via computer keyboards (e.g., the CYC project [45]). The hope is that these rules and common
sense knowledge are complete enough to derive all the needed knowledge. Learning in traditional AI is
conducted at a symbolic level, even when autonomy is a goal (e.g., the autonomous learning with the LIVE
system [69]). The machine does not have its own sensors and e�ectors. This has two fundamental problems.
First, the machine cannot deal with all the knowledge that is directly related to sensing and action, such as
how to recognize a scene and move around it using vision. Second, since a huge amount of human's symbolic
knowledge, both low level and high level, is rooted deeply in sensing and action, a sensor-free machine
can neither really understand nor properly use it if it is input manually. For example, even for seemingly
symbolic problems such as language translation, no reasonable translation is possible without understanding
the meaning of what is said (a lot of which is about sensing and action), except for simple cases.

Brooks emphasized the need of embodiment for developing an intelligent machine [8]. In his view,
an intelligent machine must have a body to be situated in the world to sense and act. He advocated
that intelligence emerges from robot's interaction with the world and from sometimes indirect interactions
between its components [8]. A recent book by Hendriks-Jansen provides perspectives for embodiment and
situatedness from psychology, ethology, philosophy and arti�cial intelligence [28]. In fact, embodiment,
situatedness, sensing, and action have been common practices in robotics and vision communities for many
years [85] [80]. The emphasis on these important points is not only useful for symbolic AI, but also for other
�elds related to machine intelligence.

1.3.3 The machine's representation must be knowledge-free

The programming-level representation must be free of handcrafted rules. A manually selected set of features
cannot be applicable to open-ended learning. Aloimonos [2] and others advocated that modeling 3-D scenes
is not always a reasonable thing to do. Each vision problem should be investigated according to the purpose.
Brooks 1991 [8] attributed the di�culties in vision and mobile robots to the so called SMPA (sense-model-
plan-act) framework which started in the late 60's (see Nilsson's account [57] for a collection of the original
reports). However, the behavior-based methods of Aloimonos [2] and Brooks [8] avoid a trap but accept
another | imposition of handcrafted behaviors on the system. A more recent work of Brooks' group used
an explicit, qualitative representation of the sonar-sensed world with a set of explicitly programmed-in
behaviors [50]. In fact, the pattern recognition community and the machine learning community have had
a long history of recognizing patterns without fully modeling it. Features have been used in these �elds
to classify patterns (e.g., [24], [23], [33] [61], [7], [53]). The basic di�erence between a pattern recognition
problem and a typical computer vision problem is that the former has a controlled domain with a limited
number of classes but the latter is open-ended. The fundamental problem of the existing SMPA approaches
is not in reconstructing the world, but rather, it is the practice of handcrafting knowledge-level rules for
one of both enties: the world and the system. Avoiding modeling 3-D surface or abandoning the SMPA
framework is not enough. For open-ended applications with unpredictable inputs, as is the case with the
Grand Challenge, handcrafted behaviors embedded into a programming representation must be abandoned
because no handcrafted behavior is generally applicable to the open world. Brooks is currently building a
human-shaped machine called COG [9]. Facing with tremendous di�culties in handcrafting a huge number of
behaviors and world models, his current architecture does not seem to be able to meet the Grand Challenges
in vision, speech, language, etc, where the sensing dimensionality and the complexity of the understanding
task are much higher than that of sonar sensors [50]. As we explained in Section 1.3.1, handcrafted knowledge
models or system behaviors cannot deal with the full complexity of vision, speech, language, etc.

Therefore, the system representation for programming should avoid modeling the knowledge level. Con-
sequently, self-organization is a must, to allow the system to acquire knowledge and behavior at di�erent
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levels of abstraction automatically. This point is closely related to our comprehensive learning concept, which
is explained in Section 2.1.

1.3.4 The machine must learn autonomously

Spoon-fed learning is not practical for the Grand Challenge because (1) a huge amount of knowledge and
behavior must be learned, (2) the system must experience an astronomical number of instances, (3) the
system must learn continuously while performing (no human being can practically handle this type of spoon-
feeding work on a daily basis), (4) high-level decisions are based on so much contextual information that
only the machine itself can handle (automatically). During autonomous learning, a human teacher serves
very much like a baby sitter (robot sitter in this case), sending occasional feedback signals depending on
how the living machine is doing. Later on, once the robot has learned basic communication skills through
normal communication channels (such as speech and visual gesture), the robot sitter is replaced by school
teachers. It appears that only the relatively low cost associated with autonomous learning is practical for
meeting the Grand Challenge.

1.3.5 The machine must perform multimodal learning in order to understand

Studies on humans who are born blind and deaf have demonstrated tremendous di�culties in learning very
basic knowledge [112] [51]. Learning basic skills become virtually impossible with those few who are born
blind, deaf, and without arms and legs. For example, a system that cannot see cannot really understand
concepts related to vision (e.g., pictures and video, �lm, color, mirror, etc) and those concepts that are
understood mainly from visual sensing (e.g., trees, mountains, birds, streets, signs, facial expressions, etc).
A system that cannot hear is not able to really understand sentences related to speech and sound (e.g.,
the sound of music instruments, bird chirps, characteristics of a person's voice). The proverb, \a picture is
worth a thousand words" vividly points out the de�ciency of text (words) in describing information that are
best conveyed visually. Furthermore, understanding any single sensing modality, including vision, speech,
language, and text, requires knowledge about other sensing modalities too. A system that does not live
and interact with humans cannot really understand the concepts related to human emotions, characteristics
and relationships (e.g., angry, happy, sympathy, care, cruel, friends, colleagues, enemy, spies, etc). In
fact, a system that cannot see, cannot hear, cannot touch is deprived of the three most important sensing
modalities through which a human acquires knowledge. Therefore, such a system has a fundamental limit in
understanding any human knowledge and in using such a knowledge even if it is manually fed in. Sensor-free
systems like CYC have met tremendous di�culties toward applications that require understanding (such
as language translation) and they are also very di�cult to use due to the lack of any sensing modality for
retrieval. Lack of multimodel sensing and action is a major reason to account for why existing knowledge-base
systems do not really understand the knowledge they store.

1.4 The Three-Phase Plan

The task of developing living machines consists of two integral aspects:

1. Developing the physical system, including theory, algorithm, hardware and software, for autonomous
multimodal learning. In some sense, our goal is to build a machine counterpart of a human new born,
although an exact duplicate is neither possible nor necessary.

2. Teaching the living machines to do things. In a sense, human beings try to \raise" and teach the
machine \babies" properly so that every one of them will become successful in an assigned professional
�eld.

The PI has been following a three-phase plan for this endeavor.
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1.4.1 Phase 1: Comprehensive learning

In Phase 1, the task is to develop a framework for basic brain functionalities such as memory store, automatic
feature derivation2, self-organization, and fast associative recall. The major goal is generality and scalability.
The generality means that the framework must be applicable to various domains of sensor-e�ector tasks. The
scalability means that it must have a very low time complexity3 to allow real-time learning and performance
(i.e., scalable to number of learned cases). A wide variety of sensing and action tasks must be performed
to verify the generality and scalability. However, learning at this stage is \spoon-fed", meaning that the
learning process is not autonomous.

1.4.2 Phase 2: Autonomous Learning by living machines

This phase is to complete the theory and methodology development for autonomous general-purpose learning
and build one or more prototypes of living machines. The living machines are trained to perform certain
tasks autonomously, such as moving around, grabbing things, saying simple words, and responding to spoken
words, all in a fully autonomous mode and in unrestricted general settings. This roughly corresponds to
the sensorimotor stage of a human child (from birth to age 2), according to the renowned developmental
psychologist Jean Piaget [26] [13] [12]. In his theory, human's cognitive development can be roughly divided
into four major stages, as summarized in Table 1. There is no doubt that these four stages have a lot to do

Table 1: Piaget's Four Stages in Human Cognitive Development

Stage Rough ages Characteristics

Sensorimotor Birth to age 2 Not capable of symbolic representation
Preoperational Age 2 to 6 Egocentric, unable to distingiush appearance from re-

ality; incapable of certain types of logical inference
Concrete operational Age 6 to 12 Capable of the logic of classi�cation and linear

ordering
Formal operational Age 12 & beyond Capable of formal, deductive, logic reasoning

with neural development in the brain. Furthermore, more recent studies have demonstrated that the progress
into each stage depends very much on the learning experience of each individual and thus, biological age
is not an absolute measure for cognitive stages. For example, Bryabt and Trabasso [11] showed that given
enough drill with the premises, 3- and 4-year old children could do some tasks to construct linear orderings,
a deviation from the classical Piagetian theory. During our development, the theory and methodology for
developing living machines will be modi�ed depending on how well the living machine can learn. In this
phase, communications between human teachers and the living machines during training are partially visual,
partially vocal, and partially physical (through the low-level physical channel).

Table 2 lists �ve integrated task groups as the benchmarks for Phase 2. The current status quo in the �eld
is (1) no existing system can complete all these task groups in a controlled setting; (2) no existing system
can do any one of the task groups in a general setting; (3) no existing system can do any one of the task
groups in a truly autonomous mode (i.e., the system cannot be explicitly preprogrammed at the task level),
when instructed via gesture or speech. These tasks to be performed by the living machines must be taught
in the autonomous learning mode. The benchmarks must be tested continuously, in a truly autonomous
mode and in any order. If the benchmark test is successful, this will be the �rst time that a machine really

2We do not use the term feature selection here because it means to select from several pre-determined feature types, such as
edge or area. The term feature extraction has been used for computation of selected feature type from a given image. Feature
derivation means automatic derivation of the actual features (e.g., eigenfeatures) to be used based on learning samples.

3For the living machines, the time complexity is logarithmic in the number of cases learned. Thus, the exact term should
be \logarithmic scalability" | logarithmic to the scale of the problem.
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Table 2: Benchmarks of Phase 2 for the Living Machines in General Settings

Task group Benchmark

Visual recognition Say hello with correct names of 5 human teachers when they enter the scene. Say
the name of 5 toys when being asked.

Speech recognition Understand sentences: Come. Call me. Hello! Goodbye! Wave your hand. Say
hello to .... Say goodbye. What's it? Pick this. Put down. Pour water into this.
Yes. No. Follow me. Watch this. Stop. Go home. I'm home. I got lost.

Speech synthesis Respond using sentences: Hello! Goodbye! Yes. No. I'm home. I got lost. Call the
names of 5 toys and 5 teachers.

Navigation Autonomous indoor navigation without running into anything. Outdoor navigation
following campus walkways and crossing streets. Follow a teacher to go, via an
elevator, from a lab on the third-oor of a building to the parking lot outside the
building. Return from the parking lot to the lab alone.

Hand action Pick correctly one of the 5 toys. Put a toy down. Wave its hand when saying hello
or goodbye. Place one toy on top of another. Pour a cup of water into another cup.

understands something4. By the time it has passed the test, the living machine actually has learned much
more because the setting is unrestricted | much more has been seen, much more has been heard, much
more has been tried, and much more has been learned.

1.4.3 Phase 3: Living machine's pre-school learning

At this stage, the living machine enters Piaget's preoperational stage (age 2 to 6). Signi�cant improvements
of the living machine software will continue, similar to the way operating systems are improved and upgraded
now. Computers move to new levels of storage and speed and their cost continues to fall. The new demands
from living machines will stimulate the robotics industry to produce new generations of light weight, reliable,
dexterous manipulators and drive systems.

A new emphasis in this phase is to investigate how to teach the living machines to learn things that are
taught in human preschools. Since machine computes fast and is never tired of learning, potentially they
can learn faster than a human child. At this stage, communications between human teachers and the living
machines become mostly visual or vocal, whichever is more convenient. The physical channel is seldom used.
Breakthroughs in vision, speech recognition, speech synthesis, language understanding, robotics, intelligent
control and arti�cial intelligence are simultaneous at this stage. The benchmark to measure success is a
standard entrance test for human pre-schoolers.

