An Incremental L earning Algorithm with Automatically Derived
Discriminating Featur es*

Juyang Weng and Wey-Shiuan Hwang
Department of Computer Science
Michigan State University
East Lansing, M| 48823, USA

ABSTRACT

We propose a new technique which incrementally derive
discriminating features in the input space. This technique
casts both classification problems (class labels as outputs)
and regression problems (numerical values as outputs) into
a unified regression problem. The virtual labels are formed
by clustering in the output space. We use these virtual labels
to extract discriminating features in the input space. This
procedure is performed recursively. We organize the result-
ing discriminating subspace in a coarse-to-fine fashion and
store the information in a decision tree. Such an incremen-
tally hierarchical discriminating regression (IHDR) decision
tree can be realized as a hierarchical probability distribution
model. We also introduce a sample size dependent negative-
log-likelihood (NLL) metric to deal with large-sample size
cases, small-sample size cases, and unbalanced-sample size
cases. This is very essential since the number of training
samples per class are different at each internal node of the
IHDR tree. We report experimental results for two types of
data: face image data along with comparison with some ma-
jor appearance-based method and decision trees, hall way
images with driving directions as outputs for the automatic
navigation problem — a regression application.

1. Introduction

The capability of computers to efficiently and effectively
retrieve information from image databases gives a significant
impact on the progress of digital library technology. A cen-
tral task of a multimedia information system is to efficiently
store, fast and correctly retrieve, and easily manage images
in the database [10].

An essential issue for image database is the represen-
tation of the image. We can categorize the image repre-
sentation into two types: the model-based system and the
appearance-based system. The model-based approach uses
manually defined features to represent objects in the images.
A lot of efforts has been made on this paradigm [2] [5] [6].
The focus of this approach is to design an efficient algorithm
from a set of manually selected features. The strength of
the method is the efficiency in representing images. With
a proper design and a restricted domain of images, only a
very small number of parameters is sufficient to represent
the objects in the image and to distinguish among different

objects. However, the model-based approach is difficult to
generalize. For examples, given a face image database, the
designer needs to manually find the features for faces. The
face features become be useless when a car image database
is presented. The designer then needs to find another set of
features for car images. Such kind of manually designing
features cannot scale up to large and complex domains since
there are countless models to be built.

The appearance approach has recently drawn much atten-
tion in machine vision [13] [7]. Instead of relying on human
designer to define features, the appearance-based approach
enables machines to automatically derive features from im-
age samples. To do so, it considers a two dimensional image
as a long vector. Statistical classification tools are applied
directly to the sample vectors. One example is the nearest
neighbor (NN) classifier. As is well-known, NN classifier
is very time and space consuming for high-dimensional im-
age space and a large image database. To use fewer features
to represent a set of images, the principal component anal-
ysis (PCA) has been used for face recognition [13]. PCA
can optimistically reconstruct the images represented with
the least mean square errors. However, the features which
can well represent the original data set are not necessarily
good for the purpose of classification. The features derived
from the linear discriminant analysis (LDA) can well dis-
tinguish different classes and thus are better for the purpose
of classification, provided that the samples contain sufficient
information [12].

The second issue for image database is how to organize
the represented features so that the retrieval is both fast and
accurate. Linear search is very time-consuming and makes
it impractical. One way to solve this problem is to use a
decision tree. A well designed decision tree can retrieve a
matched sample with a logarithmic time complexity. This
is a very useful characteristic for large image databases.
There is a very rich literature about decision trees, see sur-
veys [8] [3]. The applications of decision tree have been tra-
ditionally for a low-dimensional feature space with manually
selected features. This is true largely because humans cannot
define a large number of useful features. Appearance-based
approach drastically changed this situation. Traditional deci-
sion trees for low-dimensional input space have been found
not suited for input dimensionality of a few thousands and
up, even after data-dimensional reduction using techniques
such as PCA, as we report in this paper. The major reason
is the high complexity of sample distribution that cannot be

captured by a single-level PCA. As demonstrated by [11], if
a different subspace is computed at each internal node of the
tree, a better generalization power results.

