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ABSTRACT

This paperintroducesthe developmentalapproachto speech
learning,motivatedby humancognitivedevelopmentfrom infancy
to adulthood. Centralin the developmentalapproachis what is
calledthedevelopmentalalgorithm.We introduceAA-learningas
a basiclearningmodefor our developmentalalgorithm. The de-
velopmentalalgorithmenablesthesystemto learnnew taskswith-
out a needof reprogramming.Someexperimentalresultsfor AA-
learningusingourdevelopmentalalgorithmarepresented.

1. INTRODUCTION

Veryimpressiveperformancefor speechrecognitionhasbeenachie-
ved for a large vocabulary undercontinuousspeech,but the per-
formancedegradessignificantlywhenenvironmentalvariationand
speaker variationincrease[2]. An importantdirectionfor improv-
ing speechrecognitionperformanceis to usethemultimediacon-
text. However, thechallengingissueis how to defineandusecon-
text. The traditionalway to approachthis issueis to restrict the
environmentaldomainandthescopeof thetaskto beperformed.
Thenhumansmanuallymodelthecontext in adomain-specificand
task-specificmanner. Suchmanuallaborin systemdevelopmentis
very tediousandthismanualnaturefundamentallylimits thevari-
ety of environmentto which a speechrecognitiontechnologycan
apply.

In thispaper, weproposewhatis calledthedevelopmentalap-
proach.Thedevelopmentalapproachis motivatedby humancog-
nitivedevelopmentfrom infancy to adulthoodthroughinteractions
with theenvironment.Fromanengineeringpoint of view, it is to
automatethe processof systemdevelopment. Put morespecifi-
cally, it is to automatetask-specificprogramming.This is accom-
plishedby whatis call adevelopmentalalgorithm— analgorithm
that automaticallyhandlessystemdevelopment. The goal of the
experimentspresentedhereis to verify theworking of our devel-
opmentalalgorithm,and it is by no meansto comparewith any
of theexistingspeechrecognitionsystemsin termsof recognition
performance.

Thiswork wassupportedby NSFgrantNo. IIS-9815191.Theauthors
would like to thankWey S.Huangfor hiscontribution to anearlierversion
of theprogram.

2. AA-LEARNING

An agentis somethingthatsensesandacts.For example,aspeech
recognitionsystemmaysensespeechsignalsandmayactby out-
put information, suchas text or control signal. An agenthasa
numberof sensorsandeffectors. Its extroceptive, proprioceptive
andinteroceptivesensorssensetheexternalworld (e.g.,auditory),
its own actions(e.g.,vocal tract shape),andinternalevents(e.g.,
internal clock), respectively. If the agenthasa predefinedpref-
erenceto the sensedvalueof a sensor, (e.g. a preferenceof 1 to
-1) thissensoris calleda biasedsensor. Otherwise,it is unbiased.
Theeffectorsincludeextro-effectors(thoseactingon theexternal
world) andintero-effectors(thoseactingon internalcomponents,
e.g.,attentionselectorbetweenauditoryandvisualchannels).

An algorithmis a developmentalalgorithmif it canconduct
AA-learning (short for automatedanimal-like learning without
claimingto becomplete):

Definition 1 A machine agent
�

conductsAA-learningat dis-
crete time instances,�������	�
���������� , if the following conditions
are met: (I)

�
hasa numberof sensors, whosesignal at time �

is collectivelydenotedby ������� . (II)
�

hasa numberof effectors,
whosecontrol signalat time � is collectivelydenotedby ������� . (III)�

hasa “br ain” denotedby ������� at time � . (IV) At each time � , the
time-varyingstate-updatefunction ��� updatesthe “br ain” based
on sensoryinput ������� andthecurrent“br ain” �
����� :

�����! "���#�$�����%�����&���'�������&� (1)

and theaction-generation function ( � generatesthe effectorcon-
trol signalbasedon theupdated“br ain” �����! )��� :

�*���� )���#�+( � �%�����! "���&� (2)

where ������ ,��� canbea part of thenext sensoryinput ������ -��� .
(V) The “br ain” of

�
is closedin that after the birth (the first

operation), �
���&� cannotbealtereddirectlyby humanteachers for
teachingpurposes.It canonlybeupdatedaccording to Eq. (1).

As canbe seen,AA-learning requiresthat a systemcannothave
two separatephasesfor learningandperformance.

