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ABSTRACT

This paperintroducesthe developmentalpproacho speech
learning,motivatedby humancognitve developmenfrom infang
to adulthood. Centralin the developmentalapproachs what is
calledthedevelopmentahlgorithm.We introduceAA-learningas
a basiclearningmodefor our developmentakalgorithm. The de-
velopmentablgorithmenableghe systemo learnnew taskswith-
outa needof reprogrammingSomeexperimentakesultsfor AA-
learningusingour developmentahblgorithmarepresented.

1. INTRODUCTION

Veryimpressie performancéor speechrecognitiorhasbeenachie-
ved for a large vocalulary undercontinuousspeechput the per
formancadegradessignificantlywhenervironmentalariationand
speakr variationincreasdg2]. An importantdirectionfor improv-
ing speectrecognitionperformances to usethe multimediacon-
text. However, the challengingssueis how to defineandusecon-
text. The traditionalway to approactthis issueis to restrictthe
ervironmentaldomainandthe scopeof thetaskto be performed.
Thenhumansnanuallymodelthecontext in adomain-specifiand
task-specifienanner Suchmanualaborin systendevelopmenis
very tediousandthis manualnaturefundamentallylimits the vari-
ety of ervironmentto which a speechrecognitiontechnologycan
apply

In this paperwe proposewhatis calledthedevelopmentabp-
proach.Thedevelopmentabpproactis motivatedby humancog-
nitive developmentfrom infang to adulthoodhroughinteractions
with the ervironment. From an engineeringpoint of view, it is to
automatethe processof systemdevelopment. Put more specifi-
cally, it is to automatdask-specifiggrogramming.This is accom-
plishedby whatis call adevelopmentahlgorithm— analgorithm
that automaticallyhandlessystemdevelopment. The goal of the
experimentgpresentedereis to verify the working of our devel-
opmentalalgorithm, andit is by ho meansto comparewith ary
of the existing speechrecognitionsystemsn termsof recognition
performance.

Thiswork wassupportedy NSFgrantNo. 11S-9815191.Theauthors
would like to thankWey S. Huangfor his contritution to anearlierversion
of theprogram.

2. AA-LEARNING

An agentis somethinghatsensesndacts.For example,aspeech
recognitionsystemmay sensespeectsignalsandmay actby out-
put information, suchastext or control signal. An agenthasa
numberof sensorandeffectors. Its extroceptie, proprioceptie
andinteroceptie sensorsenseheexternalworld (e.g.,auditory),
its own actions(e.qg.,vocaltract shape)andinternalevents(e.g.,
internal clock), respectiely. If the agenthasa predefinedpref-
erenceto the sensedralue of a sensar(e.g. a preferenceof 1 to
-1) this sensoliis calleda biasedsensar Otherwiseijt is unbiased.
The effectorsinclude extro-effectors(thoseactingon the external
world) andintero-efectors(thoseactingon internalcomponents,
e.g.,attentionselectobetweerauditoryandvisualchannels).

An algorithmis a developmentalalgorithmif it canconduct
AA-learning (short for automatedanimal-like learning without
claimingto becomplete):

Definition 1 A madine agent M conductsAA-learningat dis-
cretetime instancest = 0,1, 2, ..., if the following conditions
are met: (I) M hasa numberof sensos, whosesignal at time ¢

is collectivelydenotedby z(t). (Il) M hasa numberof effectors,
whosecontol signalat timet is collectivelydenoteddy a(t). (I1)

M hasa “br ain” denotedby b(t) attimet. (IV) Atead timet, the
time-varyingstate-updatdunction f; updatesthe “br ain” based
onsensonjinputz(t) andthecurrent“br ain” b(t):

b(t +1) = fi(x(t),b(t)) 1)

andthe action-geneation functiong; geneatesthe effectorcon-
trol signalbasedontheupdatedbr ain” b(t + 1):

a(t+1) = g:(b(t + 1)) 2

whee a(t + 1) canbea part of the next sensoryinput z(t + 1).
(V) The“brain” of M is closedin that after the birth (the first
opention), b(t) cannotbe altered directly by humanteaders for
teading purposeslt canonly beupdatedaccodingto Eq. (1).