2. A New Subspace Regression Tree for High
Dimensional Learning

2.1. Hierarchical Discriminant
Regression

Discriminant analysis can be categorized into two types
according to their outputs: class-label output and numerical
output. If the output is a class label, the task is called clas-
sification. Otherwise, the task is called regression. We cast
both classification and regression tasks into a regression one
in this study.

A classification task can be stated as follows. Given train-
ing sample set L = {(z;,lx) | 7 = 1,2,...,n, k =
1,2,...,c}, where z; € X is an input (feature) vector and
Iy, is the symbolic label of z;, the task is to determine the
class label of an unknown input z € X.

How can one cast a classification task into a regression
one? We consider three cases. (1) If a cost matrix [c;;] is
readily available from application, where ¢;; is the cost of
confusing classes ¢ and 7, one can embed n class labels into
an (n — 1)-dimensional Euclidean outputs pace by assign-
ing vector y; to class 4,4 = 1,2,...,n, so that ||y; — yi|
is as close to as ¢;;, as much as possible. This process is
not always possible since a pre-defined cost matrix [cs;] is
not always easy to provide. (2) Canonical mapping. Map
n class labels into an n dimensional output space so that
the i-th class label corresponds to a vector in which the 4-th
component is 1 and all other components are zeros. After
this mapping, the distance between any two different class
labels is the same: 1. This label mapping does not assign
different distances to different output vectors but will do so
for coarse classes in a coarse-to-fine classification as we ex-
plained below. (3) Mapping labels into input space. Each
sample (z;, Ix) belonging to class & is converted to (z;, yx)
where yz, the vector class label, is the mean of all z; that
belong to the same class. This label mapping scheme con-
siders the distance in input space as that between different
classes. In many application, it is a desirable property. In
each leaf node of the regression tree, each training sample
(i, yx) has a link to label I, so that when (z;, yz) is found
as a good match for unknown input z, I, is directly output
as the class label. There is no need to search for the near-
est neighbor in the output space for the corresponding class
label.

One the other hand, one cannot map a numeric output
space into a set of class labels without losing the numeric
properties among an infinite number of possible numerical
vectors. Therefore, a general regression problem is more
general than a classification problem.

2.2. Discriminant analysis for
numerical output

Now, we consider a general regression problem: approx-
imating a mapping h : X — Y from a set of training sam-

X space Y space

Figure 1. Y-clusters in space and the correspond-
ing x-clusters in space X. The first and the second or-
der statistics are updated for each cluster. By default,
the normalized Mahalanobis distance is used for x-
cluster and the Euclidean distance is used for distance
to y-cluster.

ples {(zs,y:) | zi € X, y; €Y, i =1,2,...,n}. Ify;
was a class label, we could use linear discriminant analysis
since the within-class scatter and between-class scatter ma-
trices are all defined. However, if y; is a numerical output,
which can take any value for each component, it is challenge
to perform discriminant analysis effectively.

We introduce a new hierarchical statistical modeling
method to address this challenge. Consider the mapping
h : X — Y, which is to be approximated by a regres-
siontree!, called hierarchical discriminant regression (HDR)
tree, for the high dimensional space X. Our goal is to auto-
matically generate discriminant features although no class
label is available (other than the numerical vectors in space
V). We must process each sample (z;,y;) to update the
HDR tree using only a minimal amount of computation.

