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Abstract—Recently, it has been shown that top-down connec-
tions improve recognition in supervised learning. In the work
presented here, we show how top-down connections represent
temporal context as expectation and how such expectation assists
perception in a continuously changing physical world, with
which an agent interacts during its developmental learning.
In experiments in object recognition and vehicle recognition
using two types of networks (which derive either global or
local features), it is shown how expectation greatly improves
performance, to nearly 100% after the transition periods. We
also analyze why expectation will improve performance in such
real world contexts.

I. INTRODUCTION

We use temporal context to guide visual recognition. Nor-
mal human adults do not experience the world as a disjointed
set of moments. Instead, each moment contributes to the
context by which the next is evaluated. Is our ability to utilize
temporal context in decision making innate or developed?
There is evidence that the ability may be developed from
a child’s genetic programming so that it emerges several
months after birth. From much experimental evidence, Piaget
[7] stated that before they are around 10 months old, children
do not visually experience objects in sequences, but instead as
disassociated images. Many of Piaget’s tests measured overt
behavior and could not measure internal decisions, however.
Baillargeon [1] later found evidence of object permanence, an
awareness of object existence even when the objects are hidden
from view, in children as young as 3.5 months. It illustrated
an aspect of the covert (internal) process behind recognition.
Evidence of this awareness in significantly younger infants is
not supported. How does this ability to predict emerge? Does
it emerge from interactions with the environment (i.e., would
a child in an environment obeying different laws of physics
learn to predict differently?) or is it genetically programmed
to emerge at a specific time?

From the above, it can be seen that, after sufficient de-
velopmental experience, children can generate an internal
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expectation signal that is useful for biasing prediction. The
network basis for generating this signal is not clear. Object
permanence, specifically the drawbridge experiment, may be
a special case that can be solved through a set of “occlusion
detectors”, such as those found in the superior central sulcus
in the ventral visual pathway [2]. How the brain creates pre-
diction signals in general relates to the fundamental question
of how the brain represents time. Buonomano [4] discussed
the two prevalent views of how this may be – “labeled
lines”, in which each neuron’s firing can represent events
on different timescales, or “population clocks”, where the
temporal information is represented by the overall population
dynamics of local neural circuits. In the latter, each individual
neuron carries little timing information. These local circuits
have many feedforward and feedback internal connections, but
also connections from other areas, where external events arise
and perturb this network’s (circuit’s) state.

The network models we present here are similar to the types
of local circuits discussed by Buonomano. A key difference is
the external stimulus originates from the external environment,
as they are images. And the output of the networks controls an
agent’s behavior. But internally, they are guided by Hebbian
rules and competitive inhibition, arranged in multiple layers,
and connected through feedforward, lateral, and feedback
connections. Feedback connections1 are prevalent throughout
all areas of the cortex, and there is short-range and long-range
feedback. This paper introduces the new mechanism of expec-
tation in the context of these cortex-inspired neural network
circuits, which are connected to external sensors (e.g., camera)
and motors (e.g., output tokens, or labels). Expectation is
carried out by delayed feedback connections. The application
area is classification problems in object recognition. However,
these networks are general purpose – not task-specific to object
recognition – and can handle any type of input signal. The
power of expectation to lead to a better recognition rate is

1These are also called top-down connections, since we formulate with the
outputs (called motors, after robot motor control and biological motor cortex)
at the top and inputs (called sensors, after robot input sensors and biological
sensory cortex) at the bottom.
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studied and shown through experiments.
Computational mechanisms to develop object permanence

were presented in [11], using a incremental hierarchical re-
gressor (not biologically plausible). That work introduced the
priming mechanism, by which the next sensory context and
action was predicted by the robot, and this prediction could
be compared to the actual next events as a way to measure
novelty. Priming was formulated as a one-frame prediction
regression problem, with a prototype updating queue used
for longer prediction. In [5], a decay function was applied
to neuron firing rate, thereby imposing continuity from one
frame to the next. In [3], a local interconnected circuit model
that learned to represent different timescales was presented. A
key aspect to their ability to learn time was their short-term
synaptic plasticity.