As canbe seen,AA-learning requiresthat a systemcannothave
two separatg@hasedgor learningandperformance.

3. ARCHITECTURE

Our architectureSAIL (Self-olganizingAutonomoudncremental
Learner)is designedor a generalagent.Fig. 1 givesa schematic
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Figure1: A schematidllustration of the coarsearchitectureof
the learningmechanism.The attentionmodulesperformsensor
specific preprocessin@nd attentionselection. The sensorclus-
tering layer performsonline clusteringof sensorinputs. Cluster
centroidsfrom differentsensorsarefusedinto a singlevectorand
passedo thelevel O spatio-temporadssociato(STA.) Clustercen-
troidsfrom thelevel 0 STA arepassedo thelevel 1 STA. Actions
proposedy thedifferentlevels arearbitratedandthensentto the
effectors.

illustration of the architectureof SAIL that we have tested. As
shawn in the figure, the input to the STA includesnot just infor-
mationfrom the sensorsbut alsothe currentcontrol signalof the
effectors.

3.1. Levels

We do not definearchitecturallevels in termsof either domain
knowledgehierarchyor systembehaior hierarchy(both of which
are usedby task-specificapproaches).Instead,our level corre-
spondsto the extent of temporalcontet (a task-independerde-
sign).

The global state s of the “brain” b(t) at ary time ¢ is rep-
resentedlistributedly by statesat differentlevels: s = (so, s1,
.»8L), Wheres;, ¢ = 0,1, ..., L, representshe stateat level 4.
The currentnumberof levels is determinedautomaticallybased
onthe maturationscheduleof the developmentaklgorithmwhich
depend®n the experienceof theagentaswell asits virtual age’.
Level O is contet free, to model S-R (stimulus-responseakflex.
Startingfrom level 1, temporalcontext is incorporated Thehigher
the level 4, the moretemporalcontet eachstateat level i repre-
sents. The basicmechanism®f the level-building elementsfor
eachlevel aresimilar andthuslevel-building is automated.

3.2. States

An AA-learningalgorithmmustautomaticallygeneratestatesn a
mannerthatis nottask-specificbut canbe sensorspecific.Let us
first considedevel 1 in Fig. 1. The partof the“brain” stateatthis
level is denotedvy a statevectors(t) in ahigh dimensionakpace
S. Thus,our statehasan explicit representationS mustcontain
all the possiblesensoryinputz € X. States(t) is considereca

1Thevirtual ageis thetime of operatiorsincethebirth of the system.
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Figure 2: The staterepresentatiomtt = 3 for 1-D signalwith
2:1uniformresamplingThe symbolsin eachsggmentof the state
indicatethe mainsourceof thesignal.

randomprocess.Egs.(1)and(2) arecloselyrelatedto the formu-
lationsfor Markov decisionprocesse$MDP) or HMMs (hidden
Markov models). However, the statesin MDPs typically arede-
fined asa setof symbols. Thus, no distancemetricis definedto
measurehe similarity betweerary two symbols.

In contrasto existing MDP methodsyve requirethatthe state
recordstemporalcontext. Thus,we definethe statespaceat level
lrecursielytobeS = X x R(S), wherex denoteshe Cartesian
productandR(-) denotesa re-samplingoperator The designof
there-samplingoperatomeeddo take into account(a) the nature
of thesignal,(b) the desiredtemporalspanin the statevector and
(c) therecursverelationS = X x R(S). For example for vector
signalof 1-D nature,R() canbea 2:1 uniform resamplingopera-
tor. For imageinput, a 2-D 4:1 uniform resamplings used. For
speectsignalwith Cepstrunmvectore(t), eachstatevectorS(t+1)
may containseveralframes:c’(t), " (t — 1), " (t — 2), toallow a
stateatlow level to takeinto accounmoretemporakontext, where
c"(t — 1) is subsampledrom s(t) andc”™ (t — 2) from s(t — 1),
etc. Sincef is notanidentity mapping¢” (t — 1) is notthesame
asc(t —1).