Two types of clusters are formed at each node of the HDR
tree — y-clusters and x-clusters. as shown in Fig. 1. The y-
clusters are clusters in the output space) and x-clusters are
those in the input space X’. There are a maximum of g (e.g.,
q = 6) clusters of each type at each node. The q y-clusters
determine the virtual class label of each sample (z, y) based
on its y part. The virtual class label is used to determine
which x-cluster the input sample (z, y) should update using
its « part. Each x-cluster approximates the sample popula-
tion in X space for the samples that belong to it. It May
spawn a child node from the current node if finer approxi-
mation is required. At each node, y in (z,y) finds the near-
est y-cluster in Euclidean distance. This y-cluster indicates
that which corresponding x-cluster to which the input (z, y)
belongs. Then, the x part of (z,y) is used to compute the
statistics of the x-cluster (mean vector and the covariance
matrix). These statistics of every x-cluster are used to esti-
mate the probability for the sample (z,y) to belong to the x-
cluster, whose probability distribution is modeled as a mul-
tidimensional Gaussian at this level. A total of ¢ centers of
the g x-clusters give ¢ — 1 discriminant features which span
(¢—1)-dimensional discriminant space. A probability-based
distance (to be discussed in Section 2.3) from z to each of
the ¢ x-clusters is used to determine which x-cluster should
be further searched. If the probability is high enough, the

LA regression tree is, by definition, a decision tree whose out-
put is a numeric vector while a classification tree is a decision tree
whose output is a class label [3].

sample (x,y) should further search the corresponding child
(may be more than one but with an upper bound k) recur-
sively, until the corresponding terminal nodes are found.

For computational efficiency, none of the x-clusters and
y-clusters keep actual input samples, unlike the traditional
clustering methods. Only the first orders of statistics are
used to represent the clusters. For example, each y-cluster
keeps the mean vector and the diagonal covariance matrix
depending on the distance metric in the) space while each
x-cluster keeps the mean vector and the full covariance ma-
trix in an efficient form.

In summary, the algorithm recursively builds a HDR tree
from a set of training samples. The deeper a node is in the
tree, the smaller the variances of its x-clusters are. The fol-
lowing is the outline of the algorithm for tree building and
retrieval.

Procedurel Bui | dSubtree: Given a node N and a
subset S’ of the training samples that belong to N, among
the samples in S = {(zi,y:) | ©: € X, y; €Y, @ =
1,2,...,n}, build the subtree which roots from the node v
using S recursively. At most g clusters are allowed in one
node.

1. Let p be the number of the clusters in node N.

e Call d ust eri ng- Y (procedure 2) to obtain p
y-clusters.

o |f y; belongs to i-th y-cluster, then z; belongs to
i-th x-cluster.

2. Compute the mean and covariance matrix of each x-
cluster.

3. Forevery z; of (z;,y;) in S':

e Find the nearest x-cluster j according to the
probability-based distances.

e Let the sample (z;, ;) belong to cluster j.

4. For each cluster j, now we have a portion of samples
S; that belong to the x-cluster. If the largest Euclidean
distance among ;’s in the x-cluster is larger than a
number §,, a child node N; of IV is created from the
x-cluster and this procedure is called recursively with
input samples .S; and node IV;. The number 4, &, rep-
resents the sensitivity of the HDR tree in) space.

Procedure2 C ust eri ng- Y: Given a set of output vec-
torsY = (y1, 92, ---,Yyn), return py-clusters. p < g, where
q represents the maximum clusters allowed in one node.

1. Let the mean Y7 of y-cluster 1 be y;. Setp = 1 and
= 2.
2. Forifrom 2 ton do
(a) Find the nearest y-cluster j for y;.
(b) Compute the
d = dist(y;, Y;).
(c) Ifd > 4, and p < g, let the mean Y,41 of y-
clusterp+ 1bey;. Setp=p+ 1.

Euclidean distance

(d) Otherwise, update y-cluster j by using new mem-
ber y;.

The procedure to create a HDR tree just calls procedure
Bui | dSubt r ee with root R and all the training samples
S = {(zs,y:) | s € X, y: €Y, i =1,2,...,n}. The
procedure for query the HDR tree for an unknown sample z
is described in below.