This is the first time where the effect of internally generated
expectation has been studied for a biologically-plausible (e.g.,
each neuron adapts via Hebbian rules) end-to-end network, ap-
plied to a practical engineering problem – object recognition.
The top-down connections are naturally, within the context
of cortical-like processing, extended to provide an expectation
signal for the next output. This paper shows how this improves
performance over networks not utilizing expectation when the
input streams follows the laws of temporal continuity. Net-
works that develop both global (entire image) and local (image
part) features are tested, and it is shown that expectation in
both cases greatly improves the performance.

This paper is organized as follows. Section II presents
the network architecture, highlighting the new expectation
mechanism. Section III provides analysis. Section IV de-
scribes experiments and presents results. Section V gives
some broader perspective for how to utilize this mechanism in
mentally developing agents. Section VI concludes the paper.

II. NETWORK FUNCTION AND ARCHITECTURE

The networks applied here (Fig. 1) are modeled after those
developed in previous work [8]. It adds the new expectation
capability to the network type from [6]. That network is called
monolithic, or global, since each neuron that is connected to
the sensory layer takes input from every single sensory com-
ponent. A second network type, called local, is presented in
section IV, also with expectation capability. Both these types
of networks are motivated by and are for use in Autonomous
Mental Development [9] (AMD).

Structurally, there is a set of layers, based on the layered
architectures found in cortex. Each layer is a set of neurons,
arranged in a grid on a 2D plane, with equal distance between
any two adjacent (non-diagonal) neurons. The system is end-
to-end – from sensors to motors (output labels in the case of
classification). The number of layers in between the sensors
and motors depends on the implementation. Here we deal with
networks having three layers, with a sensor (pixel) layer, a
layer-one that performs feature extraction and detection from
images, guided by the top-down response from layer-two,
and a layer-two that performs feature extraction and detection
from the response from layer-one. The firing rate of layer-two

b(t)
I(t)

z (1)(t)

z (2)(t-1)

Layer-one 
neuron array

Layer-two
neurons

z (2)(t)^

Sensor array
(layer-zero)

z (1)(t)^

z (2)(t)

Delayed expectation signal

Control 
 motors

Fig. 1. Architecture diagram of the networks studied in this paper,
which also introduces some notation. Applied to visual class recog-
nition, I(t) is an image from a discrete video sequence, represented
as bottom-up activity b(t) to layer-one. The layer-one neural grid
performs top-down controlled feature extraction and detection, while
the output of layer two (non topographic) is used in control (e.g., class
recognized). The pre competition responses are denoted as ẑ(1)(t)
and ẑ(2)(t). After lateral inhibition and smoothing, the layers’ firing
rates are z(1)(t) and z(2)(t). The delayed expectation signal is the
layer-two response is fed back to layer-one after a one-frame delay
z(2)(t − 1).

neurons controls the overall output – the current classification
decision.

Based on cortical neurons, neurons in this model have
bottom-up, lateral, and top-down input projections. We do not
use explicit lateral connections in this paper, but instead make
use of approximate methods for ease of use and computational
reasons. The explicit input to these neurons can be divided into
two parts: bottom-up input activity from the previous layer and
the top-down input activity from the next layer. Each neuron’s
sensitivity is modeled by a weight for each “axonal” input line
from the bottom-up and top-down.

A network operates at discrete times t = 0, 1, ...2. The
outside stimulus is an image stream. So, at each time, there is
an image I(t), which becomes represented as an activity vector
b(t) from the sensor array (pixels), considered as layer zero.
The following is the algorithm for computation in the three-
layer (sensors to topographic layer-one to non-topographic
layer-two) and globally connected version of the networks.
1. Pre-response – Neuron i’s on layer-one computes its pre-
competitive response ẑi – called pre-response, linearly from
the bottom-up part and top-down part

ẑi(t) = (1 − α) · b(t) · w(1)
b,i (t)

‖b(t)‖ ‖w(1)
b,i (t)‖

+ α · z(2)(t − 1) · w(1)
e,i (t)

‖z(2)(t − 1)‖‖w(1)
e,i (t)‖

(1)

where w(1)
b,i (t) and w(1)

e,i (t) are this neuron’s bottom-up and

2Unless it is necessary, we will not include time such as (t) in all the
following equations.
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top-down weight vectors, respectively, and z(2)(t − 1) is the
firing rates of layer-two neurons from the last time step. The
expectation parameter α is discussed in detail later3.

jj-1 j+1Layer:

fan-in fan-out

Fig. 2. In a general multi-layer network, each neuron has bottom-
up and top-down connections to and from itself. The fan-in weight
vector deals with bottom-up sensitivity while the fan-out weight deals
with top-down sensitivity. In the model presented here, the weights
are shared among each two-way weight pairs.