The multi-level statetransitionfunctionin Eq. (1) represents
a simplified mappingf : X x R(S) — &S atlevel 1. First,
sincethe statespacecannotbe manuallydesignedwe let f map
(z(t), R(s(t))) directlyto itself:

(2(t),R(s(t)) = s(t + 1) = f(x(t), s(t))- ®)

In otherwords,thenext states(t + 1) keepsall theinformationof
sensornyinput z(t) andthere-sampledrersionof the currentstate
s(t). Givensensonyjnputsz(0), z(1), ..., thissimplified f defines
atrajectoryof statess(1) = (z(0),0), s(2) = (z(1), R(s(1)),
andsoon. Fig. 2 givesanillustrationof a stateattimet = 3.

Fig. 3 illustratesa part of the statetrajectorythatis automati-
cally generatedEachstateis associateavith a numberof actions
throughmappingg(s) asin Eq.(2). Fig. 3 explainshow the dis-
tancemetric amongstatesallows generalizatiorof actions. This
distance-basedtaterepresentatioralso facilitatesthe following
importantfunctionalities: (1) Statescan be generatecnline as
they are beingrecorded. (2) The distancemetricin S malesit
possibleo accesshugenumberof statesusingatree-basedlinc-
tion approximatoffor real-timeoperation(3) Stateclusteringand
forgettingcanbenaturallyapplied.

4. LEARNING TYPES

Eqgs. (1) and (2) identify four componentsf the AA-learning
agentfor eachtime instancet:

(a(t +1),s(t +1),5(t), (t)). (4)
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Figure3: Thefinite statemachinewith dynamicallygenerateé@nd
deletedstates Each“+” signdenotes state.Eacharrow indicates
thetime order a is anewnly generatedtate which doesnot have
ary outgoingtransitionexperience Theexisting stateb is thenear
estneighborof a in the statespaceS. Thetransitionpath,from b
to ¢, thatis learnedby b canbe usedfor predictingthe next state.
Theactionchoicefor b, g(b), canbeusedasthenext actionfor a.
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Figure4: Theflowchartfor AA-learning. Thesystemearnswhile
performing.

They involve threeentities:actions statesandsensotinputs.

Dependingonwhetherthe actionis imposedor not, thelearn-
ing canbe classifiedinto action-imposedearningandaction-au-
tonomousdearning. Dependingon whetherthe biasedsensoris
usedor not, thelearningcanbeclassifiednto reinforcementearn-
ing andcommunicatre learning. Reinfocementearningis such
thata biasedsensoiis usedto reinforceor punishcertainresponse
from themachineagent.Communicativéearningis suchthatonly
unbiasedsensorareusedin learning.This requireshatthe agent
to correctlyinterpretthe signalfrom unbiasedsensorseitherasan
instructionfor an action,an encouragemengn explanation,etc.
Thus, the type of learningat ary time ¢ canbe representedyy a
3-tuple (4, S, X) whereA € {i,a} denotesf anactionis im-
posedor autonomousS € {i,a} denotesf the stateis imposed
or autonomousand X € {r,c} denotesf the biasedsensoris
usedor not. Thereare8 different3-tuples,representing total of
8 differentlearningtypes.AA-learningis state-autonomousarn-
ing. Thus,thereare 4 typesof AA-learnings: Type (1) action-
imposedwith reinforcement,Type (2) action-imposednd com-
municatve, Type (3) action-autonomouwith reinforcementand
Type (4) action-autonomouandcommunicatie. It is worth not-
ing thatthesefour typesaretypically interleaved throughtime in
a naturallearningenvironmentfor animalsand humans. Fig. 4
illustratesa flow chartof AA-learning. If the trainerimposesan
actionon aneffectoratary time through,e.g.,ajoystick, the sys-

temperformsaction-imposedtkarningfor thateffector Otherwise,
thesystenperformsaction-autonomousarning,duringwhichre-
inforcementearningor communicatie learningcanbeused.