At this time, a new industry will appear. Living machines are manufactured and delivered to research
institutions as experimental machines; to federal agencies for special tasks, to schools as educational material,
to amusement parks as interactive attractions, to the media industry as machine personalities, and to homes
for those who are physically challenged or just need a friend. At the end of this phase, the bright future of
living machine is well known to general public.

1.4.4 Brain size and speed of the living machine

A question is naturally raised here: how much space does the living machine need? How fast can it recall from
a large brain? These two important questions cannot be clearly discussed until the methods are presented.
See Section 4.2 for a discussion about the brain size and Section 4.3 for the speed issue. With the logarithmic
time complexity of the living machine and the steady advance of computer storage technology, it is expected

4A link from one text string to another, or a mapping from a camera input to a label is probably not understanding, since
the machine does not understand the text or label.
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Table 3: Major Tasks Tested and the Demonstrated Functionalites

SHOSLIF subproject SHOSLIF-O SHOSLIF-M SHOSLIF-N SHOSLIF-R SHOSLIF-S
(recognition) (spatiotemporal) (mobile robot) (robot arm) (speech)

Spatial recognition X X X X X
Temporal recognition X X X X
Image segmentation X X
Prediction X X X
Visual attention X X
Sensorimotor X X
Incremental learning X X
On-line learning X X
Performance rede�ned Yes Yes Yes Yes Not yet
the state-of-the-art

that in a few years, real-time living machines will have a storage size comparable with that of the human
brain at a reasonable cost, although in many applications we probably do not need as much space as the
human brain.

1.5 The Technology is Ready Now for Phase 2

The PI's Phase 1 work toward the living machine and the resulting SHOSLIF system started in the Fall of
1992. Phase 1 addressed the two conicting criteria | generality and scalability. The generality requires that
we must avoid handcrafted models for the environment or handcrafted models for the system behavior, which
is the essence of the comprehensive learning concept introduced by the PI in the Fall of 1993 [89] [93]. In
the �eld, there have been many attempts to build autonomous robots, from experimental micro robots (e.g.,
see Brooks [8]), to software-based virtual autonomous agents (see a survey by Maes et al. [48]), to full-size
robots (see a survey by Kanade et al. [36]). All of them ended up with a special-purpose system with an ad
hoc solution, because they use handcrafted knowledge-level models or handcrafted behavior rules. However,
the PI's SHOSLIF aims at a full generality and scalability. For this goal, it has been tested on a wide variety
of projects as summarized in Table 3. The extent of the work in using a single uni�ed framework for such a
wide range of challenging tasks is unprecedented in the �eld. It indicates a signi�cant breakthrough toward
the living machines. SHOSLIF is the only work that has raised and successfully addressed the generality-
and-scalability issue and thus enables us to embark on general-purpose living machines. Without the success
in meeting the conicting criteria of generality and scalability, the living machine is not possible.

In Phase 2, the �rst living machine SAIL (Self-organizing Autonomous Incremental Learner) is currently
being constructed. The result from Phase 2 is expected to bring long-lasting pay-o�s to a wide variety of
applications, including human-machine multimodal interface systems, image understanding systems, speech
recognition systems, language understanding systems, robotics systems, high-performance knowledge-base,
expert systems, arti�cial intelligence, and future entertainment systems, educational systems, and intelligent
personal assistant systems.

Although a lot of progress has been made toward autonomous robots and construction of knowledge-
bases, general-purpose autonomous learning with real-time sensing and action in general settings has not
been possible until now.

1. Very few frameworks are truly general as SHOSLIF. Traditional autonomous systems and knowledge-
base systems rely on humans to manually model the world and handcraft decision rules for the system,
which determines that the systems are not general, since no handcrafted models are general enough
either for the world or for a general purpose sensing-and-action learning system. The behavior-based
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Table 4: Comparison of Existing Approaches to Learning Machines

Approaches Major
representatives

For the world For the system Sensing and action
integrated in
learning

Symbolic AI Minsky and oth-
ers [55], CYC [45]

Hand-crafted
knowledge models

Hand-crafted
reasoning rules

Text output

Robotics CMU Navlab [36],
DANTE [109],
Rap [62],

Hand-crafted world
models

Hand-crafted deci-
sion rules

Various

Bahavior-based Brooks [8], Aloi-
monos [2]

Avoid
handcrafted model;
respond with reex

Hand-crafted low-
level behaviors

Depth/motion
sensing; navigation

Comprehensive
learning

Weng [93] and
SAIL being
constructed

General learn-
ing, avoid hand-
crafted world model

Self-organize from
low to high levels,
avoid handcrafted-
behavior

Vision, hearing,
tactile; attention,
navigation, manip-
ulation, speaking

Table 5: Comparison of Several General Tools

Approaches Completeness Learning speed Retrieval speed Incremental growth

HMM Low Slow: iterative O(N2) No
Neural networks High Slow: iterative O(N2) Di�cult
SHOSLIF High Fast: noniterative O(log(N)) O(log(N)) Yes

approaches have abandoned the practice of modeling the world due to the observed di�culties, but
they got stuck with a deeper fundamental problem: handcrafted behaviors cannot handle open-ended
general-purpose learning. Although they are situated, behavior-based robots are repeating the practice
of simple-minded language conversation programs which respond human's questions with a few pre-
programmed phrases and the fundamental di�erences among approaches. See Table 4 for a summary
of existing approaches.

2. The SHOSLIF is the only existing system that is both general and scalable. It is di�cult for a general
system to be e�cient and the system tends to be slow, because no manually imposed constraints are
allowed. However, a slow system cannot be situated and learn in real-time, which is a major challenge
to all the vision-based robot systems. SHOSLIF is both general and fast (logarithmically scalable).
Arti�cial neural network is also general as a tool, but it is not scalable as shown in Table 5. A good
test for scalability is to use vision, which requires a very high dimensionality in input and is the major
sensing modality for humans to acquire knowledge. The scalability requires that the system does not
slow down signi�cantly violating the real-time on-line learning criterion even when the number of cases
learned increases through time. The logarithmic time complexity of the SHOSLIF accomplishes this
goal. Sonar-only systems, although they use low-dimensional inputs, have very fundamental limit in
performing nontrivial cognitive tasks, as indicated in blind-deaf cases with humans [112] and more so
with the born complete blind-deaf [51].

3. SAIL is the �rst system for autonomous learning with multimodal sensing and action without imposing
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Figure 1: A schematic illustration of the status quo in human endeavor toward intelligent machines. The di�culty
level is related to the required abstraction capability and the generality of the envrionment to which the system is
exposed to. The upper right corner in the diagram is the goal. The mode of development in the past has been
gradually pushing the front of the curve of status quo in the upper right direction. However, human will never reach
the goal this way, due to the reasons explained earlier. The living machine approach outlined here has taken into
account the lessons we learned from many related �elds. It is a fundamentally di�erent development path, which is
in line with that of human cognitive development. The technology base for this strategic path is ready now.

handcrafted models for the world or the system. Hand-crafting knowledge models and system behavior
models is one of the major reasons for persisting di�culties toward a general-purpose multimodal
understanding systems. The framework for SAIL on how to boot-strap a system that is free of both
world-model and behavior-model5 is unprecedented.

Fig. 1 illustrates the status quo of the existing works in various �elds and the development path of the living
machine. The proposed SAIL scheme, as presented in more detail later in this document, is a systematic way
toward the Grand Challenge. It is natural that such a scheme was originated from a group having extensive
experience in computer vision. Arguably, vision is the most di�cult sensing modality in human.

1.6 The Future of the Living Machines

After completion of Phase 3 in the above plan, continued education for living machines is more or less like
teaching a human child.

1.6.1 A revolutionary way of developing intelligent software

A large number of living machines will be made. Each newly made machine is loaded with the Phase 3 brain
(software and network as a database) as the starting point. Computer experts work with educational experts

5Some low-level human behaviors are innate. With SAIL, the desirable behaviors will be taught to the system during the
process of interactive hand-in-hand training, via the physical channel.
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to teach professional skills to living machines, very much like the way human students are taught. Each
professional �eld or subject has a living-machine school, in which several living-machine robots are taught
to master the professional knowledge. What each school does is to train a generic living machine to become
a professional expert. A living machine can be trained to become a space-craft pilot, a �ghter plane pilot,
a deep-sea diver, a waste-site cleaner, a security-zone monitor, an entertainer, a nursing-home care-taker, a
tutor, or a personal assistant. Each living machine is a software factory. This represents a revolutionary way
of making intelligent software: Hand programming is no longer a primary mode for developing intelligent
software, but rather, school teaching is. Teaching and learning are carried out through visual, auditory, and
tactile communications. Two types of products are sold, expert software brains and expert living machines.

1.6.2 Expert software brains as product

The expert brain (software and network) of each specially trained living machine is down-loaded and many
copies are sold as software brain. The software-only brain is useful and cheap, but it does not have a full
learning capability because of its loss of most sensors and e�ectors. For example, a software-only brain
running on the Internet can only learn from those available from the Internet, based on its knowledge it
learned when it had a full array of sensors and e�ectors. Depending on the richness of the information
available from the Internet and how his owner instructs its learning from the Internet, this software brain's
knowledge may gradually become obsolete. This is very similar to the case where a human's knowledge
becomes obsolete, once he or she does not keep learning. However, software brain buyers can always get
upgrades regularly from software brain makers, very much like the way commercial software gets upgraded
now.

1.6.3 Expert living machines as product

Each living machine school also sells expert \brains" with a physical body as a full living machine with
sensors and e�ectors. Such complete living machines can continue to learn at their application sites to
adapt to the new environment and learn new skills. This type of full living machines are used to extend
three types of human capabilities (1) physical capability, such as operating a machine or driving a car, (2)
thinking capability, such as �nding the most related literature from a library or replying piled-up electronic
mails, (3) learning capability, such as learning to use computers for the handicapped or learning to predict
economic ups and downs better. Humans can do things that they enjoy doing, leaving living machines to
do other things. Further more, the living machines can work round-the-clock without fatigue and loss of
concentration, which is something that no human being can match.

1.6.4 The longevity of living machine

The living machines eventually outlive human individuals because once their hardware is broken or worn,
the brain can be down-loaded and then up-loaded to a new hardware. They can also learn faster and learn
more hours everyday than each human individual. This longevity may lead to tremendous creativities. For
example, Albert Einstein passed away and human lost his creativity. The creativity and the knowledge that
each living machine learned can be preserved for future human generations for more innovations and better
service.

1.6.5 Social issues with living machines

Just like the case with human children or pets, each human teacher is responsible for his or her living
machine. If a living machine happens to have learned something that we do not want it to learn, we can
always replace its brain with the backed-up copy of, say, yesterday, to make it back to the yesterday's status.
We do not have such a convenience with a human child or a pet.
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1.6.6 A huge new industry

Now, the automobile industry is huge because every household needs at least one automobile. The computer
industry is huge now because the computer is general purpose in extending human's computation needs (and
all the functionalities that accompany the computation). Unlike all the special-purpose robots that have
been built so far, the living machine is general purpose. Therefore, the market for the living machine is
huge. With the decreasing cost that accompanies advances in robotic technology and computer technology
and the ever increasing volume of mass-market sale, the living machines will not only enter every business
and industrial sector but also millions of American households to serve as intelligent personal assistants. Its
annual sale number will be eventually on a par with that of personal computers and automobiles. With its
strong industrial base and competitive environment, US will become the birth place and the �rst growing
ground for the future living machine industry.