2. Competition via Lateral Inhibition – A neuron’s pre-
response is used for intra-level competition as follows. The
neurons with the k(l) highest pre-responses, on layer l, are
considered winners. The others are inhibited. The top pre-
response η = argmaxẑi

ẑ
(l)
i . Rank the pre-responses ri =

rank(ẑ(l)
i ) where the rank function is defined such that rη = 1.

Then, the response z
(l)
i of a neuron is z

(l)
i = s(ri) ẑi where

s(ri) =
{

1/η if 1 ≤ ri ≤ k(l),

0 if ri > k(l),
(2)

and this ensures the maximum response is one and the next
highest k − 1 are scaled appropriately.
3. Smoothing via Lateral Excitation – Lateral excitation
means that when a neuron fires, the nearby neurons in its
local area are more likely to fire. This leads to a smoother
representational map. The topographic map can be realized
by not only considering a nonzero-responding neuron i as a
winner, but also its 3 × 3 neighbors, which are the neurons
with the shortest distances from i (less than two). To realize
lateral excitation, take neuron j that is a neighbor of a neuron
i with a non-zero response, then set the response of neuron j

to z
(1)
j = h(dij) where dij is the distance between the neurons

and h is a neighborhood response function. However, do not
do this if this will actually decrease z

(1)
j . Layer-one uses this

mechanism but layer-two does not.
4. Hebbian Updating with LCA – After inhibition, all
neurons with non-zero response – these are called the winners
– are allowed to fire and update their synapses. For a winner
cell i, update the weights to be more like the stimulus using
the lobe component updating principle, described in [10] and
[8].

Updating Top-Down Weights – How are the layer-one top-
down weights updated? Here, the layer-two bottom-up weights
are copied directly to become the layer-one top-down weights.
Let the layer-two weight matrix be W(2) of dimensions n×c,
where c is the number of classes and therefore number of
layer-two neurons. The columns of this matrix (layer-two

3We do not utilize linear or non-linear function g, such as a sigmoidal,
on each firing rate in this paper since we found it unnecessary in this
implementation.

fan-in) are the bottom-up synaptic weights of the layer-two
neurons. Then the rows (layer-one fan-out) gives the top-down
synaptic weights of the layer-one neurons. Figure 2 may
provide some elucidation.

Motor layer – Layer two develops using steps 1,2, and 4
above, but there is not top-down input, so Eq. 1 does not
have a top-down part. The response z(2) is computed in the
same way otherwise, with its own parameter k(2) controlling
the number of non-inhibited neurons.

When the network is being trained, z(2) is imposed orig-
inating from outside (e.g., by a teacher). In a classification
problem, there are c layer-two neurons and c possible object
classes. The true class being viewed is known by the teacher,
who communicates this to the system. Through an internal
process, the firing rate of the neuron corresponding to the true
class is set to one, and all others set to zero. Note that this
will effect the next frame’s training, so it is essential to have
a significant amount of class repetition frame-by-frame in the
video sequence.

III. ANALYSIS

A. Expectation

Expectation is realized by z(2)(t) affecting the layer-one
response at time t + 1. In Eq. 1, α controls the maximum
influence of top-down versus the bottom-up part. This bottom-
up, top-down coupling is not new [6]. The novelty for this
paper is twofold: first, the top-down activation originates from
the previous time step (t − 1) and second, nonzero top-
down parameter (α > 0) is used in the testing phase. These
simple modifications create a temporally sensitive network.
It is important to understand the inter-layer dynamics that
differentiate this method from e.g., temporal smoothing of the
output. The key mechanism is the delayed top-down response
of the classification output vector. The high responding layer-
two neurons (e.g., the correct classes neuron) will boost the
pre-responses of the layer-one feature neurons correlated with
those neurons. It will boost these neurons more than the feature
neurons mainly correlated with other classes. This in effect
biases select feature neurons to fire (which would indicate
the actual detection of these features in a purely bottom-up
network). These neurons’ firing leads to a stronger chance of
firing of certain layer-two neurons (indicating output decision)
without taking into account the actual next image. This top-
down signal is thus generated as an expectation of the next
frame’s class. The actual next image also stimulates feature
neurons to fire from the bottom up. These two effects interact
in ways we will study here.