4.1. Simple action-imposediearning

To facilitateunderstandingye describeanoversimplifiedandthus
veryinefficientandweakversionof action-imposedearning.Sup-
posethat the machineagentM hasrecordedin memory B =

{(z(2),s(3),a(?)) | i = 0,1,...,t —1} U {s(t),a(t)}. Notethat
s(t),a(t) aretheresultfrom sensoryinput z(t — 1). According
to the flow diagramin Fig. 4, M grabsthe currentsensoryframe
z(t). Then,it computeshenext states(t + 1), e.g.,usingEdg. (3).

If anactionis imposed(e.qg.,in trainingsession)a(t + 1) is sup-
plied by ahumanbeing(or theenvironment)andthus M complies
by sendingz (¢ + 1) to theeffectorandthenupdatests memoryby

replacingB by B U {z(t), s(t + 1), a(t + 1)}. If anactionis not
imposed,M derivesactiona(t + 1) basedon the pastexperience
usinga simplified g in Eq. (2) asfollows. First, M findsthe best
matchedstate:

J=agmingg; o, |ls(t +1) = s@)]|. (5)

Then,the outputactionis determinedastheactionassociateavith

the bestmatcheds(j): a(t + 1) = a(j). The memoryupdate
is doneasbefore. After z(¢ + 1) is grabbedn the next machine
cycle, which may include the result of the action sensedby the
sensorthesystemmemorybecomeB = {(z(3), s(i), a(?)) | i =

0,1,..,t+1}.

As canbeseenthisoversimplifiedversionof AA-learningcan
do only alittle generalizatiorby extendingthe actionlearnedby
thenearesheighbors(j) (or multiple neighborswith actioninter-
polation)from the currentnew states(t + 1) wheneer no action
is imposedby thehuman.

4.2. Simplereinforcementlearning

When no actionis imposed,the learningis action-autonomous.
The systemgeneralizeaising the nearest-neighbaule. Sucha
generalizatiormay or may not be good. Thus, a feedbacksignal
in therange[—1, 1] canbe sensedy a biasedsensotasa reward
(positive or nggative). An oversimplifiedreinforcementearning
methodincorporatednto the above action-imposedearningalgo-
rithm s asfollows: Modify thestepof findingthenearesheighbor
in Eq. (5) sothatonly the statesvhosecorrespondingctionhas
receved non-ngative rewardsare searchedor. The other parts
arethesame.

5. APRACTICAL ALGORITHM

To keepthe memorysizein dynamicbalancethe statesareauto-
maticallypulledtogetheateachvisit, megedwhenthey areclose,
anddeletedif they arenot visited often. Our SHOSLIF[3], are-
gressiontree algorithm[1] for high-dimensionakpace,canfind
top £ > 0 matchedvectorsin logarithmictime in termsof the
numberclustersof inputvectors.lt is usedto find thebestmatched



statesasin Eq. 5 for bothfunctions f; andg: in Egs.(1)and(2),
but thedistancemetricis not Euclidean.

6. SYSTEM AND EXPERIMENTS

A robotbodyfor SAIL hasbeenconstructechit MSU asatestbed
for our developmentahlgorithms.It hastwo micro-cameragwith
pan-tiltcontrol),four microphonesanarmwith 5 degreesof free-
dom,adrivebasegfor indoorandoutdoor)and13 pressuresensors
onits body However, for the needof examiningthe working of
thedevelopmentahlgorithmwith full control,the experimentge-
portedherearebasedn simulationsusingreal sensorydata.

Wehavetestedwo simulatedarchitectureonfigurationscgalled
“robot horse”(RH) and“robotreceptionist{RR),respectiely, ac-
cordingto the tasksthey have learned althoughneitheris limited
to learningthesetasksonly. The architectureof RR is shawn in
Fig. 1 andthatof AH is similar exceptthat RH hasno attention
selectionfor simplicity. The major emphasidor RH is to study
its capabilityto learn directly from soundwaves using a micro-
phone contingenton anothersensoi(rein). The RR s to studyits
capabilityto learndirectly from videoimagesin conjunctionwith
guestions.RR hasbeentrainedto answerguestionsaboutname
andgendemvhenit seedndividual humanfacesandto presenthe
right presentgo theright gender Dueto the spacdimit, we can
only discussAH in somedetail.