1.6.7 The government's role

The Internet has grown out of ARPANET whose seed was planted in 1969 by a DARPA supported project
titled Resource Sharing Computer Networks. The funding from US Federal Government played an important
role in the development of ARPANET and Internet. By the time when the last piece of NSF backbone ceased
to work in the Internet on April 30, 1995, the Internet has become an outstanding example to show how the
government can play its positive role in facilitating the growth of a new industry. Thanks to the popularity
of the Internet, the number of computers sold annually in this country is on a par with that of automobiles
sold, and the Internet has entered billions of American families. Its international coverage is growing very
fast.

Timely Federal funding support is crucial for the new, upcoming living machine technology in its edging
stage. The development of the living machines is of great importance to this country's scienti�c and technical
advances, future national security, and the future US economy in this ever more competitive world market.
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2 WORK COMPLETED TOWARDS LIVING MACHINES

Currently, the PI and his students have completed Phase 1 and have already started Phase 2. In the following,
the PI briey summarizes the series of work that has been completed.

2.1 Comprehensive Learning

The major new concept introduced by the PI during Phase 1 was the concept comprehensive learning which
the PI �rst presented in an NSF/ARPA sponsored workshop in 1994 [89] [93]. As illustrated in Fig. 2, this
concept consists of two basic ideas:
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Figure 2: The concept of comprehensive learning implies that learning must comprehensively cover (1) the sensed
world and (2) the understanding system. This implies that one needs to avoid handcrafted knowledge-level rules for
the world or the system.

1. Learning must comprehensively cover the sensed world (visual, auditory, etc). This implies that we
must not manually model the world. No manually built knowledge-level model is general enough for
open-ended learning. Thus, the PI's approach is di�erent from all the \knowledge-based" methods in
the �eld of arti�cial intelligence. Further, the learning method should not assume which type of scene
condition is acceptable by the system and which is not. The method must be able to learn from any
scene sensed by the sensor, because there exists no automatic condition checker which can tell, given
an arbitrary situation, whether the scene condition is acceptable to the method. A system is not able
to operate autonomously in the real world, if it assumes conditions that it cannot verify by itself.

2. Learning must comprehensively cover the entire understanding system (visual, auditory, etc). This im-
plies that we must not model system behavior. Therefore, the PI's approach is di�erent from behavior-
based methods. In other words, handcrafted knowledge-level rules (such as shape from shading rules,
shape from contour rules, edge linking rules, collision-avoidance rules, planning rules, reasoning rules,
etc) should be avoided for the programming level as much as possible. These rules result in brit-
tle systems due to their very limited applicability and lack of automatic methods to determine their
applicability in the open-ended real world environment.

Two basic entities are involved in the scenario: the environment and the machine agent. The comprehen-
sive learning points out that the human system designer should neither handcraft models which restrict the
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environment nor handcraft behaviors which restrict the machine agent. We should only embed the system
with self-organizing principles that the system can use to organize sensed information. These principles do
not penalize the generality of the system, but only a�ect the e�ciency of the system. Violation of this
basic principle of comprehensive learning is the primary reason why there has been no general-purpose living
machine so far.

The �rst comprehensive coverage implies that the comprehensive learning concept is in sharp contrast with
the current mainstream approaches in the computer vision and robotics �eld, where each method requires
certain assumptions about the world condition and then a model or rule is derived about the environment
to compute a solution using the assumptions. Shape-model-based methods for object recognition, all the
SMPA approaches in robotics, and the recent model-based trend [21] in the multimedia community (which
repeats the deep-trenched, not very successful approaches in the computer vision community) all belong to
this category of modeling-environment approaches. There is no assumption veri�er which, given any image,
veri�es whether the assumptions are satis�ed. In fact, such a veri�er may be more di�cult to develop than
solving the original application problem itself6. In summary, for understanding an uncontrolled environment,
we should not impose, at the programming level, handcrafted models or restrictions on the environment.

The second comprehensive coverage implies that the concept is in sharp contrast with the behavior-based
approaches which impose models on the system behavior. Although behavior-based approaches, such as the
work of Aloimonos 1990 [2] and Brooks [8], have avoided explicit reconstruction of the scene, they still impose
handcrafted rules about the behavior of the system. Although the imposed behavior in a simple situation
may turned out to be close to what one needs, such a handcrafted behavior is not applicable to billions of
more complex situations in the real world. For example, collision avoidance is needed only in navigation,
but is damaging in docking. Hand-crafted rules will never be enough to handle the complex situations that a
living machine must handle during its open-ended learning. In summary, for understanding an uncontrolled
environment, we should not impose handcrafted behavior on the system at the programming level.

2.2 Generality and Scalability

The generality (i.e., the real-world applicability) is resulted from the comprehensive learning approach, as
stated above. The remaining issue is the e�ciency. The scalability means that the method must work in
real time even when the system has learned a huge number of cases. Generality and scalability are two
conicting goals. A general method does not use pre-imposed special-purpose constraints and thus tends
to be less e�cient. However, we must achieve both generality and scalability. ' In Phase 1, we applied
SHOSLIF to a wide variety of tasks to test its generality and we used a large number of cases for each task
to test its scalability.

2.3 SHOSLIF Developed

The basic framework that we developed to achieve the above two conicting goals is called Self-organizing
Hierarchical Optimal Subspace Learning and Inference Framework (SHOSLIF).

2.3.1 The Core-Shell Structure

A level of SHOSLIF consists of a core and a shell, as shown in Fig. 3. The core is task independent. It serves
the basic function of memory storage, recall and inference. The shell is task dependent. It is an interface
between the generic core and the actual sensors and e�ectors. For a particular problem with a particular
set of sensors and e�ectors, a shell needs to be designed which converts input data into a vector in space
S, to be dealt with by the core. The output of the core is fed into the corresponding e�ectors by the shell.
Mathematically, the SHOSLIF core approximates a high dimensional function f : S 7! C that maps from

6It is reasonable to assume conditions that are really true in a particular application. However, few conditions are both true
and useful in typical multimedia applications.
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Figure 3: The SHOSLIF's core and shell, with sensors and e�ectors. Such a core-shell structure can be nested.
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Figure 4: (a) samples in the input space marked as i; j where i is the level at which its position marks as the
center of the partition cell and j is the index among the brothers in the SHOSLIF tree in (b). The leaves of the
tree represent the �nest partition of the space. All the samples in each leaf belong to the same class. A class is
typically represented by more than one leaf. Linear boundary segments (i.e., corresponding to linear features) at the
�nest level are su�cient becase any smooth shape can be approximated to a desired accuracy by piecewise linear
boundaries.

sensor input space S to the desired output space C. This very general representation is the key to enable
the core to be problem independent.

2.3.2 The SHOSLIF tree

SHOSLIF is a framework for automatically building a tree that is used to approximate the functionY = f(X)
as indicated by each learning sample Li = (Xi;Yi), with Yi = f(Xi), in the learning data set. Fig. 4 shows
a hierarchical space partition in the input space of X and its corresponding SHOSLIF tree. The SHOSLIF
tree shares many common characteristics with the well known tree classi�ers and the regression trees in the
mathematics community [7], the hierarchical clustering techniques in the pattern recognition community [23]
[33] and the decision trees or induction trees in the machine learning community [61]. The major di�erences
between the SHOSLIF tree and those traditional trees are:

1. The SHOSLIF automatically derives features directly from training images, while all the traditional
trees work on a human pre-selected set of features. This point is very crucial for the completeness of
our representation.

2. The traditional trees either (a) at each internal node, search for a partition of the corresponding
samples to minimize a cost function (e.g., ID3 [61] and clustering trees [33]), or (b) simply select
one of the remaining unused features as the splitter (e.g., the k-d tree). Option (a) results in an
exponential complexity that is way too computationally expensive for learning from high-dimensional
input like images. Option (b) implies selecting each pixel as a feature, which simply does not work
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Figure 5: (a) Hierarchical partition of the MEF binary tree. (b) Hierarchical partition of the MDF binary tree,
which corresponds to a smaller tree. The symbols of the same type indicate the samples of the same class.

for image inputs (in the statistics literature, it generates what is called a dishonest tree [7]). The
SHOSLIF directly computes the most discriminating features (MDF), using the Fisher's multi-class,
multi-dimensional linear discriminant analysis [27] [110] [24], for recursive space partitioning at each
internal node.

2.3.3 Automatic derivation of features

In each internal node of the SHOSLIF tree, one or several feature vectors are automatically derived to
further partition the training samples. The MDF subspace is such that in that subspace, the ratio of the
between-class scatter over the within-class scatter is maximized. Computationally, the MDF vectors are the
eigenvector of W�1B associated with the largest eigenvalues, where W and B are the within- and between-
class scatter matrices, respectively. In the case where class information is not available, SHOSLIF uses PCA
(principal component analysis) [35] [38] [84] to compute the principal components of the sample population
(which we call the most expressive features MEF in order to bring up a contrast with the MDF).

How does the system know the class label? In fact, the MDF is also suited for autonomous learning
where, although the exact class is not known, the low-level physical feedback is given which enables a
two-class discrimination at each internal node to �nd desired action and avoid undesired ones. At later
autonomous learning, class information will be available from the living machine itself.

In the training phase, as soon as all the samples that come to a node belong to a single class, the node
becomes a leaf node. Fig. 5 shows an example of SHOSLIF binary tree, for which only one feature vector
is computed, resulting in a binary tree, which is very fast in retrieval since only one project needs to be
computed as each internal node. As shown, the MDF gives a much smaller tree than the MEF since it
can �nd good directions to separate classes. In reality, we explore k > 1 paths down the tree to get top k

matches. Then the con�dence is estimated from a distance-based con�dence interpolation scheme using the
top k matches.

2.4 Some Proved Theoretical Results for SHOSLIF

Here we briey describe some new theoretical results that we have established and proved for SHOSLIF. We
avoid a lot of mathematical equations here. In the following, the �rst two properties address the generality
and the later two properties deal with the scalability.
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Point to point correct convergence: Loosely put, as long as an image X has a positive probability to
occur, the approximating function f̂ represented by the SHOSLIF tree approaches the correct f(X) as
the number of learning samples increases without bound.

Functionwise correct convergence: Loosely put, if the training samples are drawn according to the real
application and the function to be approximated has a bounded derivative, then the approximate
function f̂ represented by the SHOSLIF tree approaches the correct f in the mean square sense 7 as
the number of learning samples increases without bound. The above condition does not mean that the
samples must be uniformly drawn from all the possible cases, but rather, it means that one just takes
the samples roughly in the way the system is used in the actual application. This theoretical result
means that the system will never get stuck into a local minima and thus fails to approach the function
wanted. This is a property that the arti�cial neural networks lack.

Rate of convergence: Let Rn be the error risk of the SHOSLIF tree and R� be the corresponding Bayes
risk (which is the smallest possible risk based on a given training set). We have proved the following
upper bound on Rn:

Rn � 2R� +A(2�)2k2=d(
1

n
)2=d (1)

where A is the upper bound on the Jacobian of the function f to be approximated, � is the radius of the
bounded domain in which f is to be approximated, k is the number of neighbors used for interpolation
employed in SHOSLIF, d is the dimensionality of the feature space, and n is the number of learning
samples. This result is consistent with the intuition that k-sample based interpolation is useful only
for a smooth function but it slows down the approximation when the function surface is rough. When
n goes to in�nity, the inequality gives limn!1 Rn � 2R�, which is a well known result proved by
Cover and Hart [16] for the classi�cation problem and later extended to function approximation by
Cover [15]. This result gives a theoretical foundation for using the k-nearest neighbor rule since its
resulting error rate is not too far from that of the best possible Bayes estimator. The Bayes estimator
is impractical in our case because we do not know the actual distribution function and estimation of
the distribution function in a high dimensional space is computationally very expensive, even if we
impose some arti�cial distribution models.