Procedure3 Retri eval : Given a HDR tree T and sam-
ple z, estimate the corresponding output vector y. Parame-
ter k specifies the upper bound in the width of parallel tree
search.

1. From the root of the tree, compute the probability-
based distance to every cluster in the node. Se-
lect at most top & x-clusters which have the smallest
probability-based distances to z. These x-clusters are
called active x-clusters.

2. For every active cluster received, check if it points to
a child node. If it does, mark it inactive and explore
its child node by computing the probability-based dis-
tances of x-clusters in the child node. At most k2 active
x-clusters can be returned.

3. Mark at most k£ active x-clusters according to the
smallest probability-based distances.

4. Do the above steps 2 through 3 recursively until all the
resulting active x-clusters are all terminal.

5. Let the cluster ¢ have the shortest distance among all
reached leaf nodes. Output the corresponding mean of
its y-cluster as the estimated output y for z.

If we use Gaussian distribution to model each x-cluster,
this is a hierarchical version of the well-known mixture-
of-Gaussian distribution models: the deeper the tree is, the
more Gaussians are used and the finer are these Gaussians.
At shallow levels, the sample distribution is approximated by
a mixture of large Gaussian (with large variances). At deep
levels, the sample distribution is approximated by a mixture
of many small Gaussians (with small variances). The mul-
tiple search paths guided by probability allow a sample x
that falls in-between two or more Gaussians at each shallow
level to explore the tree branches that contain its neighboring
x-clusters.

2.3. Distance in discriminating space

In the above SubSection, we need to estimate the distance
for an input vector z to belong to an x-cluster. For a real-
time system, it is typically the case that the system cannot
afford to keep all the samples in each cluster. Thus, each
cluster will be represented by some statistical measures with
an assumed distribution.

We first consider x-clusters. Each x-cluster is represented
by its mean as its center and the covariance matrix. How-
ever, since the dimensionality of the space X is typically
very high, it is not practical to directly keep the covariance
matrix. If the dimensionality of X" is 3000, for example,
each covariance matrix requires 3000 x 3000 = 9, 000, 000
numbers! We adopt a more efficient method.

As explained in Section 2.2, each internal node keeps up
to ¢ x-clusters. The centers of these ¢ x-clusters are denoted

by
C={c1,c2,..y¢q | cs € X,1=1,2,....q}. Q)

The locations of these ¢ centers tell us the subspace D in
which these g centers lie. D is a discriminant space since
the clusters are formed based on the clusters in space Y.
In this space, we can compute the between-cluster scatter
and within-cluster scatter. Suppose that the number of sam-
ples in cluster ¢ is n; and the grand total of samples is
n = ;?:1 n;. The mean of the cluster center, denoted by ¢

is computed as
1

C = —N;C;.
n
The covariance matrix of cluster ¢ is denoted by I';, i =
1,2,...,q. The within-cluster scatter matrix is the weighted
average of the within-cluster scatter matrices:

1 q
Sw = ﬁ;n,ﬂ (2)

The between-cluster scatter matrix is the sample covariance
matrix for the cluster centers:

Sy = %i}m(q —c)(e — c)T (3)

The sample mixture matrix is the covariance matrix of all the
samples regardless of their cluster assignments, and it is also
equal to

Sm = Sw + Sp.

The Fisher’s linear discriminant analysis [4] finds a sub-
space that maximizes the ratio of between-cluster scatter and
within-cluster scatter: |Sy|/|Sw|. Since we decide to use
the entire discriminant space D, we do not need to con-
sider the within-cluster scatter here in finding D and thus
simplifies the computation. Once we find this discriminant
space D, we will use size-dependent negative-log-likelihood
(SDNLL) distance as discussed in Section 2.4 to take care of
the reliability of each dimension in D.