3. ARCHITECTURE

Our architectureSAIL (Self-organizingAutonomousIncremental
Learner)is designedfor a generalagent.Fig. 1 givesa schematic
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Figure 1: A schematicillustration of the coarsearchitectureof
the learningmechanism.The attentionmodulesperformsensor-
specificpreprocessingand attentionselection. The sensorclus-
tering layer performsonline clusteringof sensorinputs. Cluster
centroidsfrom differentsensorsarefusedinto a singlevectorand
passedto thelevel0spatio-temporalassociator(STA.) Clustercen-
troidsfrom thelevel 0 STA arepassedto thelevel 1 STA. Actions
proposedby thedifferentlevelsarearbitratedandthensentto the
effectors.

illustration of the architectureof SAIL that we have tested. As
shown in the figure, the input to the STA includesnot just infor-
mationfrom thesensors,but alsothecurrentcontrolsignalof the
effectors.

3.1. Levels

We do not definearchitecturallevels in termsof either domain
knowledgehierarchyor systembehavior hierarchy(bothof which
are usedby task-specificapproaches).Instead,our level corre-
spondsto the extent of temporalcontext (a task-independentde-
sign).

The global state . of the “brain” �
���&� at any time � is rep-
resenteddistributedly by statesat different levels: ./�0�1.�2
�3.
4	�
��������.65�� , where .�7 , 89�:�����
�	�������3; , representsthe stateat level 8 .
The currentnumberof levels is determinedautomaticallybased
on thematurationscheduleof thedevelopmentalalgorithmwhich
dependson theexperienceof theagentaswell asits virtual age 4 .
Level 0 is context free, to modelS-R (stimulus-response)reflex.
Startingfrom level 1, temporalcontext is incorporated.Thehigher
the level 8 , the moretemporalcontext eachstateat level 8 repre-
sents. The basicmechanismsof the level-building elementsfor
eachlevel aresimilarandthuslevel-building is automated.

3.2. States

An AA-learningalgorithmmustautomaticallygeneratestatesin a
mannerthatis not task-specific,but canbesensor-specific.Let us
first considerlevel 1 in Fig. 1. Thepartof the“brain” stateat this
level is denotedby astatevector .<����� in a high dimensionalspace=

. Thus,our statehasanexplicit representation.
=

mustcontain
all the possiblesensoryinput �">)? . State .<����� is considereda

4 Thevirtual ageis thetimeof operationsincethebirth of thesystem.

x(1) x(2) x(3)x’(0)

Figure2: The staterepresentationat �@�BA for 1-D signalwith
2:1uniformresampling.Thesymbolsin eachsegmentof thestate
indicatethemainsourceof thesignal.

randomprocess.Eqs.(1)and(2) arecloselyrelatedto theformu-
lationsfor Markov decisionprocesses(MDP) or HMMs (hidden
Markov models). However, the statesin MDPs typically arede-
fined asa setof symbols. Thus,no distancemetric is definedto
measurethesimilarity betweenany two symbols.

In contrastto existingMDP methods,werequirethatthestate
recordstemporalcontext. Thus,we definethestatespaceat level
1 recursively to be

= �-?DC R � = � , where C denotestheCartesian
productandR �'E � denotesa re-samplingoperator. The designof
there-samplingoperatorneedsto take into account(a) thenature
of thesignal,(b) thedesiredtemporalspanin thestatevector, and
(c) therecursive relation

= �$?FC R � = � . For example,for vector
signalof 1-D nature,G9�1� canbea 2:1 uniform resamplingopera-
tor. For imageinput, a 2-D 4:1 uniform resamplingis used. For
speechsignalwith Cepstrumvector H������ , eachstatevector IJ���	 K���
maycontainseveralframes:HMLN�������OHML LN���QP������&H�L L LO���QPR�
� , to allow a
stateatlow level to takeintoaccountmoretemporalcontext, where
H L L ���SP+��� is subsampledfrom .<����� and H L L L ���TPU�
� from .<���VPW��� ,
etc. Since � is not anidentity mapping,H L L ���TP+��� is not thesame
as H
���TPX��� .