Logarithmic complexity: The time complexity for retrieval from the recursive partition tree used by
SHOSLIF is O(log(n)), where n is the number of samples stored as leaf nodes in the tree, which is
typically smaller than the size of the training set. This result is true not only for a balanced SHOSLIF
tree (guaranteed by a binary tree version of the SHOSLIF), but also true for Bounded Unbalanced Tree
typically generated by a general version of the SHOSLIF.

As we know, the above theoretical results gave only some insights into the nature of the problem. Eval-
uating actual error rates, some of them were quoted in this proposal, is a more practical way for evaluating
actual algorithms.

2.5 Functionalities Tested for the SHOSLIF

The demonstration of generality and scalability is an unprecedented challenging task. It requires us to test
SHOSLIF method for a wide array of problems. We selected several domains of challenging vision tasks to
test SHOSLIF theory and performance. The selection of the vision tasks was determined in such a way that
they cover major functionalities that must be implemented in Phase 1. Since the living machine requires
also speech recognition capability, we have also selected the speech recognition domain. Table 3 lists the
representative tasks that we have selected as test domains for SHOSLIF and the related functionalities that
have been tested if applicable.

7Also in probability 1 which is stronger than the mean square convergence.



20

The SHOSLIF project is unique in that it has applied a new, uni�ed method to a wide variety of
very challenging vision/robotics problems (shown in Table 3) and the performance achieved has
rede�ned the state-of-the-art in each of the vision/robotics problems.

Two other widely used general tools are the Hidden Markov Model (HMM) and the arti�cial neural
networks [47] [58]. Table 5 gives a comparison. In the table, N roughly corresponds to the number of classes
that need to be recognized. The completeness of HMM is low because of its three assumptions [63] (1)
independence of successive observations, (2) the mixture of Gaussian or autoregressive probability density,
(3) the Markov assumption: the probability for a particular event to occur at time t depends only on the
event at time t� 1.

In the following, a summary of each SHOSLIF subproject is presented. Due to the uni�ed core-shell
structure of SHOSLIF, the programming for each subproject was systematic, virtually without any parameter
tuning. Basically an interface needs to be developed as a shell for each subproject.

2.6 SHOSLIF-O: Face and Object Recognition

This project is to use the SHOSLIF method to recognize a large number of objects from their appearance.
The SHOSLIF approach is di�erent from other conventional approaches to recognition in that it deals with
real-world images without imposing shape rules or shape models on the scene environment. But rather, it
uses a general learning method to make the system learn how to recognize a large number of objects under
complex variations. It copes with critical issues associated with such a challenging task, including automatic
feature derivation, automatic visual information self-organization, generalization for object shape variation
(including size, position and orientation), decision optimality, representation e�ciency, and e�cient indexing
into a large database.

Now, the proposed method has been fully implemented. In order to test the system using a database that
is as large as possible, we combined several di�erent databases for training and testing: (1) MSU face database
(38 individuals); (2) FERET face database (303 individuals); (3) MIT face database (16 individuals); (4)
Weizmman face database (29 individuals); (5) MSU general object database (526 classes). Fig. 6 shows
some examples of face and object images used for recognition. Table 6 summarizes the result obtained. The
training images were drawn at random from the pool of available images, with the remaining images serving
as a disjoint set of test images.

In order to deal with variation in the well-framed (foveal) images, the system was trained to handle
variation in size, position and 3-D orientation within a certain range. We trained the system using samples
generated from the original training samples to randomly vary in (a) 30% of size, (b) positional shift of 20%
of size; (c) 3D face orientation by about 45 degrees and testing with 22.5 degrees. The training and test
data sizes are similar to that in Table 6. The top 1 and top 10 correct recognition rates were, respectively,
(a) 93.3% and 98.9%, (b) 93.1% and 96.6%, (c) 78.9% and 89.4%.

Publications resulting from the NSF award include general theory and framework of SHOSLIF [93] [92]
[89] [90] [91], work on recognition of human faces and other objects [77] [76] [73], applications of the method
to content-based image database retrieval [74] [72] [75], and searching of human faces in crowds [71].

The closest case for both face and general object recognition is its predecessor Cresceptron by Weng et
al.[98], but it has been tested with only about 20 classes. The SHOSLIF-O system is the only face recognition

Table 6: Experimental Results for Face and Object Recognition from Well-Framed Views

Type Training set Training classes Test set Top 1 correct Top 15 correct
Face 1042 images 384 individuals 246 images 95.5% 97.6%
General 1316 images 526 classes 298 images 95.0% 99.0%
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Figure 6: Some examples of face and object images used for recognition.
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Table 7: A List of Works for Vision-Based Moving Hand Sign Recognition

Researcher Sign Handwear Background Method Sign retrieval No. of sign
group type complexity classes

Darrell & ASL None Uniform Normalized O(n) 2
Pentland 93 [20] words black correlation

Cui-Swets-Weng ASL None Sparce PCA, MDF, O(log(n)) 28
95 [18] words texture Tree (SHOSLIF)

Bobick & ASL None Uniform PCA and Not 1
Wilson 95 [6] word black PCA trajectory addressed

Starner & ASL Color Without HMM, hand Not 40
Pentland 95 [70] words gloves glove colors as ellipse addressed

Lanitis & Special None Not Hand tracking O(n) 5
et al. 95 [44] shapes mentioned with parameters

Kjeldsen & Special None No skin Color histogram O(n) 5
Kender 95 [40] shapes tone and thresholding

Triesch & Speical None Moderately Labeled O(n) 10
Malsburg [82] shapes complex graphs

Cui & ASL None Arbitrarily SHOSLIF with O(log(n)) 28
Weng 96 [19] words complex visual attention

algorithm that uses a systematic tree structure. It is the only system that has been extensively tested for
both face recognition and object recognition.

2.7 SHOSLIF-M: Motion Event Recognition

For spatiotemporal recognition, we selected a challenge task: recognition of hand signs from American Sign
Language. Recently, there has been a signi�cant amount of research on vision-based hand-sign recognition
from images. Table 7 summarizes some major studies. Most of the works listed in the table reported over
90% accuracy, comparable to our 93%. A direct performance comparison is not appropriate because the
di�erence in the training and testing data and the di�erent numbers of classes that have been tested.

Compared with the existing studies on hand-sign recognition from image sequences, our work [18] [19] is
unique in the following sense:

1. The capability to segment a detailed hand (a complex articulated object) from a very complex back-
ground as shown in Fig. 7. The Work of Weng at al. is the only one whose recognition result is
completely independent of the background. (Malsburg at al. [82] requires that the background covered
by local views do not a�ect the local matching signi�cantly.) With this capability, we can signi�cantly
reduce the constraint on what kind of clothes that the signer can wear.

2. The logarithmic sign-retrieval time complexity O(log(n)), as indicated in Table 7, such a low complexity
is very desirable for dealing with a much larger number of hand shapes in real time.

3. The system distinguishes a large number (over 140) of hand shape classes, the largest among the
existing works on static hand shape recognition from images (a list can be found from Huang and
Pavlovic's recent survey [29] and the workshop proceedings in which that survey was published).

4. The largest number of hand-signs among the existing works on handwear-free moving hand-sign recog-
nition (see Table 7 and [29]).
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(a)

(b)

(c)

Figure 7: (a) An example of many hand-sign sequences. It means \yes". (b) The results of motion-based attention
mask found, shown with a bounding (dark) rectangular window. Notice that motion-based segmentation alone is not
su�cient for hand sign recognition. Without a detailed shape information of the hand, reliable hand sign recognition
is not possible with a large number of hand-sign classes. (c) The result of �nal segmentation is shown with the
background automatically masked o�. Such a detailed and accurate segmentation is crucial to the success of hand
sign recognition with a large number of classes and vice versa.

Figure 8: The mobile robot running SHOSLIF navigates autonomously at a walking speed, along hallways, turning
at corners and passing through a hallway door. The real-time, on-line, incremental learning and the real-time
performance is accomplished by an on-board Sun SPARC-1 workstation and a SunVideo image digitizer, without any
other special-purpose image processing hardware.

2.8 SHOSLIF-N: Autonomous Navigation

This is to accomplish vision-based control. SHOSLIF-N is the only autonomous navigation system that is
able to perform on-line, incremental, real-time learning. It uses the incremental version of the SHOSLIF core
[99]. It is a good example to explain how the living machine may achieve real-time on-line learning without
need of special image processing hardware, thanks to the extremely low (logarithmic) time complexity of the
SHOSLIF.

During the learning, using a joystick, the human teacher controls the robot on-line to navigate along the
desired path by updating the control signals in terms of speed and heading direction. The system digitizes
the current image frame and links it with the current control signal to form a training sample, which is used
to train the SHOSLIF tree. To construct a lean, condensed tree without overlearning, the SHOSLIF tree
rejects a training sample when the current tree outputs a control signal vector that is the same (according
to the accuracy required) as the human's control signal vector, without learning the current training sample.
When almost all the recent training samples are rejected, the system is almost fully trained and ready to
perform. The on-line learning with both tree retrieval and update runs at 5 Hz. The real-time performance,
running at 7 Hz, is accomplished by an on-board Sun SPARC-1 workstation and a SunVideo image digitizer,
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without any other special-purpose image processing hardware. The trained system successfully navigated
along the hallways of our Engineering Building, making turns and going through hallway doors. It was
not confused by passers-by in the hallway because it looks at the entire image and uses the most useful
features (MEF or MDF), instead of tracking oor edges which can be easily occluded by human tra�c. The
comparison shown in Fig. 8 indicates that it is the state of the art.

Table 8: Several Autonomous Navigation Systems

System Method Scene Feature Learning real-time on-
tested line learning

Dickmanns [22] edge following outdoor driveway Hand-select No. No.
CMU Navlab [81] road model outdoor driveway Hand-select No. No.
Martin Marida ALV [85] road model outdoor driveway Hand-select No. No.
Meng & Kak [52] edge �nding indoor hallway Hand-select Partial No.
CMU ALVINN [59] MLP network outdoor driveway Auto-derive Yes. No.
L. Davis et al. [65] RBF network outdoor driveway Auto-derive Yes. No.
MSU Weng et. al. [99] SHOSLIF indoor hallways & Auto-derive Yes. Yes.

outdoor walkways

2.8.1 The e�ect of SHOSLIF tree

To indicate the scalability performance of the SHOSLIF and the e�ect of the hierarchical tree, Fig. 9 shows
the computer times for tree and at versions. A total of 2850 images from various hallway sections in the
Engineering Building of MSU were used for training. From the table, it is clear that the use of MEF tree
can greatly speed up the retrieval and that real-time navigation can be achieved. The computation times
were recorded on a SUN SPARC-10 computer.

2.8.2 Smaller tree using MDF

For comparison purpose, two types of trees have been experimented with, MEF RPT and MDF RPT. The
former uses MEF and the latter uses MDF in each internal node of the respective tree. Both trees used the
same 318 learning images, 210 from the straight hallway and 108 from the corner. As presented in Table 10,
the MDF tree has only a total of 69 nodes, with only 35 leaf nodes; while MEF tree has a total of 635 nodes,
with 318 leaf nodes. Fig. 5 explained why MDF can give a smaller tree. Note that the timing data shown in
Table 9 is for MEF tree, which is larger than the MDF tree. An MDF tree is typically much faster.