2.4. Size-dependent
negative-log-likelihood

Let us consider the negative-log-likelihood (NLL) de-
fined from Gaussian density of dimensionality ¢ — 1:

L(z,ci) = j(z—a)' T (z—a)t

% In(27) + % In(|T]).
We call it Gaussian NLL for z to belong to the cluster of
c;. We call it Mahalanobis NLL if T'; is replaced by the
within-class scatter matrix of each node — the average of
covariance matrices of ¢ clusters. We call it Euclidean NLL
if T; is replaced by a scale matrix p21.

Suppose that the input space is X and the discriminat-
ing subspace for an internal node is D. The Euclidean NLL
has only one parameter p to estimate. Thus it is the least
demanding among the three NLL in the richness of observa-
tion. When very few samples are available for all the clus-
ters, the Euclidean distance is the suited distance.

The Mahalanobis NLL uses within-class scatter matrix
T" computed from all the samples in all the ¢ x-clusters. The
number of parameters in I is g(¢ —1) /2, and thus,the Maha-
lanobis NLL requires more samples than the Euclidean NLL.

4)

For Gaussian NLL, L(z,¢;) in Eq.(4) uses the covari-
ance matrix T'; of x-cluster 4. It requires that each x-cluster
has enough samples to estimate the (g — 1) x (g — 1) covari-
ance matrix. It thus is the most demanding on the number
of observations. Note that the decision boundary of the Eu-
clidean NLL and the Mahalanobis NLL is linear and that by
the Gaussian NLL is quadratic.

We would like to use the Euclidean NLL when the num-
ber of samples in the node is small. Gradually, as the num-
ber of samples increases, the within-class scatter matrix of
q X-clusters are better estimated. Then, we would like to
use the Mahalanobis NLL. When a cluster has very rich ob-
servations, we would like to use the full Gaussian NLL for
it. We would like to make an automatic transition when the
number of samples increases. We define the number of sam-
ples n; as the measurement of maturity for each cluster 3.
n =1, n; isthe total number of samples in a node.

For the three types of NLLs, we have three matrices, p*1I,
T, and I';. Consider the number of scales received to esti-
mate each parameters, called number of scales per parameter
(NSPP), of the element of the matrices. The NSPP for p°T is
(n —1)(¢g — 1), since the first sample does not give any es-
timate of the variance and each independent vector contains
q— 1 scales. For the Mahalanobis NLL, there are (¢ —1)q/2
parameters to be estimated in the (symmetric) matrix I". The
number of independent vectors received is n — g because
each of the g x-cluster requires a vector to form its mean
vector. Thus, there are (n — g)(g — 1) independent scalars.
The NSPP for the matrix T is G- — 209 7o
avoid the value to be negative when n < ¢, we take NSPP
for T' to be max {@, 0} . Similarly, the NSPP for T;

for the Gaussian NLL is 1 Y77 2(i=b) — 2(nz0),

A bounded NSPP is defined to limit the growth of NSPP
so that other matrices that contain more scalars can take
over when there are a sufficient number of samples for them.
Thus, the bounded NSPP for p*I is b, = min{(n — 1)(q —
1), n, }, where n, denotes the switch point for the next more
complete matrix to take over. Similarly, the bounded NSPP
for for I'is by, = min { max { 22=2, 0, n, } . Itis worth
noting that the NSPP for the Gaussian NLL does not need to
be bounded, since among our models it is the best estimate
with a large number of samples. Thus the bounded NSPP for
Gaussian NLL is by = 2(—2;2

We define a size-dependent scatter matrix (SDSM) W; as
a weighted sum of three matrices:

Wi = wep’I + win T + wyT; (5)

where we = be /b, Wm = bm /b, wy = bg/band b is a
normalization factor so that these three weights sum to 1:
b = be + by + by. Using this size-dependent scatter matrix
Wi, the size-dependent negative log likelihood (SDNLL) for
x to belong to the x-cluster with center ¢; is defined as

L(z,c;) = i(@—c)™W Nz —c)+ ©
SHn(2r) + 3 In(|Wi)).

