CSE/EGR/GPU Summer Camps
2012
Guide for Students and Staff
George Stockman, CSE

This document is been made to guide students and instructors
during their discussions and hands-on activities.
It is not intended to be complete by itself.

This document and related ones are available in digital form via www.cse.msu.edu/~stockman

It is better to print this document in color; however, if that is too expensive, black and white will do.
Scratch itself uses color and the Scratch slides will degrade the most in black and white. Experience has
shown that this material is interesting and accessible to students from ages 10 and up. Younger students
may have to take a little more time than those who are older. Students of all ages like playing with the
“cards” – those with decimal and binary numbers. We don’t have enough cards to let students keep
them – students can easily make their own.

Computer Science Concepts

1. What is an algorithm?
2. Binary information coding
3. Programming concepts via Scratch

Designed for learners 10 years old up to 100.
Materials for hands on activities

1) A set of cards with numbers, say, 42, 17, 43, 55, 20, 32, 12
2) A set of cards with binary place values: 1, 2, 4, 8, 16

3) Scratch downloaded from www.scratch.mit.edu
4) www.learnscratch.org for tutorials for homework

What is an algorithm?

What is an algorithm?
Algorithms for average and min
An algorithm for sorting

Algorithm for computing the average of two numbers

- Let the first number be A; say A=12
- And the second number be B; say B=15
- To compute the average __________________
- So the average of 12 and 15 = _________
- WHAT IS THE AVERAGE ALGORITHM?
What is an algorithm?

An **algorithm** computes some output from the given input using precise steps that a machine can follow (machine or other agent)

Hands on activity: finding MIN

- Organize into 2-person teams
- Team has “person A” and “person B”
- Each team has a stack of cards
- There is one number on each card
- **No one looks at numbers yet**
problem: finding min

- Person B is the “worker” for A.
- Person A has cards, but cannot look at the numbers. A must find the min of all cards.
- B can look at only 2 numbers at a time -- B returns to A the smaller smaller first.
- HOW CAN PERSON A FIND THE MIN?
 - Shuffle the cards
 - A and B switch roles: new person A finds MIN

review: team finding the min

- Person A can look at no numbers!
- **No numbers can be seen by A, EVER!**
- Person B can look at only two numbers on cards given by person A.
- Person B gives back to A first the card with the smaller number (if numbers are = then it doesn’t matter which is given first)
- Person A must find the min and show it to the instructor WITHOUT EVER SEEING IT
- A and B should switch roles and repeat.
Thought Questions

- If A has 10 cards with numbers, how many times does A call on B? _____
- If A has 100 cards, how many times does A call on B? _____
- If A has N cards, how many times does A call on B? _____
- Finding the MIN of a list of numbers has “complexity” _______

Thought Question

- Suppose A has 2 assistants – B and C
- Can A find the MIN any faster?
- HOW?

Computers and computer programs can be structured to do more than one operation at a time.

Problem: how to sort?

Use set of cards for each team.
How can A sort using B as comparer?
TRY IT: instructor will check your final output
Sorting two-person activity

- This is a 2-person exercise. **Person A CANNOT see the numbers – EVER!**
- To solve the sorting puzzle, person A must form an ordered list of cards, which the instructor will check for order (**this is the OUTPUT**).
- Person B can only compare two numbers by seeing the numbers. Person B gives A the smaller number card first (**precise operations**).
- Person A can only ask Person B which of two cards has the smaller number. Person A never ever looks at any numbers.
- To solve the sorting puzzle, person A must start from an unordered list of cards (**this is the INPUT**).

Sorting thought questions

- How many times will A call on B to sort 10 numbers? ____
- How many calls to sort 100 numbers? ____
- How many calls to sort N numbers? ____

There are many sorting algorithms. Some are fast when N is small but slow when N is big. Some are the opposite. Computer scientists learn these algorithms and many others.
Algorithms often do operations over and over

- Called “looping”
- Also called “iteration” or “repetition”
- “Recursion” is a related idea – first select the MIN from the list and then “recurse” on the rest of the list
Binary Information Coding

1. **Only 2 symbols: WHY?**
2. **Can we code numbers, characters, music, images, movies, car designs using just 2 symbols?**

Coding activities

1. Guessing the number of fingers in decimal
2. Guessing 1 finger versus 0 fingers
3. Encoding small integers using binary cards
4. Coding using animate versus inanimate objects (“My teacher plays rock, paper, scissors with me.”)