2.9 SHOSLIF-R: Vision-Guided Robot Manipulator

This is for sensorimotor coordination and task-sequence learning, SHOSLIF-O was used as the object locator
and recognizer. A SHOSLIF-R network was automatically built from training temporal sensor-guided control

Table 9: Computer Time Di�erence between the Flat and the Tree Versions

Time per retrieval MEF tree Flat version
in MEF space in image space

Time per retrieval (in milliseconds) 27.7 738.3 2853.7
Slow down w.r.t MEF tree version - 26.7 times 103.0 times
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Table 10: MDF Results in a Smaller Tree

Tree type MDF MEF
Total number of nodes 69 635

Figure 9: A demonstration of various actions learned: approaching the handle of cup A, picking the cut up, moving
to top of cup B, pouring, and putting on table.

sequences [31]. The input to the SHOSLIF-R network is the image position of the objects (from SHOSLIF-o)
and the index of the task from the human teacher. The output of the SHOSLIF-R network is the incremental
values of the six joint angles of the robot manipulator.

Five actions were learned interactively at several places in the work space. Tests were done randomly in
any place in the workspace. The success rate was 100% for all the actions, except that the liquid was spilled
partially 20% of the time during the pouring action. More training can improve the pouring accuracy. This
is an example of learning by doing, instead of explicit modeling. Modeling the dynamics of poured liquid is
not possible because there are too many unknown and unobservable parameters in uid dynamics. As far
as we know, no other published systems exist that can perform the task of pouring water into a cup using
vision.

Several robotics groups (e.g., [37] and [43]) have recently published works in which a robot manipulator
can repeat the action sequence from human's demonstration using a data glove. Case-speci�c features and
decision rules are written into their programs which the algorithm will use to identify the sequence of actions
(such as \when the speed of the hand is smaller than certain number, do the following ... "). SHOSLIF-R
is fundamentally di�erent from those works in that SHOSLIF-R does not contain any case-speci�c rules
(handcrafted knowledge-level rules). Speci�cally, SHOSLIF core does not contain any knowledge-level rules
and the SHOSLIF-R shell contains only the arm hardware speci�cation, i.e., the anatomy (e.g., degree of
freedom of the hand) instead of knowledge-level rules. Thus, it is, in principle, generally applicable to any
robot manipulator task. SHOSLIF-R is the �rst general-purpose robot manipulator learning system that
can learn to perform tasks through interactive learning without handcrafting any knowledge-level rules.

2.10 SHOSLIF-S: Speech Recognition

The objective of this study [10] was to test the feasibility of using SHOSLIF for spoken word recognition.
It was performed as a class project in a graduate class \Learning in Computer Vision and Beyond", which
covered the human cognition and machine learning subjects for learning in vision, speech and sensorimotor
coordination. The experiment was not done thoroughly, due to the limited available time during the single-
semester class. In particular, there was not a su�cient number of training samples. The preliminary
experiment was performed with 10 spoken words from \zero" to \nine". The speaker-dependent testing
reached 90% accuracy among 20 speakers, each word was trained with only one training sample and tested
with 4 di�erent instances.
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The fully dynamic speech recognition requires the recurrent version of the SHOSLIF: SAIL. The recurrent
version will be able to learn to handle time warping, coarticulation, temporal acceleration, and pause that
are very common in the real-world speech. Currently, a post doctor researcher who has �nished his Ph.D.
research in speech recognition is working with the PI to contribute to the speech recognition and speech
synthesis functionalities in the current SAIL project.

2.11 Cresceptron: the Predecessor of the SHOSLIF

The PI's work along this line can be traced back to early 1990 when he conceptualized Cresceptron for general,
open-ended, sensing-based learning. Cresceptron [93] [98] is the predecessor of the SHOSLIF. Cresceptron
is the �rst work that is capable of learning directly from natural images and performing the task of general
recognition and segmentation from images of the complex real world, virtually without limiting the type of
objects that the system can deal with. It has been tested for recognizing and segmenting human faces and
other objects from complex backgrounds. It addressed the issue of self-organizing dynamically by growing
the system on-line according to inputs. Although Cresceptron has a very high generality, it does not attempt
to solve scalability. Its successor SHOSLIF solved both generality and scalability.

2.12 Other Works

The PI has worked on several vision problems, including camera calibration whose high accuracy has been
veri�ed by a system-independent performance evaluation method [100]; an e�cient octree representation for
an arbitrarily moving object [94]; stereo matching and large motion ow computation with occlusion detection
using multiple attributes [96] and using the windowed Fourier phase (WFP) [87]; completeness of WFP
representation and signal reconstruction from the WFP [88]. His work on motion and structure estimation
includes: an improved closed-form solution [106]; using line correspondences and its uniqueness proof [107];
for planar surfaces and its intrinsic uniqueness condition [95]; the closed-form matrix-weighted approximate
solution and near-bound optimal solution for stereo case [101]; theory and methods for optimal motion
estimation, its stability analysis and near-bound performance [97]; modeling smooth long sequence motion
with a general LCAM model and its model parameter estimation for motion prediction [105]; integration
of long image sequence for motion and structure analysis [17]; and the recent introduction of the concept
of transitory image sequence and its integration [103, 102]. Some of the results on motion and structure
estimation have been collected in a research monograph Motion and Structure from Image Sequences [108]
coauthored by PI and in a chapter in Handbook of Pattern Recognition and Computer Vision [104].
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3 SAIL: THE FIRST LIVING MACHINE UNDER DEVELOP-

MENT

Since all the objectives of Phase 1 have been achieved, Phase 2 is well under way. In Phase 2, the PI's group
is developing the �rst living machine: SAIL. Its conceptual development, algorithm design, and hardware
design have been completed. The hardware installation and programming are under way.

3.1 Overview

3.1.1 SAIL's system structure

Fig. 10 illustrates the SAIL system structure. It consists of a function f which accepts sensory input vector

h(    )

Sensors
s(    )t i i+1ta(       )

t i Register i+1tc(    ) c(       )

t i

Environment

Human operator

Sensing Acting

f Effectors

Figure 10: The basic structure of the SAIL system. It consists of a function which accepts sensory input vector
s(ti), context c(ti) and physical input vector h(ti) and outputs the corresponding e�ector control vector a(ti+1), and
the context vector c(ti+1).

s(ti), context c(ti) and low-level physical vector h(ti) and outputs the corresponding e�ector control vector
a(ti+1), and the context vector c(ti+1). The central part of this is function f , which is implemented by a
SHOSLIF tree which dynamically changes through the living machine's interactive autonomous learning in
its environment, according to the incremental, real-time version of SHOSLIF developed in Phase 1. In other
words, the major change we need to make is to convert a feed-forward SHOSLIF into a recurrent network
with a delay register, plus a few system modi�cations for SHOSLIF. The major modi�cations include:

� The new SHOSLIF uses internal sparse-matrix representation to handle either sparse or dense, dynam-
ically generated connections.

� Adding a periodic forgetting process, so that the system can collect disk spaces for should-be-forgotten
nodes. The should-be-forgotten nodes are determined by a memory trace model that mimic humans'
memory curve. The forgetting process is necessary for generalization and e�cient use of storage space,
as with a human's brain [12, 4].

� At the output end of SHOSLIF, add a process that selects the best matched case (indicated by SHOSLIF
matching distance measure) weighted by the low-level physical input signal.

A lot of considerations and criticisms have been examined, resulting in the abandonment of several previous
architectures. The context vector is used to keep information about the mental status, e.g., what the living
machine wants to do, what has been done, what to watch for. Depending on the current mental status and
the environmental stimuli, the living machine can autonomously recall long-term intention and short-term
intention. It is not surprising that such a general-purpose living machine is implemented by a systematic
approach, due to the living machine's principle that no handcrafted knowledge rules are allowed.
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Figure 11: SAIL, a living machine under construction. It has cameras with real-time center-of-focus stereo, mi-
crophones, speakers, a robot manipulator, a mobile base, and positioning systems for the eyes and the head. Two
on-board Pentium Pros are the computing engines.

Since the scheme architecture is systematic and domain independent, the architecture is applicable to
any sensing and actuation modality. For the same reason, we have seen that a generic SHOSLIF approach
is applicable to a wide variety of tasks as shown in Table 3.

3.1.2 SAIL's system hardware

SAIL, a living machine, as shown in Fig. 11 is constructed with a Labmate mobile platform and a light
weight arm (from Eshed Robotec). Each of the two cameras is mounted on a pan-tilt head (from Directed
Perception) for eye motion. The two pan-tilt heads are mounted on a pan-head (from Eshed Robotec)
for head motion. The SAIL's sensors include: visual (two video cameras with auto-iris lens), auditory (four
microphones for learning sound source localization using 3-D sound stereo), tactile (robot arm gripper �gure-
distance sensor, arm overload sensors, collision detection sensors, etc). The SAIL's e�ectors include: arm,
speaker, drive system, eye's pan-tilt units, head's pan unit, vertical sliding base (for sliding the arm-and-
head assembly vertically for di�erent heights), and one internal attention system for each of the sensors. The
computation engine consists of two on-board Micron Pentium Pro 200Mhz computer connected by on-board
100-BaseT fast Ethernet connection. Now, each computer has 4GB dual disk pack which will be extended
with external disks when needed. According to the speed of SHOSLIF tested, and the speed of the Pentium
Pros, SAIL is expected to run at a refreshing rate above 10Hz.

3.1.3 SAIL's training

After the \birth" of SAIL, it will be in \awake" status for about 8 - 12 hours everyday. The remaining
hours will be at \sleeping" status when the forgetting process can run and the batteries be changed. Our
graduate students and some graduate students in educational psychology will be the baby robot's trainers.
At the early training stage, the instruction to SAIL starts with mostly \hand-in-hand" instructions and
demonstrations. These will be done through the living machine's low-level physical channels using graphics
user interface (GUI), teach pendant, and a joystick. Autonomy of the living machine will gradually increase
after some basic skills have been learned in the \hand-in-hand" mode. It is expected that through the
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development of SAIL's visual and language capabilities, the communication modalities between humans and
the living machines will gradually move to visual gesture and speech.

The understanding of high-level concepts will be built up through interactions with human teachers,
such as the concepts of eye, hand, door, left, right, up, down, fast, slow, good, bad, etc. SAIL will link
these concepts (represented by e.g., sound of the word) with many instances that it has experienced. The
representation of these concepts are implicit in the system, as a pattern of active nodes in the SHOSLIF
tree.

Detailed training log will be kept to record the behavior of SAIL during every training hour. The system-
level software design will be modi�ed depending on the observed SAIL's behaviors and cognitive progress.

3.2 Representation

The following detailed scheme is what is currently being implemented. However, just like all the other
research projects, the planned scheme is subject to change during the research development. Since this
document is meant for funding agencies, the descriptions are kept as brief as possible.

Suppose that the world is sensed at ti, i = 0; 1; � � �. Each sensing time ti corresponds to the time at
which the sensor's input is taken. Following this, the corresponding computation is performed before the
next sensing time ti+1. Therefore, each ti corresponds to a computational cycle, which is called a mental
cycle. Due to variable computational time needed before the next cycle, the length of each mental cycle
ti+1 � ti is typically not a constant. For real-time computation, each mental cycle is at most 100ms long.
The system consists of the following components.

Sensors A sensor senses a certain aspect of the environment and produces a signal vector. There are several
sensors in SAIL. Each sensor senses an aspect of a partial world at each time instant t and gives a
sensed signal vector s(t).

E�ectors An e�ector (or actuator) accepts a control signal vector a(t) and acts on the world according to
the control signal vector.

System function f The system function f is responsible for computation in each mental cycle. The system
function f accepts an input vector x(t) and produces an output y(t). The dimensions of x(t) and y(t)
dynamically change with t. The register stores the current context vector computed by the system
function f to be used by f in the next mental cycle. The system function f together with the feedback
register form a recurrent system, in the sense that x(ti) contains the output y(ti) resulted from the
previous mental cycle.