3. Theexperimental results

We show the experimental results for face recognition
problem as an example of classification application. For re-

gression problem, we demonstrated the performance of our
algorithm in autonomous navigation problem.

3.1. Experiments using real face data

Since our primary interest is in images which have a high
dimensionality, we applied the new algorithm to appearance-
based face image retrieval tasks. The experimental results
on FERET face data set [9] are reported here. We used the
frontal views from the data set. Thirty four human subjects
were involved in this experiment. Each person had three face
images for the purpose of training. The other face image was
used for testing.

A face normalization program was used to translate,
scale, and rotate each face image into a canonical image of
88 rows and 64 columns [1] so that eyes are located at pre-
specified positions as shown in Fig 2.

To reduce the effect of background and non-facial areas,
image pixels are weighted by a number that is a function
of the radical distance from the image center. Further, the
image intensity is masked by a linear function so that the
minimum and maximum values of the images are 0 and 255,
respectively. Fig 2 shows the effect of such a normalization
procedure.

(a) (b)

(e)]
Figure 2. The demonstration of the image normal-
ization process. (a), (€) The original image from the

FERET data set. (b), (f) The normalized image. (c),
(9) The masked image.

)

We compared the error rate of the proposed HDR algo-
rithm with some major tree algorithms. CART and C5.0 are
among the best known classification trees. However, like
most other decision trees, they are univariate trees in that
each internal node used only one input component to parti-
tion the samples. This means that the partition of samples is
done using hyperplanes that are orthogonal to one axis. We

Table 1. The performance of decision tree
for FERET test

Method Error rate Time (sec)
Training | Testing | Training | Testing
CART 10% 53% 2108.00 | 0.029
C5.0 1% 41% 21.00 0.030
OC1 6% 56% 2206.00 | 0.047
CART PCA 11% 53% 10.89 0.047
C5.0 PCA 6% 41% 9.29 0.047
OC1PCA 5% 41% 8.89 0.046
HDR 0% 0% 2341 0.041

do not expect this type of tree can work well in a high dimen-
sional space. Thus, we also tested a more recent multivari-
ate tree OC1. We realize that these trees were not designed
for high dimensional spaces like those from images We also
tested the corresponding versions by performing PCA be-
fore using CART, C5.0, and OC1 and call them CART with
PCA, C5.0 with PCA, and OC1 with PCA, respectively. A
summary of comparison is listed in Table 1. Notice that the
training time is measured for the total time to train the cor-
responding system. The testing time is the average time per
query. To make a fair comparison, the computation time for
PCA is included in C5.0 with PCA, OC1 with PCA, and
CART with PCA. As shown, none of the existing decision
trees can deal with FERET set, not even the versions that
use PCA as a preprocessing step.

30 2.

[EaN
-]

=

@ N

-

Max. error(degree)
s
5

Mean error(degree)

0 5 10 20 25 30 0 5 10 20 25 30

15 15
Epochs Epochs

@ (b)

Figure 3. The performance of the autonomous nav-
igation. (a) The plot for maximum error rates vs.
epochs. (b) The plot for mean error rates vs. epochs.
The solid line represents the error rates for resubstitu-
tion test. The dash line represents the error rates for
the testing set.

3.2. Experiments with autonomous
navigation problem

A vision-based navigation system accepts an input image
X and outputs the control signal C' to control the vehicle.
The navigator can be denoted by an function f that maps the
input image space X to control signal space C. The learning
process of the autonomous navigation problem then can be
realized as a function approximation. This is a very chal-
lenging task since the function to be approximated is with

very high dimensional input space and the real application
requires the navigator to perform in real time.