How does the expectation-enabled network take into ac-
count past data? Layer-one maps an image b(t) ∈ X to a
response vector z(1)(t) ∈ Z . The function to do this (layer-
one) is z(1)(t) = L1(b(t), M(t)) where M(t) is the “mental
state” of the network. In expectation networks, old data gets
integrated into the current state, even if the weights are frozen4,

4Weight freezing is often done when it is known the system is going into
“testing phase”
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thereby “hashing” temporal information into spatial. For a
network without expectation and frozen weights, the mental
state is constant M(t) = {W(1),W(2)} . In this case, L1

always maps bi to the same point in Z . For a network with
expectation, the mental state is M(t) = {W(1),W(2), z(2)(t−
1)}. The effect of an image at t−1 persists within the network,
transformed to z(2)(t− 1). It contributes to the next response
at a level α. Therefore, for each new image frame, the effect of
the old one decays multiplied by α. That leads to the following
property:

Property 1: The effect on the current network state of an
image encountered at time t − n is measured as αn.

When α = 1, the network state disregards subsequent image
frames entirely. When α = 0, the network operates in a frame-
independent way5.

B. Centered single-object recognition

Here, we assume there is a single object centered within
the field of view of the agent. Scenes with multiple objects or
an object that greatly varies its location through time (within
the scene) are out of the scope of this paper. The true state
the agent is attempting to determine is what type of object
it is, e.g., the true label y∗(t). This label is known to a
nearby teacher, who can interact with the system to provide
it (teaching). However, it is desirable the system learn to
accurately identify the objects itself.

Why should expectation improve the performance? Each
layer-two neuron defines a hyperconal region in Z , centered
on the lobe components that are the columns of W(2) (see Ap-
pendix). A layer-one response z(1) is simply classified based
on which region it falls into. But these decision boundaries in
the response space may not be accurate due to several factors
such as too few neurons, or poor features. This means that the
response distribution from class i versus class j may not be
linearly separable.

From Eq. 1 it can be seen that, when α = 1, the
response z(1)(t) will be a linear combination of the layer-two
lobe component directions, where the coefficients come from
z(2)(t − 1). This is due to the shared weights between layer-
one top-down and layer-two bottom up weights. If coefficient
j is one and the rest zero, for example, the layer-one response
will be exactly the lobe component direction corresponding to
class j.

The two parts of Eq. 1 each lead to different points in Z .
The bottom-up part (if α = 0) gives the networks response
without considering past images – unit vector z(1)

B (t). The
top-down part (if α = 1) gives a linear combination of class
centers in response space – unit vector z(1)

T (t).
Assume expectation is biased for a particular class. Then

it “pulls” z(1)
B (t) towards the layer-two lobe component rep-

resenting that class. Since expectation takes into account the
recent class history the most, this is advantageous when the
probability that the next image contains the same class is high.

5Note the above depends on a large enough k(1) and k(2). Further study
is needed to precisely quantify the effect of these inhibition parameters.

This is called the temporal continuity principle. Expectation
will reduce the effect of outlying points across the wrong
decision boundary by pulling them back towards the class
center, leading to more correct classifications under temporal
continuity.

How can this system transition from one output class to
the next without external intervention? First, the layer-one
features derived must provide class distributions in Z that are
mostly separable. Second, α must not be set too high. After
a class transition in the video, the system should transition
to output the correct class with a few errors immediately
after the transition as it adjusts (e.g., the boosted layer-one
features from the now-incorrect class are not supported from
the bottom-up image and gradually stop firing). If the class
distributions are too mixed up, or α is set too high, there
will be errors, and perhaps “hallucinations”, where the system
never adapts to output the correct class.

IV. EXPERIMENTS

A. MSU 25-Object Data Set

Fig. 3. Sample(s) from each of the 25 objects classes, also showing
some rotation. In the experiments, the training images were 56× 56
and grayscale.