The environment The environment contains the physical world that the system senses and acts upon.
As a part of the world, the human teacher interacts with the system during operation (learning and
performing). The human enforcement signal is fed into the system via the low-level physical channel
h(ti), which can contain the control signals for \hand-in-hand" training and physical evaluation signal.
In other words, it contains human's enforcement in terms of what to do or the evaluation of how the
system is doing.

3.2.1 Sensors

The types of sensor used by SAIL include:

� Visual. The visual sensors are video cameras and the associated digitizers.

� Auditory. The auditory sensors are microphones and the associated digitizers.

� Tactile. This type of sensors include gripper �gure-distance sensor, arm overload sensors, collision
detection sensors, etc.
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3.2.2 E�ectors

An e�ector acts on the environment according to the given control signal vector. As a special case, it can
also act on a part of the robot itself, such as loading a cargo onto the robot's carrier. The types of e�ector
used by SAIL include:

� Attention extractor. It extracts a part of the signal vector and applies some weights to the extracted
part. For example, our visual attention mechanism determines where to look at from a scene.

� Pan-tilt unit. It pans and tilts the sensor. For example, the head's neck has a pan unit and each of the
two stereo cameras has a pan-tilt unit. With this arrangement, the neck's pan unit is to direct the two
eyes (as well as ears) to a given horizontal angle while keeping the relative relationship of the two eyes
�xed. The pan-and-tilt units of the two cameras can control the viewing direction and the convergence
between the two cameras. This is one of the major mechanisms for human to �nd an object of interest
and achieve certain degree of positional invariance.

� Structured speaker. It consists of a structurer and a speaker. The structurer is used to reduce the
dimensionality of the input vector to the speaker. A structured speaker, for example, can only speak
using the voice of a particular human individual. An time-varying MEF parameter vector is used to
drive the structured speaker through time in order to speak, sing, laugh, whistle, etc.

� Robot arm. The robot arm is used to manipulate objects in the SAIL's environment.

� Vertical slider. The vertical slider is used to raise or lower the head-arm assembly so that they are in
a good work distance with the target objects.

� Drive system. The drive system is used to navigate on the ground. The arm, the slider, and the wheels
form a redundant system in that there are in�nitely many con�gurations that result in the same 3-D
orientation and 3-D position at end e�ector of the gripper.

3.2.3 The SAIL recurrent system

The recurrent system consists of the system function f and the feedback implemented by the register. The
system function f computes output y from input x: y(ti+1) = f(x(ti)). This recurrent system is an extension
of the incremental version of the SHOSLIF tree in the following sense.

1. Input x(ti+1) contains current input from sensors and the context vector c(ti). The dimensionality
of the sensory input is �xed but that of the context vector increases (during learning) and decreases
(during forgetting) over time.

2. It allows the user to directly interact with the system during operation through the physical channel.

3. It conducts reinforcement learning, learning according to human's encouragement and discouragement.

4. It is able to explore the world and thus learn autonomously.

The system function changes with time. Thus, it can be represented by a series of functions: fi : R
ni 7!

Rmi , i = 0; 1; 2; � � �, where i indicates the mental cycle. That is, for each vector x 2 Rni , fi maps it to
y 2 Rmi : y = fi(x). The input and output dimensions ni and mi change with the time index i. Typically,
fi+1 is an improved version of fi, due to the learning in the mental cycle i. Conceptually, the input and
output dimensions, ni and mi, are unbounded. In other words, there exists no constant N such that ni � N

and mi � N hold true for all i � 0. In reality, however, ni and mi are bounded above by the largest number
that a computer can represent. Due to the time delay in the computation of f , the output from fi, given
input x(ti) at time ti is available at time ti+1: y(ti+1) = f(x(ti)).
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Each input x(ti) contains the current sensory input vector s(ti), the current context vector of the system
c(ti), and the override input e(ti) that is a part of the physical vector h(ti).

x(ti) = (s(ti); c(ti); e(ti)) (2)

The context vector includes system status information that is needed for the next action. The context vector
will include, at a later mature stage, (1) a limited past history, (2) the living machine's intention in terms
of what to do, (3) a prediction of the consequence.

The output vector y(ti) contains the control signal vector for the e�ectors a(ti) and the system context
vector c(ti):

y(ti) = (a(ti); c(ti)) (3)

A coarse-level diagram of the system is shown in Fig. 10. The computational unit f has a delay, so that the
output y(ti+1) due to the input x(ti) at time ti is available at ti+1. A register is used to keep the context
vector before it is used in the next computational cycle.

The motive of de�ning the domain and range of the function f as a space of dynamically change dimen-
sionality is to facilitate the following capabilities:

1. Addition of newly learned concepts.

2. Disrememberance of old concepts.

3. Allowing the sensors to be added and deleted during the di�erent life stages of the system.

4. Allowing the e�ectors to be added and deleted during the di�erent life stages of the system.

The function of f is implemented by a recursive space partition network (SAIL network) which allows
the dimension of the space to increase and decrease dynamically. The basic structure of the f network is a
tree. However, the output of the tree is fed back as the next-time input. Therefore, the network as a whole
is not a tree.

3.2.4 Use of the physical input channel

In this section, we build in some innate mechanisms that may correspond to innate human characteristics,
such as pain avoidance and love for food. This is a very critical part through which human can train the
living machine according to what human wants.

Consider f as a function that maps the input domain of x to the range of y so that the corresponding
e�ector vector a results in the desired action. The context vector c(ti) is to keep context information so that
the temporal and spatial relationships are fully used.

The function f is realized by two stages. The �rst stage is a recursive partition tree (RPT) (see [93] for a
more detailed description of the RPT used in SHOSLIF). The second stage is the computation of the output
vector.

Suppose that the RPT has learned l input samples x1; x2; � � � ; xl, where each xi, i = 1; 2; :::; l, contains a
sensory input si, and the associated context vector ci. Given an input s and the current context vector c, the
best top k matches, xi1 ; xi2 ; � � � ; xik are found from all the learned samples. Each matched item in the RPT
has an associated action vector ai1 ; ai2 ; � � � ; aik that has been memorized during the past learning. Each
match gives a probability estimate pi1 ; pi2 ; � � � ; pik , where pij , j = 1; 2; :::; k, is the approximate probability
P (si; ci j sij ; cij ). The con�dence vector is then de�ned by p = (p1; p2; � � � ; pl), where pj = pij if i = ij for
some 1 � j � k, and pj = 0 otherwise. In other words, the con�dence vector is such that the positions at
the top k matches have the corresponding con�dence values and other positions have zeros.

The physical channel signal h has two types of inputs, override input e and physical feedback b. The
signal e is to force the living machine to do an action, to simulate a hand-in-hand teaching action. The
physical feedback b is a low-level physical feedback used to make up the drawback that machines do not
have any physical feedback that are available in humans, such as the punishment of physical pain and the
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enjoyment of a suitable food. The value of b ranges from 0 to 1. The b value is stored in each leaf node and
is associated with the e�ector parameter corresponding to that leaf node. The default b value is 0.5, when
there is no teacher supervising and the robot is doing something on its own. If the teacher wants to \beat the
machine up" (punish it), he or she enters a value smaller than 0.5. If the teacher wants to let the machine
feel happy, he or she enters a value larger than 0.5. At an early stage, b is entered on-line during learning.
This physical feedback will be used as an essential channel through which human teacher can create human
innate characteristics during the early development stage of the robot, such as pain avoidance and love for
food. For robot, for example, we will use b to teach it to avoid being hit by wall (a low b value will result)
and love to do things that will lead to physical pleasure (a high b value).

Then, the system �nds j so that j = argmaxjfpjbjg. Whether aj is executed depends on the value of
bj and whether there is an override signal through the physical channel from the human teacher. When
the system has developed the visual or auditory understanding capability, the evaluation from the human
teacher will be given through gestures or speech.

Why will a mature living machine listen to the human teacher even when physical value b is not used?
This is because during the early learning, the trainer has always given a good b value if the living machine
follows what is said. Thus, the machine gradually developed a behavior pattern | do what the teacher
wants. During the later stage of learning, the human teacher does not give a b value every time or even
very rarely. The high-level concepts learned by the system allow the system to choose what to do among
the possible actions all with the similar bj values (e.g., bj = 0:5). We know that a human adult does not
make a decision just based on physical pleasure. Many high-level things a human being does do not directly
link with physical pleasure or pain either. Of course, the living machine may listen to his own teacher, but
may not necessarily listen to other human beings. All these behaviors depend on how the living machines
are trained.

In summary, the living system will automatically choose actions that are associated with a good physical
value b when the living machine is young. When the living machine becomes mature, it makes a decision
based on the high-level concepts (active patterns of later added nodes in the network) while the physical
feedback b diminishes its role. However, no matter whether the living machine is young or mature, the
override input e and physical feedback b from the physical channel can always be used when it is necessary.

3.2.5 Speech synthesis

The goal of speech synthesis here is di�erent from many applications where a �xed way to say a sentence is
su�cient. Depending on the situation, the living machine must be able to say the same words or sentences
in di�erent ways, including varied speed, volume, tone, pause, etc. This capability is the major di�culties
in the �eld of speech synthesis (see a survey by Alexander et al. [1]) but is a must for natural discourse
between humans and machines.

We call an e�ector structured if the space of its control vector is of a low dimensionality and most points
in that space are useful in practice. An unstructured e�ector has a high dimensionality and only a small
part of the space is useful. By this de�nition, a robot arm is a structured e�ector and so is a mobile drive
system. A speaker is not a structured e�ector because most of the temporal sequences will not produce any
sound that is useful (i.e., representing human's voice in this case).

We need to convert an unstructured e�ector (speaker in this case) into a structured one, by inserting a
structurer before the e�ector, as shown in Fig. 12. The goal of the structurer is to make the dimensionality
of the input space small so that a very large portion of the parameter space is useful. In other words,
the structurer is to parameterize the e�ector's control space. The principal component analysis is suited
here. We use the MEF space to represent the space of all the possible short human utterances. Various
human's utterances are cut into segments of 10ms length. These segments are used to compute a correlation
matrix �. A MEF projection matrix M is computed from � whose columns are the eigenvectors of � (i.e.,
the principal components of the segment distributions). We can keep several structurers available, each
corresponds to a unique projection matrix trained using one person's utterances. Di�erent users may choose
di�erent structurers to �t their own preference. For example, a machine TV personality may be assigned a
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Figure 12: A structurer converts an e�ector control vector into the corresponding signal sequence (e.g., temporal
speech signal) to be played by the unstructured e�ector (e.g., speaker).

child voice while a machine care-taker may be assigned a female voice.
The structurer for speech synthesis must run in real-time. For segment length of 10ms, it must run at

1/(10ms) = 100Hz. The well-known double bu�ering method can be used to achieve continuous speaking.
For real-time performance with a huge number of utterance units, the structurer will be implemented as a
SHOSLIF tree. The input to the tree is the parameter vector (a part of a(t)). The output of the tree is the
temporal wave signal corresponding to the parameter.

Note that there is no need to de�ne the concepts of syntax, such as word, phrase or sentences, for
SAIL. They are learned later in baby SAIL's learning phase. We just build a \mouth" and its \vocal tract"
represented by the speaker and its structurer.

We will teach the baby SAIL interactively by letting the program run many hours a day. Once the baby
SAIL hears anybody's voice, its computer projects the voice into the structurer's input space. The projected
feature parameter vector is the actuation vector a(t) to be learned by the SAIL network. It can imitates
other's speaking by sending the learned a(t) vector to the structurer which constructs sound waves using the
MEF projection matrix. The sound wave is then sent to the speaker.

3.3 Working of SAIL

This section briey explains how SAIL can work.