Themulti-level statetransitionfunction in Eq. (1) represents
a simplified mapping �ZY[?\C R � = �U]^ =

at level 1. First,
sincethe statespacecannotbemanuallydesigned,we let � map
�%�����&��� R �1.<�����&�&� directly to itself:

�%�����&��� R �1.<�����&�T�$.<���! )���S�,���%���������3.<�����&��� (3)

In otherwords,thenext state.<���_ W��� keepsall theinformationof
sensoryinput �����&� andthere-sampledversionof thecurrentstate
.<����� . Givensensoryinputs ���`�<���'���'�����	����� , thissimplified � defines
a trajectoryof states.<�'���K���%���`�
�����<� , .<�1�
�a���%���'����� R �1.<�'���&� ,
andsoon. Fig. 2 givesanillustrationof astateat time �#�)A .

Fig. 3 illustratesa partof thestatetrajectorythat is automati-
cally generated.Eachstateis associatedwith a numberof actions
throughmapping(��1.�� asin Eq.(2). Fig. 3 explainshow the dis-
tancemetric amongstatesallows generalizationof actions. This
distance-basedstaterepresentationalso facilitatesthe following
important functionalities: (1) Statescan be generatedonline as
they are beingrecorded. (2) The distancemetric in

=
makes it

possibleto accessahugenumberof statesusingatree-basedfunc-
tion approximatorfor real-timeoperation.(3) Stateclusteringand
forgettingcanbenaturallyapplied.

4. LEARNING TYPES

Eqs. (1) and (2) identify four componentsof the AA-learning
agentfor eachtime instance� :

�%�����* "�����3.<���! +������.<�������O�������&��� (4)
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Figure3: Thefinite statemachinewith dynamicallygeneratedand
deletedstates.Each“+” signdenotesastate.Eacharrow indicates
thetime order. � is a newly generatedstate,which doesnot have
any outgoingtransitionexperience.Theexistingstate� is thenear-
estneighborof � in thestatespace

=
. Thetransitionpath,from �

to H , that is learnedby � canbeusedfor predictingthenext state.
Theactionchoicefor � , (��%��� , canbeusedasthenext actionfor � .
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Figure4: Theflowchartfor AA-learning.Thesystemlearnswhile
performing.

They involve threeentities:actions,states,andsensorinputs.

Dependingonwhethertheactionis imposedor not,thelearn-
ing canbe classifiedinto action-imposedlearningandaction-au-
tonomouslearning. Dependingon whetherthe biasedsensoris
usedor not,thelearningcanbeclassifiedinto reinforcementlearn-
ing andcommunicative learning. Reinforcementlearningis such
thatabiasedsensoris usedto reinforceor punishcertainresponse
from themachineagent.Communicativelearningis suchthatonly
unbiasedsensorsareusedin learning.This requiresthattheagent
to correctlyinterpretthesignalfrom unbiasedsensors,eitherasan
instructionfor an action,an encouragement,an explanation,etc.
Thus,the type of learningat any time � canbe representedby a
3-tuple �`cd�3I��&e�� where cf>hg�8&���ji denotesif an action is im-
posedor autonomous,ID>"g�8&�&�ji denotesif the stateis imposed
or autonomous,and ek>lg�m��&H�i denotesif the biasedsensoris
usedor not. Thereare8 different3-tuples,representinga total of
8 differentlearningtypes.AA-learningis state-autonomouslearn-
ing. Thus, thereare 4 typesof AA-learnings: Type (1) action-
imposedwith reinforcement,Type (2) action-imposedandcom-
municative, Type(3) action-autonomouswith reinforcement,and
Type(4) action-autonomousandcommunicative. It is worth not-
ing that thesefour typesaretypically interleavedthroughtime in
a natural learningenvironmentfor animalsand humans. Fig. 4
illustratesa flow chartof AA-learning. If the trainer imposesan
actionon aneffectorat any time through,e.g.,a joystick, thesys-

temperformsaction-imposedlearningfor thateffector. Otherwise,
thesystemperformsaction-autonomouslearning,duringwhichre-
inforcementlearningor communicative learningcanbeused.