25 small objects were selected (see Fig. 3) and captured in
3D rotation. 200 images of 56 rows and 56 pixels were taken
in sequence for each object. At the operator’s rate of rotation,
the 200 images covered about two complete rotations of 360
degrees for each object. The capture process was intentionally
not too controlled, so an object varies slightly in position and
size throughout its sequence. The background was controlled6

by placement of a uniform color by a sheet of gray fabric.
Including an additional “empty” (no object) class, there were
200 × 25 + 1 = 5001 images total. Every fifth image in each
sequence was set aside for testing, so the other 80% were used
to train the networks. Grayscale images were used7.

We trained five different networks with 20 × 20 neurons
over ten epochs using α = 0.3 in the training phase. The
images were trained in different class sequences, with a few
empty (no object) frames in between each sequence to mimic

6Due to automatic adjustment of the overall image intensity by the camera’s
capture software, later background color normalization was done.

7These images are available at http://www.cse.msu.edu/ei/datasets.htm.
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Fig. 4. The effect of different expectation parameter values on
performance. The number following F indicates the frame to start
measuring performance after a sequence shift to a new rotating object
sequence. Three frame smoothing means the latest three outputs are
summed and the maximum class output used to get the current output.
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Fig. 6. Increased α shifts errors from bottom-up misclassifications
to errors within the sequence transition periods.

an object being placed and taken away. The disjoint images
were tested after each epoch, also presented in sequences
each in between a few empty frames, under varying network
conditions8. Figure 4 shows the effect of different α in testing
after 5 epochs. It can be seen that expectation leads to near-
perfect performance except for some errors immediately after
a class-transition. Figure 5 measures how training the same
sequences over and over again can help performance. It helps
a lot to see the same sequence at least twice. Figure 6 shows
how the transition period is affected by α. Increasing expec-
tation eventually leads to no errors except in the transition
periods. But higher α will have longer transitions. It would
be allowable for there to be a brief period of confusion on
transitions for robotic agents.

B. Vehicle data using local features

As could be seen in Section III, the power of expectation
depends on the features derived from the training data. If the
features derived allow layer-two to nearly linearly separate the
classes, expectation becomes very powerful. In this section we
test global features versus local features on a vehicle / non-
vehicle discrimination problem. We deal with classes that are
decomposable into visible parts (e.g., headlight and license
plate on a car). Local features could become tuned to parts,
which should improve the generalization power of the network,
meaning the performance will be better with less data.

Fig. 7. Six examples of the vehicles class and six from the “not-a-
vehicle” class.

In a global feature network, each neuron on layer-one is
sensitive to every element within the sensor matrix, which
has d elements (pixels). In the local network used here, each
neuron on layer-one has a r × r receptive field, where r2 is
less than d. The number of neurons is equal to the number
of pixels, and each neuron’s receptive field is centered on a
particular pixel9. The competition step is also local. A neuron
competes with its local region of l × l neurons. The local
top-k(1) responding neurons are called winners, in the local
version. The local network used here did not utilize smoothing,
and α was gradually increased in training from 0 to 0.3 after
40 training samples.

There were 225 vehicle images and 225 not-vehicles im-
ages, each sized 32×32. Some examples can be seen in Fig. 7.

8We found it was best to set k(1) = k(2) = 1 in training, but to increase
them in testing. They were held constant at k(1) = 15, k(2) = 8 for the
tests.

9The image boundaries are extended with black pixels
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We perform a generalization test, comparing a global network
(10 × 10 neurons), a local network (r = 11, and l = 5), and
another local network using expectation after it matures. The
networks were initialized and trained with only 5 samples from
each class. Then all samples were tested, in two sequences
(cars → not cars). Next, the next 5 samples were trained, and
so on, until all samples were trained. We did this 10 times
for each network type, using a different training order, for
statistical reasons. Results are summarized in Fig. 8. The
local network does indeed do better with less data, however
it eventually only does just as well as the global network.
If expectation is enabled however, the performance becomes
nearly perfect.
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Fig. 8. Performance of globally and locally connected networks when
data is limited. The locally connected network performs better with
less data for this dataset. This may be because these vehicle images
can be made up of several interchangeable parts. Once training is
mature, the expectation mechanism can be enabled in testing, and
performance shoots up to a nearly perfect level.