3.3.1 Early learning

Initially, the human teacher uses the override signal e to feed actual control signals to the system via the
GUI, joystick and robot-arm teaching pendant. This is to simulate the way a human care-taker teaches a
human baby by holding their hands. Due to cost restrictions, SAIL does not use a compliant robot arm by
which human can enforce the con�guration of the arm by applying force directly on to the arm. The trainer
may mostly use good actions with a good b value. After a su�cient hand-in-hand training, the living machine
can be set free to try by itself, �rst in the same environment and then gradually move to slightly di�erent
environments. During this stage, some mistakes can be made, depending on how extensive hand-in-hand
training was and how di�erent the new environment is from the training one. The human teacher enters
appropriate b value in real time, to discourage actions that may potentially lead to a failure and encourage
actions that can lead to a good result. At this stage, human teacher may want to speak and use gestures
in addition to feeding b value via a joystick so that the system can associate the visual and auditory signal
from the human trainer with the corresponding b values.

3.3.2 Concept learning and behavior learning

This is probably the most interesting, most controversial, and probably most exciting part of the endeavor.
Our task is to investigate how a machine can develop high-level knowledge and motives from low-level \phys-
ical feedback". The PI's ideas presented here were inspired by studies in child developmental psychology.

The SAIL associates each sensory input with the visual and auditory signals from the human to learn
the concepts taught by the human. It will learn good behavior from very early stages, such as \do not run
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toward a wall", \do not run too fast when there are things nearby", \handle it if you see something like
that", etc.

The understanding of concepts will be built up through interactions with human, such as the concepts of
left, right, up, down, fast, slow, good, bad, right, wrong. Many experiences and the occasions are associated
with the concept that is used. The representation of these concepts are implicit in the system. It represents
a pattern of response in the network.

Later, many instances will allow the living machine to associate good physical feedback b with his actions
that follow what the teacher wants. It also will gradually accumulate the information about what the human
teacher likes and expects from it. It will then link the concepts of \good and bad", \right and wrong" with
the many instances it experienced.

Generalization of the concepts occurs naturally. For example, the living machine �rst associate words
with the b value. Some words appear together with a bad b value and some other words appear with a
good b. Then, the living machine associates many good words with a particular word such as \happy" and
bad words with a particular word such as \sad." Since happy is associated with a good b value and sad is
associated with a bad b value, the living machine gradually establishes a behavior habit to choose actions
that will make the human teacher happy (good). At that time, the importance of the b value gradually
diminish. A default b = 0:5 value is often enough during this stage. A more mature system will receive most
human feedback from normal sensory input, via speech, gestures, etc.

Further on, the system will link the sense of good and bad to other more complicated activities, such as
schooling, the evaluation system in its school, and what to do in order to receive a good evaluation from its
school, etc. In summary, as long as the teacher uses the b value correctly, he or she will be able to train the
living machine to do what he or she wants, from simple to complex, even during later stages when b is used
very rarely.

3.3.3 Cognitive maturity

In an autonomous learning process, the environment provides an endless sequence of stimuli coupled with
the actions of the living machines. Certainly, the living machine should not just remember the sequence as,
e.g., a single 8-hour sensing-action sequence everyday, because a lot of events do not have close relationships.
The machine should only remember things that are important at its current cognitive developmental stage.

The cognitive maturity determines what a machine can learn. For example, a child in the sensorimotor
stage will not be able to learn formal reasoning, even if a teacher tries that. Before a su�cient amount of
low-level knowledge and skills has been learned, it is not possible to learn higher-level knowledge and skills.
As discussed before, our de�nition of the concept level is basically operational. If a concept that is learned
earlier and is used e�ectively in the learning for a later concept, the former one is a lower-level concept and
the latter is a higher one. Therefore, the de�nition of levels can di�er from one living machine to the next,
depending on the experience of each machine individual.

In the living machine, the maturity scheduling is realized automatically by the process of automatic
feature derivation using MEFs and MDFs in the SHOSLIF together with the forgetting process. Consider
the following two cases. The �rst one is with an immature machine and the other is with a mature machine.

When a set of stimuli representing a high-level concept is sensed by an immature machine, the con�gu-
ration of the current SHOSLIF tree is not su�cient to learn the new concept associated with the stimuli.
This is reected by the fact that the features derived by the SHOSLIF tree constructed so far is not able
to successfully recall a set of learned concepts. Thus, the corresponding stimuli looks meaningless by the
living machine and are just simply temporarily memorized. Without extracting recallable features, stimuli
containing the same high-level concepts in di�erent occasions look very di�erent. Later on, that temporary
memory is quickly forgotten (deleted) by the forgetting process because there is no recall to this memorized
stimuli within a certain time period.

If the living machine has learned a su�cient number of low-level concepts and skills, indicated by the
corresponding nodes in the SHOSLIF tree, the same stimuli mentioned above will result in a very signi�cant
amount of feature recall (MEF or MDF) from the mature SHOSLIF tree. Thus, the corresponding stimuli are
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memorized, at a deep location linked from the corresponding lower-level concepts (or features) as ancestors.
Within a certain period of time, if the same concept appears in the stimuli in another occasion, the mature
SHOSLIF tree can recall a su�cient number of features and retrieve the newly memorized concept. Such a
successful retrieval indicates a memory reinforcement. The forgetting process will record this reinforcement
at the corresponding node and apply a much slower memory decay curve to this concept. This concept is
then learned by the living machine.

In this way, the living machine is able to learn autonomously, and going through various cognitive
developmental stages which are probably similar to those characterized by Jean Piaget (see Table 1). During
each day, it learns what it can learn and forgets what it must forget. As is the case with humans, entering a
new cognitive stage by a living machine is natural and gradual, depending on the learning experience with
each machine individual. There is no need for the living machine designer to enforce each development stage
into the program.

3.3.4 Thinking

The living machine is able to think autonomously. How does the machine think? This is a question that
has fascinated scientists and public alike for many years [111]. A computational process implemented by
a computer is not thinking. Otherwise, any program is doing thinking. The thinking process must be
autonomous. However, autonomy is not su�cient for qualifying thinking. Otherwise, an autonomous road-
following vehicle is doing thinking.

We must not program logic rules into the living machines The fundamental characteristic of
thinking is that the contents and the rules of reasoning cannot be pre-arranged | i.e., programmed in. Let's
consider an example. A common sense knowledge \all human are mortal" can be represented by compound
proposition (tautology) 8x[p(x)! q(x)] where p(x) = \x is a human" and q(x) = \x is mortal". Then, with
input p(Tom) = True, a program can prove q(Tom) = True using logic deduction rules. When doing the
above reasoning, the program is not thinking because the logic deduction rules are pre-programmed by the
human. In order to make a machine think, its representation must be knowledge-free. In our example, the
knowledge is formal logic. The representation for 8x[p(x)! q(x)] is not knowledge-free.

It is worth pointing out that symbolic reasoning is not as di�cult as the other parts of cognition. In the
above case, e.g., it is much more di�cult to �gure out that Tom is a human from visual sensing than to
perform the symbolic reasoning.

What is thinking? A process in a system is a thinking process if (1) the process is autonomous, (2) its
representation is free of knowledge, (3) it is conducted according to knowledge that has been autonomously
learned. The �rst two points are meant to distinguish a pre-programmed computation from an autonomous
thinking process. The last point is to make sure that thinking is not a useless process or directly directed
by humans.

Thinking at mental cycle level With the SAIL living machine, the thinking process is to feed the
context vector c(ti) (mental status) as the input to the network f while the attention selection for external
sensors keeps o�. A mental cycle of the thinking process is to go through f once as shown in Fig 10. A long
thinking process corresponds to many consecutive mental cycles going through f , each with a new context
vector from the former mental cycle. Thus, a long thinking process may allow prediction of many chained
events. Naturally, all the thinking processes are originated from the stimuli in the environment. During the
thinking process, the stimuli input from the sensors may be temporarily turned o� to allow prediction and
planning to be performed.



36

3.3.5 Reasoning and planning

Reasoning and planning are special types of thinking process in the living machines. One might think that
in order to conduct reasoning and planning, there must be a controller, which controls what to think about
and organizes various stages of reasoning and planning. However, no such controller can work.

Must not have a thinking controller There is a fundamental dilemma with this \controller thinking."
This controller, as a supervisor, must be smarter than what it controls. In other words, it must know the
global situation, understand it, and �gure out what to do and how to do. Furthermore, this controller must
be general-purpose because the living machine is a general purpose creature. We know that no controller
can perform a reasonable control task without understanding what is going on. However, understanding is
exactly our original problem. Thus, we have a chicken-and-egg problem | one cannot be solved without
�rst having the other.

Programming behaviors into system cannot work either Another alternative is that we do not use
any controller. This is the case with some behavior-based methods (e.g., see Brooks [8]). However, the
behavior-based methods cannot go beyond the very limited number behaviors that have explicitly modeled
and programmed in. None of the existing behavior-based approaches really try to understand the world.
Human beings, on the other hand, can gradually learn and understand more and more complex concepts in
the world and their high-level behaviors are based on understanding instead of pure wired-in reexes.

Consciousness A much deeper issue is consciousness. Each human being has a sense of self, and can
consciously control what to think about and what to do at his or her will. Apparently, each human being
has only one consciousness. How does the living machine develop the consciousness?

Consciousness and the controller in the living machine With the living machine, the controller is
fully distributed, and fully embedded into the function f . At the output end of f , only top k matched
leaf nodes are computed. Each leaf node corresponds to a concept-action combination. As explained in
Section 3.2.4, the best leaf node j is determined using the physical value b. Thus, this leaf node results
in the context vector c, representing the current mental status in terms of what to do or think next. This
choosing-the-best-match process tells what to do next and guarantees that the living machine has only one
consciousness. Therefore, there is no central controller in the living machine. All the living machine does is
to choose the best matched case from many cases learned before, taking into account the physical feedback
experience, and then to use it as the context vector for the next mental cycle of sensing and action.

Taking care of multiple objects at a time Since the living machine has only one consciousness, it
cannot take care of two things at the same time. For example, in order to line up two marbles along
a horizontal line, it needs to learn the combination of the two marbles as a single pattern. When the two
marbles are lined up horizontally, the desired pattern is observed. In order words, the combination of objects
is considered as a single pattern to be learned. This phenomena of learning multiple things as a unit is very
common in human children's cognitive development [5] [13]. With sensorimotor learning, a child is able to
move one marble in the right direction until the desired pattern appears. During the formal operational
stage, all the combinations have been learned and thus the alignment task becomes virtually e�ortless.

Formal logic reasoning During the preoperational stage and the concrete operational stage, a large
number of concepts are learned, such as

� spatial relationship, such as left and right, up and down.

� temporal relationship, such as before or after a particular event. This includes the skills of planning
and replanning.
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� more general logical relationships, including all those that are termed \common sense".

A lot of such concepts must be learned before the living machine can enter the formal operational stage.

During the formal operational stage (human age 12 and beyond) of the living machine, formal logic
reasoning is performed based on pattern matching. Let's �nish the previous example: 8x[p(x) ! q(x)]
where p(x) = \x is a human" and q(x) = \x is mortal". First, 8x[p(x) ! q(x)] may be learned as a
pattern, represented by, e.g., the look of the mathematical equation the way it is written on a white board
in the robot school. (There is huge amount of evidence that demonstrates that visual pattern helps the
memory and understanding of symbolic meanings in human.) The statements p(x) = \x is a human" and
q(x) = \x is mortal" create a memory image as, e.g., a visual image as the way it was written on a white
board. Learning of the relationship | once p(x) is true, then q(x) is true | is learned as a sensorimotor
temporal sequence. Then, once p(Tom) = True is given or understood from visual inspection, q(Tom) = True
is derived based on the learned sensorimotor temporal sequence. A key point here is that logic reasoning in the
living machine (and humans) is not represented internally as explicit mathematic relationships. But rather,
they are represented as a vision-guided sensorimotor operation sequence. Later, after repeated thinking
processes, the sensorimotor operation sequence is memorized without the help of visual stimuli. Then, such
a logic process can be easily and quickly applied to other cases with new predicates p(x) and q(x).