RH hasan auditory sensorand a numericalsensor simulat-
ing its touch sensefor rein whenit is beingpulled. In our prior
work for autonomousiavigation[4], we have usedour framework
SHOSLIFto implementa single function which mapsvisual in-
putdirectly to a navigation updatevector(headingdirection,and
speed)It hasbeendemonstratethatthis tree-basednappingen-
ablesour Romerobotto navigatein real-timein our Engineering
Building, usingonly a singlesensor— avideocameraHowever,
with this alone,the robotdoesnot yet have a way to actinterac-
tively accordingto humanverbalcommands Here,we areinter-
estedn addinganinteractive modefor a“robot horse€.

Thereinsensois usedto teachthe horseto listenandactonly
whenthereinis pulled. Whentherein is not pulled (simulatedby
0 of the numericalsensor)jt will roamalongusingthe low-level
reflex actionsthat have beendemonstrateavith the Romerobot.
Theverbalcommandsrefour vowels: “a”, “e”, “i” and“u”, rep-
resenting’left,” “right,” “faster’and“slower,” respectiely. With
multisensorfusion,in this case the couplingof verbalsignalwith
therein signal, RH will lesslikely be confusedby variousback-
groundsoundsn theenvironment.

Weconductedpealkrindependentestswith five people:three
adult men, one adult lady and one young girl. In otherwords,
the personsvho weretestedwere not amongthe personsvhose
soundshave beenusedin the training sessions.To get an aver
age performancefor RH, we conductedeave-one-outtests. In
otherwords, five experimentswere conducted eachwith a nev
“birth.” For eachexperiment,a differentpersons utterancesvere
usedin the testsession.The otherfour persons'utterancesvere
usedfor thetrainingsessionTheresponsés considereatorrectif
the correctactionis producedmmediatelyafter the coupledrein

andverbalcommand.Otherwise the responses incorrect. Dur-
ing thetrainingsessionsthe desiredactionis imposedat theright
contet. For eachaction,atotal of 20 trainingsoundg4 persons;
5 utterancedrom eachperson)are heardby RH. 5 utteranceof
eachpersonareusedfor testing. Thefollowing tablesummarizes
thetestresultrecordedn thetestsessions.

Meaning | Man1 Man2 Man3 Lady Girl
“a” left 100% 100% 100% 100% 100%
‘e” right 100% 100% 100% 100% 100%
“i” faster | 100% 100% 100% 100% 100%
“u” slover | 100% 100% 100% 100% 100%

To pushthe systemat this young“age” to thelimit, we added
anothewvowel “0” tothevocalulary. It mayrepresen&new action.
It is known that the waveform and Cepstrumcoeficient vectors
of “0” and“u” are close. The resultshaved that about4% of
the“0” vowel soundsarerecognizedas“u” andtherestof cases
are all correct. On the otherhand, it is not always trivial for a
humanto perfectly distinguishindividually pronounced'o” and
“u.” Completenvordsandsentenceontet canhelpgreatly Future
studiesalongthis line will testwords and sentencesisingmore
levelsof the proposedarchitecture.

7. CONCLUSIONS

Although the tasksSAIL hasbeentrainedto learnarerelatively
simple, the presentechev conceptsandthe experimentalresults
have demonstratedhat the developmentalalgorithm can enable
a machineto learnnew taskswithout a needof re-programming.
The capabilityof suchamachinewill dependnits sensorsits ef-
fectors,its computationatesourcesits developmentaklgorithm,
and how it is taught. It doesnot needhumansto find a good
task-specificepresentatiofor ataskandto programfor the task.
Therefore the developmentalpproactintroducedherehasa po-
tential for dealingwith tasksthat aretoo complex for humanto
programeffectively, includingmary multimediasensingasksthat
requiredifferentstrat@iesin differentcontexts.
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