Aquatic Debris Monitoring Using Smartphone-Based Robotic Sensors

Yu Wang¹, Rui Tan², Guoliang Xing¹, Jianxun Wang¹, Xiaobo Tan¹, Xiaoming Liu¹, and Xiangmao Chang¹,³

¹ Michigan State University, USA
² Advanced Digital Sciences Center, Illinois at Singapore
³ Nanjing University of Aeronautics and Astronautics, China
Aquatic Debris Monitoring

• **Various sources**: garbage, tsunami, earthquake, etc.

• **Timely detection and removal are critical**

• **Challenges**:
 – Dynamic aquatic environments
 – Sporadic arrivals of debris objects
Existing Approaches

- **Beachgoers/fishermen**
 - Small-scale monitoring, labor intensive, unreliable
- **Patrol boats**
 - Costly, short-term monitoring
- **Remote sensing** (balloon and satellite)
 - High cost, low monitoring resolution
- **AUVs/sea-gliders**
 - Expensive ($50k), bulky, heavy
Smartphone-based Aquatic Robot

- **Multi-modality sensing**
 - Camera and various inertial sensors
- **Rich computation & storage**
 - Advanced computer vision algorithms
- **Network capability**
 - Utilize cloud via cellular & WiFi interfaces
- **Mobility**
 - Adapt to sporadic debris arrivals
- **Low-cost**

Yu Wang @ https://sites.google.com/site/wangyu329/
Problem Statement

• **Reliably detect debris objects**
 – Sporadic over large aquatic regions
 – A wide variety of artifacts
 – Camera is the only viable sensor

![Background](image1)
![New frame](image2)
![Detection result](image3)

• **Enable long-term autonomous monitoring**
 – Smartphone processing: 6 J/frame
 – Aquatic movement: 3 W

• **Provide sufficient sensing coverage**
Outline

• Motivation

• Smartphone-based debris monitoring
 – Vision-based debris detection
 – Dynamic task offloading
 – Coverage-based rotation scheduling

• Performance evaluation

• Conclusion
Vision-based Debris Detection

- Align images to a common coordinate system
 - Mitigate the impact of camera shaking
 - Correspond distinguishable features (e.g., sharp corners)

Image Registration → Background Subtraction → Debris Identification

Reference image

Image to register

Registration result

Yu Wang @ https://sites.google.com/site/wangyu329/
Vision-based Debris Detection

- Align images to a common coordinate system
 - Mitigate the impact of camera shaking
 - Correspond distinguishable features (e.g., sharp corners)

- Challenge in aquatic environments
 - Few detectable image features
Horizon-based Image Registration

• Horizon line
• Hough transform
 – Line extraction
 – Compute-intensive, >2 sec/frame
Horizon-based Image Registration

- **Horizon line**
- **Hough transform**
 - Line extraction
 - Compute-intensive, >2 sec/frame
- **Align horizon lines**
 - Shifting
 - Rotation
Background Subtraction

- **HSV color space**
 - Robust to illumination changes

- **Gaussian mixture model (GMM)**
 - For each pixel
 - K Gaussians (3-dimensional)

- **GMM update**
 - new pixel
 - Existing Gaussians
 - no match, replace Gaussian with the lowest weight
 - update matched Gaussian(s)
Debris Identification

• Morphology opening operation
 – Remove salt-and-pepper noise

• Size filter
 – Remove distant objects
 (detected when approaching closer)

• Speed filter
 – Remove non-debris objects
 (move actively)
Compute-Intensive Processing

- Local processing
- Cloud processing (entire frame)
- Hybrid offloading (partial frame)

97% is consumed by the Hough transform
Hybrid Offloading

- Upload partial frame with the horizon line
- Offload the Hough transform only
- Execute the rest processing locally

\[\sum a_z \]

accumulated linear vertical acceleration

\[\sum a_z > 0 \]
shift downward

\[\sum a_z < 0 \]
shift upward
Minimizing Energy Consumption

- **Local processing**
 \[E_{\text{local}} = \text{power} \times \text{delay} \]

- **Cloud processing**
 \[E_{\text{cloud}} = \text{power} \times \frac{\text{frame_size}}{\text{link_speed}} \]

- **Hybrid offloading**
 \[E_{\text{hybrid}} = a \times E_{\text{cloud}} + b \times E_{\text{local}} \]
 \[a = \frac{\text{partial_size}}{\text{frame_size}} \]
 \[b = 1 - \frac{\text{delay_Hough}}{\text{delay}} \]
Real-time Debris Detection Pipeline

Video frames → network condition

- low speed
- high speed

Debris Identification

- Size/speed filters
- Opening operation

Horizon-based Image Registration

GMM update

Yu Wang @ https://sites.google.com/site/wangyu329/
Coverage-based Rotation Scheduling

- Camera model
 - Field of view (FOV)

- Thickness
 - Effective coverage of debris arrivals

- Rotation objective:
 Miss coverage rate $\omega(\beta) < \xi$, $\forall \beta \in [0, 2\pi]$

- Schedule:
 $\{(\text{camera}_1\text{orientation}, \text{time}_1\text{interval}), \ldots \}$

Yu Wang @ https://sites.google.com/site/wangyu329/
Experiment Settings

• Prototype system
 – Samsung Galaxy Nexus
 – Gliding robotic fish
 – 1.99MB storage, 10.2MB RAM
 – Frame: 720 × 480 @ 0.25 fps

• Experiment environments
 – Water tank: 15 feet × 10 feet
 – Debris object: coke can
 – Horizon line: white foam intersects with water
 – Waves are generated by a feed pump
Detection Performance

$K = 3$ gives the best trade-off between detection probability and system overhead.
Detection Performance

Image registration mitigates the impact of camera shaking

\[
\bar{a}_z = 0.17 \text{ m/s}^2
\]

\[
\bar{a}_z = 0.09 \text{ m/s}^2
\]
Detection Performance

Image registration mitigates the impact of camera shaking

\[
\overline{a_z} = 0.17 \text{ m/s}^2 \quad \overline{a_z} = 0.09 \text{ m/s}^2
\]

average linear vertical acceleration characterizes the camera shaking level

Yu Wang @ https://sites.google.com/site/wangyu329/
Energy Consumption & System Lifetime

Dynamic task offloading saves energy and prolongs lifetime

- Reduce energy consumption up to 45%
- Prolong system lifetime up to 30%

Graphs:
- Energy consumption vs. WiFi link speed (Mbps)
- Lifetime vs. Duty cycle (%) for local and hybrid processing

Yu Wang @ https://sites.google.com/site/wangyu329/
Conclusion and Future Work

• Smartphone-based debris monitoring
 – Vision-based debris detection algorithms
 – Dynamic task offloading scheme
 – Coverage-based rotation scheduling algorithm

• Future work
 – Evaluation in an inland lake
 – Multi-node coordination

Yu Wang @ https://sites.google.com/site/wangyu329/