4.1. Simpleaction-imposedlearning

To facilitateunderstanding,wedescribeanoversimplifiedandthus
veryinefficientandweakversionof action-imposedlearning.Sup-
posethat the machineagent

�
hasrecordedin memory no�

g��%���%8O����.�%8N���&���%8N�&�qp8#�r�s���
�M�������&�VP+�6iut�g�.<���&���&��������i . Notethat
.<�������&�����&� arethe resultfrom sensoryinput �����#P$��� . According
to theflow diagramin Fig. 4,

�
grabsthecurrentsensoryframe

�����&� . Then,it computesthenext state.<���v w��� , e.g.,usingEq. (3).
If anactionis imposed(e.g.,in trainingsession),������ )��� is sup-
pliedby ahumanbeing(or theenvironment)andthus

�
complies

by sending����� x��� to theeffectorandthenupdatesits memoryby
replacingn by n"tRg������&���3.<���* )�����&�����* "����i . If anactionis not
imposed,

�
derivesaction �����! $��� basedon thepastexperience

usinga simplified ( in Eq. (2) asfollows. First, M findsthebest
matchedstate:

y � argmin2Mz 7 zQ�M{ .���! "����P|.�%8N� { � (5)

Then,theoutputactionis determinedastheactionassociatedwith
the bestmatched.� y � : �����} ~��������� y � . The memoryupdate
is doneasbefore. After ������ -��� is grabbedin thenext machine
cycle, which may include the result of the actionsensedby the
sensor, thesystemmemorybecomesnD�,g��%���%8N���3.<�%8N���&���%8N�&�up68��
�s�����	���������* "�6i .

As canbeseen,thisoversimplifiedversionof AA-learningcan
do only a little generalizationby extendingthe actionlearnedby
thenearestneighbor.<� y � (or multipleneighborswith actioninter-
polation)from thecurrentnew state.<���T )��� whenever no action
is imposedby thehuman.

4.2. Simple reinforcementlearning

When no action is imposed,the learningis action-autonomous.
The systemgeneralizesusing the nearest-neighborrule. Sucha
generalizationmayor maynot be good. Thus,a feedbacksignal
in therange ��P��
�	��� canbesensedby a biasedsensorasa reward
(positive or negative). An oversimplifiedreinforcementlearning
methodincorporatedinto theaboveaction-imposedlearningalgo-
rithm is asfollows: Modify thestepof findingthenearestneighbor
in Eq. (5) so thatonly the stateswhosecorrespondingactionhas
received non-negative rewardsaresearchedfor. The otherparts
arethesame.

5. A PRACTICAL ALGORITHM

To keepthememorysizein dynamicbalance,thestatesareauto-
maticallypulledtogetherateachvisit, mergedwhenthey areclose,
anddeletedif they arenot visitedoften. Our SHOSLIF[3], a re-
gressiontreealgorithm[1] for high-dimensionalspace,canfind
top �r�B� matchedvectorsin logarithmic time in termsof the
numberclustersof inputvectors.It is usedto find thebestmatched



statesasin Eq. 5 for both functions �6� and (
� in Eqs.(1)and(2),
but thedistancemetricis notEuclidean.

6. SYSTEM AND EXPERIMENTS

A robotbodyfor SAIL hasbeenconstructedat MSU asa testbed
for ourdevelopmentalalgorithms.It hastwo micro-cameras(with
pan-tilt control),four microphones,anarmwith 5 degreesof free-
dom,adrivebase(for indoorandoutdoor)and13pressuresensors
on its body. However, for the needof examiningthe working of
thedevelopmentalalgorithmwith full control,theexperimentsre-
portedherearebasedonsimulationsusingrealsensorydata.

Wehavetestedtwosimulatedarchitectureconfigurations,called
“robothorse”(RH) and“robot receptionist”(RR),respectively, ac-
cordingto thetasksthey have learned,althoughneitheris limited
to learningthesetasksonly. The architectureof RR is shown in
Fig. 1 andthat of AH is similar except that RH hasno attention
selectionfor simplicity. The major emphasisfor RH is to study
its capability to learndirectly from soundwavesusinga micro-
phone,contingenton anothersensor(rein). TheRR is to studyits
capabilityto learndirectly from videoimagesin conjunctionwith
questions.RR hasbeentrainedto answerquestionsaboutname
andgenderwhenit seesindividualhumanfacesandto presentthe
right presentsto the right gender. Due to thespacelimit, we can
only discussAH in somedetail.

RH hasan auditorysensoranda numericalsensor, simulat-
ing its touchsensefor rein whenit is beingpulled. In our prior
work for autonomousnavigation[4], wehaveusedour framework
SHOSLIFto implementa singlefunction which mapsvisual in-
put directly to a navigationupdatevector(heading,direction,and
speed).It hasbeendemonstratedthatthis tree-basedmappingen-
ablesour Romerobot to navigatein real-timein our Engineering
Building, usingonly a singlesensor— a videocamera.However,
with this alone,the robotdoesnot yet have a way to act interac-
tively accordingto humanverbalcommands.Here,we areinter-
estedin addinganinteractivemodefor a “robot horse.”