We applied our algorithm to this challenging problem.
Totally 318 images with the corresponding heading direc-
tions were used for training. The resolution of each image
is 30 by 40. We used the other 204 images to test. Fig 3
shows the maximum error rates and mean error rates versus
the number of epochs. Both maximum error and mean er-
ror converge around the 15th epoch. Fig 4 gives plots of the
histograms of the error rates at different epochs. With the
increase of the epochs, we observed the improvement of the
maximum error and mean error.

0 0
07| 07|
04| 04|
205 205
g g
504 504
s s
2o 2o
02 02
0.1 0.1
-20 -10 0 10 20 % -10 0 10 20
Degree Degree
(a) (b)
08, 038,
07 07|
06 04|
o5 gos
2
04 §oa
fo3
03 -
02|
02)
0.1
0.1
1 | |
9 -20 -10 0 10 20
-20 -10 0 10 20 Degree
(© (d)

Figure 4. The histograms of the error rates. Plot (a),
(b), (c), and (d) correspond to the histograms at epoch
1, 6, 11, 20, respectively.

4. Conclusion

We cast both classification and regression problems into
a unified regression framework. This allows us to design the
new doubly-clustered method. Clusters in output space pro-
vide coarse-to-fine virtual class labels from clusters in the in-
put space. To deal with high-dimensional input space, a dis-
criminating subspace is automatically derived at each inter-
nal node of the tree. A size-dependent probability-based dis-
tance metric SDNLL is proposed to deal with large sample
cases, small sample cases, and unbalanced sample cases. Ex-
perimental study with synthetic data showed that the method
can achieve near-Bayesian optimality for both low dimen-
sional data and high dimensional data with low dimensional
data manifolds. With the help of decision tree, the retrieval
time for each sample is of logarithmic complexity. The out-
put of the system can be both class label or numerical vec-
tors, depending on how the system trainer gives the training
data. The experimental results have demonstrated that the
algorithm can deal with a wide variety of sample sizes with
a wide-variety of dimensionality.

References

[1] Hamid Alavi. State self-organization for continuous
video stream input, a master’s project report. Techni-
cal report, Department of Computer Science, Michigan
State University, 1997.

[2] Martin Bichsel. Strategies of Robust Object Recogni-
tion for the Automatic Identification of Human Faces.
PhD thesis, Eidgendssischen Technischen Hochschule
Ziirich, 1991. Diss. ETH Number 9467.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Chapman & Hall,
New York, 1993.

[4] K. Fukunaga. Introduction to Statistical Pattern
Recognition. Academic Press, New York, NY, second
edition, 1990.

[5] K. lkeuche and T. Kanade. Automatic generation of
object recognition programs. Proceedings of the IEEE,
76(8):1016-1035, 1988.

[6] D. J. Kriegman and J. Ponce. On recognizing and
positioning curved 3-D objects from image contours.
IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 12(12):1127-1137, 1990.

[7]1 H. Murase and S. K. Nayar. Visual learning and recog-
nition of 3-D objects from appearance. Int’l Journal of
Computer Vision, 14(1):5-24, January 1995.

[8] S. K. Murthy. Automatic construction of decision trees
from data: A multidisciplinary survey. Data Mining
and Knowledge Discovery, 1998.

[9] P.J.Phillips, H. Moon, P. Rauss, and S. A. Rizvi. The
FERET evaluation methodology for face-recognition
algorithms. In Proc. IEEE Conf. Comp. Vision Pattern
Recognition, pages 137-143, San Juan, Puerto Rico,
June 1997.

[10] J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, San Mateo, CA, 1993.

[11] D. Swets and J. Weng. Discriminant analysis and
eigenspace partition tree for face and object recogni-
tion from views. In Proc. Int’l Conference on Auto-
matic Face- and Gesture-Recognition, pages 192-197,
Killington, Vermont, Oct. 14-16 1996.

[12] D. L. Swetsand J. Weng. Using discriminant eigenfea-
tures for image retrieval. IEEE Trans. Pattern Analysis
and Machine Intelligence, 18(8):831-836, 1996.

[13] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71-86, 1991.