In summary, the living machine does not have any embedded (programmed-in) rule about formal logic
reasoning. It can reason like an illiterate before it goes to school. It will learn the mathematic logic in school.
Potentially, it will make some inventions after it has gone through some school learning and has had enough
experience with a subject of study.

3.3.6 Time warping and co-articulation

The recurrent architecture shown in Fig. 10 facilitates temporal recognition and temporal action, under time
warping and co-articulation. For example, suppose that an input sequence is x = x1x2x3:::xm. The temporal
learning through recurrent f will remember each subsequence yi = x1x2:::xi, for i � m, as indicated by a
corresponding context vector c at each i. The transition from yi to yi+1 can be delayed or moved ahead
when time warping occurred, because from yi to yi+1 the system may take more or fewer mental cycles
than a normal case. This is very similar to the case of HMM, except that the model here is more general
than HMM. Therefore, we need to fully implement the recurrent SAIL version before fully testing speech
recognition. The feed-forward SHOSLIF does not take care of time warping explicitly, but the recurrent
SAIL does.

Such a temporal mechanism is also very e�ective for action synthesis, such as vocal discourse and robot
arm manipulation. For example, consider a sequence of action a = a1a2a3:::am. When the subsequence
bj = a1a2:::aj , j � m, has been executed, the context vector c will contain aj along with time-warp coded
earlier ai's with i < j. This c will be used as a part of input to f in the next mental cycle. According to
the learned experience, aj along with the time-warp coded earlier ai's with i < j as input to f will lead to
a leaf node whose action part is aj+1, which leads to aj+1 being executed.

Similarly, co-articulation in speech will be taken care of naturally by the recurrent nature of the archi-
tecture. In co-articulation, the segment of input (for recognition) or output (for synthesis) depends on its
temporal neighbors. The context vector c contains time-warped context information which will be used by
f to recognize or synthesize correctly in each mental cycle.

3.3.7 Modularity

The modularity question concerns whether we should assign a separate f (module) to each sensor. We
intend to try both schemes (a) A single f for all the sensors and e�ectors. (b) A separate f for each sensor
(sensor module) and e�ector (e�ector module) and a central f for all the modules. Currently, we guess that
(a) is more e�ective, since modularity can be generated automatically by the automatic feature derivation
process (subspace determination) in the SHOSLIF, through the learning experience of each individual living
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machine. We realize that the human visual cortex is reassigned to hearing in the case of the blind. Thus,
there should be a very exible self-organization scheme among di�erent sensing and action modalities.

3.4 Incremental and Real Time

The main network of f corresponds to a knowledge-base, although it also contains low-level perceptual
capabilities and behaviors that typically are too primitive to be considered knowledge. The learning process
of the system must be incremental. Input signals are sensed one frame at a time. The action activities are
also done one segment at the time. The system updates its network at each mental cycle. The incremental
version of the SHOSLIF is well suited here.

As can be expected, the number of leaves in the SHOSLIF tree will grow to a very large number, even if
the forgetting process is performed regularly. Due to the ever decreasing price of hard disk, the storage space
is not of a major concern. However, the time that it takes to go through the function f must be less than
one tenth of a second in order to reach the 10 Hz refreshing rate. The subspace method used in SHOSLIF
can e�ectively control the dimensionality of the input to each internal node of the SHOSLIF tree, since each
internal node needs only to determine a hyperplane in a subspace of a limited dimensionality. The time
complexity of f is still O(log(n)) and the generality still holds true.

The real-time requirement is also important for speech recognition. If each speech segment is 10ms
long, the SAIL network runs at 1/(10ms) = 100Hz, 100 times a second. That means that one cannot use
very complicated preprocessing. Some frequency domain features will be computed in the pre-processing
stage. The objective of speech preprocessing is a fast speed and good completeness (i.e., do not lose much
information). In order to achieve continuous processing, we use the double bu�ering technique: processing
digitized speech segment in A bu�er while B bu�er is receiving the next segment. Then, the computer
processes the segment in bu�er B while A is receiving the next segment.

There is no need for detecting the beginning of a sound. Silence is a mental state itself, just like a
constant sound \a". The system runs continuously and acts (speaks if needed) continuously. The same idea
is also applied to robot arm actions and navigation actions.
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4 Further Thoughts

4.1 Generality

Can the system potentially do anything that a human can? This is an open question. The problem here
is not just a static function approximation which can be performed by, e.g., a three-layer neural network
with back-propagation. The critical issues include the dynamic generation of concepts from sensor-e�ector-
based autonomous learning, concept generalization through experience, the capability to automatically derive
feature space, and self-organizing the dynamically changing network. Autonomous learning through real-
time sensing and action without handcrafted knowledge-level rules or behaviors is a totally new subject of
study. The upcoming study will answer some very important and fundamental questions.

4.2 Space Complexity

The space complexity is directly related to the amount of information learned. The human brain has about
1011 neurons, each being connected by roughly 103 synapses on average [60] [41] [3]. If each synaptic link is
considered a number, the human brain can store about 1014 numbers. This amount is now within reach by
hard disks as far as the cost is concerned, thanks to the fast advance in computer storage technology8. It is
expected that in a few years, the absolute storage size of the human brain can be realized with compression
by the up-coming rewritable optical DVD disks for about $5,000, although such a high volume may not be
needed as explained below.

It is known that a large part of the neurons in the human brain is not activated. Furthermore, the living
machine does not need its brain to control heart beating, breathing, and digestion, which are served mainly by
the medulla and the pons in the human brain. It does not need much service from the somatocensory system.
The taste system and the olfactory system are not needed either except for certain special applications. It
probably does not need its brain to serve for sexual drive either, which is taken care of by the amygdala in
the human brain. Further, computers have e�ective high-level computational mechanisms, such as the fast
and e�ective algorithms for computing eigenvector and eigenvalues of a huge matrix, which is a major part
of computations in SHOSLIF. The known methods for computing eigenvectors by arti�cial neural networks
are slow, iterative, and not as accurate [49] [66] [67]. Thus, the living machine might be able to reach a
good performance with a disk space that is signi�cantly smaller than the absolute storage size of the human
brain. Of course, this also depends on the scope of the domain to be learned and the required resolution
of the sensors. Since the cost of magnetic hard disks and rewritable optical disks is going down fast and
consistently, it is now possible to equip a system with a disk system of 1,000 GB (about 20% of the absolute
storage size of the human brain with a moderate compression) at a cost of about $20,000. It is not clear
what kind of performance SAIL can reach with a storage size ranging from 10 GB to 1,000 GB. This is one
of the major questions to be answered in the project.

If the size of the brain were not an important issue, perhaps monkey could serve as a living machine
| a seemingly cheaper one. However, the size is probably just one of the problems with monkey's brain.
Although a monkey can perform sensing and action tasks that no machine can do so far, the genetic coding
of the monkey brain might not enable it to work up to a high-level comparable to that of humans. We cannot
control the self-organization scheme of the monkey's brain, at least not now. With a living machine, we do
not have such a limitation.

4.3 Time Complexity

The time complexity should not be addressed in a conventional way. Here the time needed to train the
system to reach a certain level of performance is on the order of months or years. It is expected that a

8Using a hardware compression/decompression board with a moderate compression rate of 20, 1014 bytes of uncompressed
data require 5,000 GB storage space. Internal hard drive kits cost about $100 per GB now, which means that 5,000 GB cost
about $500,000 if ones buys now on street without volume discount. It is worth noting that the nature of the SHOSLIF tree
data allows a moderate compression that is typical in video compression.
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machine can learn faster than human beings because it does not feel tired and it computes faster. The speed
of learning with the living machines is more controllable than biological systems, such as humans.

The critical type of complexity is the time complexity for each mental cycle when the size of the network
becomes very large. Because of our on-line learning and the subspace method, the time complexity for each
mental cycle for f is O(log(n)), which is an inverse function of exponential explosion. In other words, when
the processing speed increases, the number of cases it can handle in a �xed 100 millisecond time interval
grows exponentially. To see how low the logarithmic complexity is, suppose a system whose time complexity
is O(logb(n)), regardless of how big the constant coe�cient is in the time complexity. If this system can
complete a mental cycle in 100 milliseconds with 1000 stored cases (which is about the speed SHOSLIF has
reached), the same program running on another computer whose speed is 4.7 times faster can �nish a mental
cycle in the same time interval for a network that has stored 1014 cases (the absolute size of the human
brain)! This displays a very high potential for the SAIL approach.

4.4 Knowledge-Base

The subject of knowledge representation and knowledge-base has been studied for many years without serious
consideration about sensing and action. A huge amount of human power has been spent to model human
knowledge, its representation, and input of data into knowledge-bases. However, the resulting systems are
hard to use, hard to maintain, hard to keep up to date, and are brittle for a lack of understanding of what
has been stored.

What the �eld of knowledge representation and knowledge-base has experienced is a natural stage that
we humans must go through on our way toward understanding ourselves, machines, our environments, and
their relationships. However, it is about time that we tried a fundamentally di�erent approach, an approach
that is much closer to the way a human acquires knowledge. Not too surprisingly, the SAIL approach
seems to require much less manpower and costs less than many conventional knowledge-base projects, since
human is relieved from the tremendous task of building rules for human knowledge and spoon feeding human
knowledge. For knowledge-base construction, we want to move from manual labor toward automation.

4.5 Is This a Formidable Project?

To consider whether the proposed living-machine project is formidable, it is helpful to compare the nature
of the proposed domain-independent approach with that of domain-speci�c ones.

Domain-speci�c approach: With a domain-speci�c approach, humans manually model knowledge in each
domain. Thus, each domain problem is very hard because the knowledge required in each domain is
too vast in amount and too complicated in nature. Accustomed with domain-speci�c approaches, few
people in the �eld believe that anybody can solve the general Grand Challenge problem because each
domain problem is already too hard.

The living machine approach: With the proposed living machine approach, humans are relieved from
the tasks of developing knowledge-level representation, manually modeling knowledge, and program-
ming knowledge-level rules into programs. Instead, we develop a systematic, uni�ed method to model
system's self-organization scheme at the signal level (instead of the knowledge level). Thus, the de-
velopment task tends to be less labor intensive because the algorithm is very systematic and domain
independent. No knowledge needs to be programmed into the program and one program is meant for
various sensing and action modalities. It does not take much extra e�ort to address more modalities
because each modality uses basically the same program.

The project for developing living machines is not easy. It is naive to think that the Grand Challenge is
easy to meet once we have a framework that probably will eventually work. However, with what we have
developed in Phase 1, the project appears more tractable than many domain-speci�c projects which use
domain-speci�c methods within each area, such as vision, speech, hand-written and mix-printed document
recognition, autonomous robots, knowledge base development, and language understanding.
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4.6 General Models of Science

The development of computer science �ts the general models of science described by Kuhn [42]. The history of
science has seen long incremental-work periods where work was performed within the established frameworks.
Those periods are broken by drastically di�erent new thoughts which lead to a new age of the science.
However, revolutionary new thoughts and theories typically were met with skepticism at the beginning. In
some cases, the resistance from the establishment was so strong that the new thoughts were not widely
adopted until generations later. In some other cases, new thoughts were quickly adopted which led to a
signi�cant increase in the importance of the �eld and its contribution to society. The living machines will
generate profound impact on not only computer science and engineering, but also biology, education, social,
behavioral and economic sciences. This is the eve of the age of living machines.
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