Thereinsensoris usedto teachthehorseto listenandactonly
whentherein is pulled.Whentherein is not pulled(simulatedby
0 of thenumericalsensor),it will roamalongusingthe low-level
reflex actionsthat have beendemonstratedwith the Romerobot.
Theverbalcommandsarefour vowels: “a”, “e”, “i” and“u”, rep-
resenting“left,” “right,” “f aster”and“slower,” respectively. With
multisensorfusion,in thiscase,thecouplingof verbalsignalwith
the rein signal,RH will lesslikely be confusedby variousback-
groundsoundsin theenvironment.

Weconductedspeakerindependenttestswith fivepeople:three
adult men, one adult lady and one young girl. In other words,
the personswho weretestedwerenot amongthe personswhose
soundshave beenusedin the training sessions.To get an aver-
ageperformancefor RH, we conductedleave-one-outtests. In
otherwords, five experimentswereconducted,eachwith a new
“birth.” For eachexperiment,a differentperson’s utteranceswere
usedin the testsession.The otherfour persons’utteranceswere
usedfor thetrainingsession.Theresponseis consideredcorrectif
thecorrectactionis producedimmediatelyafter the coupledrein

andverbalcommand.Otherwise,the responseis incorrect. Dur-
ing thetrainingsessions,thedesiredactionis imposedat theright
context. For eachaction,a total of 20 trainingsounds(4 persons;
5 utterancesfrom eachperson)areheardby RH. 5 utterancesof
eachpersonareusedfor testing.Thefollowing tablesummarizes
thetestresultrecordedin thetestsessions.

Meaning Man 1 Man 2 Man3 Lady Girl
“a” left 100% 100% 100% 100% 100%
“e” right 100% 100% 100% 100% 100%
“i” faster 100% 100% 100% 100% 100%
“u” slower 100% 100% 100% 100% 100%

To pushthesystemat thisyoung“age” to thelimit, weadded
anothervowel “o” to thevocabulary. It mayrepresentanew action.
It is known that the waveform andCepstrumcoefficient vectors
of “o” and “u” are close. The result showed that about4% of
the “o” vowel soundsarerecognizedas“u” andthe restof cases
are all correct. On the otherhand, it is not always trivial for a
humanto perfectlydistinguishindividually pronounced“o” and
“u.” Completewordsandsentencecontext canhelpgreatly. Future
studiesalongthis line will testwordsandsentencesusingmore
levelsof theproposedarchitecture.

7. CONCLUSIONS

Although the tasksSAIL hasbeentrainedto learnarerelatively
simple, the presentednew conceptsandthe experimentalresults
have demonstratedthat the developmentalalgorithm can enable
a machineto learnnew taskswithout a needof re-programming.
Thecapabilityof suchamachinewill dependonits sensors,its ef-
fectors,its computationalresources,its developmentalalgorithm,
and how it is taught. It doesnot needhumansto find a good
task-specificrepresentationfor a taskandto programfor thetask.
Therefore,thedevelopmentalapproachintroducedherehasa po-
tential for dealingwith tasksthat are too complex for humanto
programeffectively, includingmany multimediasensingtasksthat
requiredifferentstrategiesin differentcontexts.

8. REFERENCES

[1] L. Breiman,J. Friedman,R. Olshen,andC. Stone. Classi-
ficationandRegressionTrees. Chapman& Hall, New York,
1993.

[2] L. R. Rabiner. Toward vision 2001: Voice and audio pro-
cessingconsiderations.AT&T Technical Journal, 74(2):4–13,
1995.

[3] D. SwetsandJ. Weng. Discriminantanalysisandeigenspace
partition tree for face and object recognition from views.
In Proc. Int’l Conferenceon AutomaticFace- and Gesture-
Recognition, pages192–197,Killington, Vermont,Oct.14-16
1996.

[4] J. WengandS. Chen. Incrementallearningfor vision-based
navigation. In Proc. Int’l Conf. Pattern Recognition, vol-
umeIV, pages45–49,Vienna,Austria,Aug. 25-301996.