V. AMD APPLICATIONS

From the perspective of developmental robotics and au-
tonomous mental development, the mechanism described in
this paper can lead to more realistic learning ability for
mentally developing machines. Supervised machine learning
methods that can be applied to visual recognition of objects
are formulated at a per-frame level where each training sample
(frame) must be accompanied by a label. In classical super-
vised learning, each x (e.g., input frame) is associated with
a y (e.g., output label). However, in realistic communicative
training, the training signal is sparse in time – the teacher may
only speak the name of the viewed object once as it rotates,for
example. When a child is taught, say to recognize numerals
and letters in the classroom, there is not a continual stream
of repetitive speech from the teacher speaking the names of
the characters over and over. The teacher will 1. direct the
child’s visual attention and 2. speak the name of the character.
The direction of attention hopefully ensures that the child is
looking at the character continuously.

Using this paper’s architecture, a semi-supervised learning
mode can be utilized, which can significantly reduce the

training load of the teacher. In this mode, expectation is
enabled and the weights are not frozen. This will be very
useful, since the common distinctions of “training phase” from
“testing phase” cannot be made so easily in a real time,
developmental system. Then, the purpose of the teacher is to
sparsely provide labels, and correct errors. The error correction
can operate as follows. A signal giving the true class from an
external source will impose strong supervision at the motor
end (a vector of all zeros and a single one corresponding
to the correct class). This, in effect, interrupts the internally
generated top-down expectation and replaces it with the correct
expectation in the strongest form.

VI. CONCLUSIONS

Although temporal context has been used in many task-
specific models and in artificial neural networks, this is the
first time where context is used as motor initiated expecta-
tion through top-down connections in a biologically plausible
general-purpose developmental network. If the motor action
represents abstract meaning (e.g., recognized class) these
mechanisms enable meaningful abstract expectation by such
networks. We showed the effect in improving recognition
rate to nearly perfect performance after a transition period
when the class has first changed. Expectation’s effectiveness
in improving performance is linked to the capacity to develop
discriminating features. Expectation was shown in both glob-
ally and locally connected networks, and the local features
are better for generalization (better performance with less
training). For future work, we will utilize this in a real world
developmental system to “train itself” to reduce the training
load of the teacher.

REFERENCES

[1] R. Baillargeon. Object permanance in 3.5 and 4.5-month-old infants.
Developmental Psychology, 23:655–664, 1987.

[2] C.I. Baker, C. Keysers, J. Jellema, B. Wicker, and D. I Perrett. Neuronal
representation of disappearing and hidden objects in temporal cortex of
macaque. Exp. Brain Res., 140:375–381, 2001.

[3] D. V. Buonomano. Decoding temporal information: a model based on
short-term synaptic plasticity. J. Neuroscience, 20(3):1129–1141, 2000.

[4] D. V. Buonomano and U.R. Karmarkar. How do we tell time?
Neuroscientist, 8:42–51, 2002.

[5] J. Krichmar and G. Edelman. Machine psychology: autonomous
behavior, perceptual categorization and conditioning in a brain-based
device. Cerebral Cortex, 12:818C830, 2002.

[6] M.D. Luciw and J. Weng. Topographic class grouping with applications
to 3d object recognition. In Proc. International Joint Conf. on Neural
Networks, Hong Kong, June 2008. accepted and to appear.

[7] J. Piaget. The Construction of Reality in the Child. Basic Books, New
York, 1954.

[8] J. Weng, H. Lu, T. Luwang, and X. Xue. A multilayer in-place learning
network for development of general invariances. International Journal
of Humanoid Robotics, 4(2), 2007.

[9] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen. Autonomous mental development by robots and animals.
Science, 291(5504):599–600, 2001.

[10] J. Weng and N. Zhang. Optimal in-place learning and the lobe compo-
nent analysis. In Proc. World Congress on Computational Intelligence,
Vancouver, Canada, July 16-21 2006.

[11] J. Weng, Y. Zhang, and Y. Chen. Developing early senses about the
world: ‘object permanence’ and visuoauditory real-time learning. In
Proc. International Joint Conf. on Neural Networks, Portland, Oregon,
July 20-24 2003.

978-1-4244-2662-1/08/$25.00 ©2008 IEEE 120

Authorized licensed use limited to: Michigan State University. Downloaded on March 03,2010 at 19:40:52 EST from IEEE Xplore.  Restrictions apply. 