* Instructor quickly brings, say, 7 fingers from behind the back. Students make errors in guessing the number. Few errors in 0 versus 1 discrimination.*
Birthday guessing game as time and local expert permits

- Member of audience writes day of month when born
- Instructor codes it using animate vs inanimate, or perhaps skin on skin vs skin on cloth
- Assistant in back of room guesses the day (12, 23, etc)

Binary coding in a computer

- Symbol 0 can be represented by +5V and 1 by -5V
- 0 can be darkness and 1 lightness, as used on CDs and DVDs or in optical fibers

Birthday guessing game as time and local expert permits

- Member of audience writes day of month when born
- Instructor codes it using animate vs inanimate, or perhaps skin on skin vs skin on cloth
- Assistant in back of room guesses the day (12, 23, etc)
Programming concepts via Scratch

Free download of software available at www.scratch.mit.edu
Video tutorials for learning available at www.learnscratch.org

What can we do with Scratch?

- Learn some computing concepts.
- Learn some practical algorithms.
- Use Scratch as computing tool.
- Have fun with Scratch creating stories, games, art.
Start scratch and let’s go!

- In the lab, Click on the cat icon
- Scratch programming environment comes up
- First do simple things

Explore Scratch environment

- **Stage** is at upper right (where actors act and information is displayed)
- **Sprite** is another name for actor.
- Instruction menus/panel at left (instructions for the actors)
- A **script** is another name for program or method; a script tells the actor what to do.
- Programming area in center; here is where we construct scripts for the sprites

The LOOKS menu

Has instructions for setting the color, size, and visibility of a sprite. Costumes will be used later.
The “hello” script (program)

- Choose the Looks menu
- Click on the “say hello” lego block
- Check your sprite behavior at the right
- Then click “say hello for 2 secs”

![say hello block]

Your very first Scratch program!

Try some other looks operations (click on menu items)

- Change color effect by 25
- Change color effect by 25 again
- Hide
- Show
- Change size by 10
- Change size by 10 again
- Set size to 100%
Let’s write a script to

- Say “hello” for 2 seconds
- Then change color by 25
- Then think “Hmm...” for 4 seconds
- Then change color by 75
- Then change size by 200

Drag each instruction from the menu to the center script area. Connect them into a single block. Edit the parameters to get the numbers we want.

Our script (program)
A sequence or block is a simple script or *program*

- The first instruction is done first
- The second instruction is done second
- The last instruction is done last.
- (if any one instruction is done, then every one of them is done)

The WAIT instruction

- WAIT is needed to slow down the acting so we can see or hear it properly (computers are too fast sometimes)
- Get the wait instruction from the CONTROL menu. Ignore the other menu options for now.
- Insert a wait in our looks script
3 second pause between changing color and size

Student exercise: write a script to do the following

- Double the size of the sprite
- Wait 2 seconds
- Change the color of the sprite to green
- Wait 4 seconds
- Change the whirl effect to 100
- Say “That’s all folks!”
The MOTION menu

How to locate and orient a sprite; and, how to move a sprite.

Position on the stage

- Using the **Looks menu**, shrink our cat to 25%.
- Click on the **Motion menu**.
- Click to check the box for x-position and y-position.

Drag your cat around and note its x-y position.
Exercises: goto instruction
(do you know about coordinates?)

- In the Motion menu, drag the "goto xy" instruction to the script panel.
- Edit the coordinates and click to see the sprite’s position
- A) goto x=200, y=0
- B) goto x=-200, y=0
- C) goto x=200, y=-100

The “glide-to” instruction

- Drag the “glide-to” instruction into your script panel.
- Edit the coordinate values and click to see where your sprites goes.
Exercise

- *Create a script to glide the sprite along the sides of a triangle.* The first vertex of the triangle is (-100, -100). The second vertex is (200, -100). The third vertex is (50, 100). Make sure you complete the triangle.
- Change the speed of gliding and run again.
- *New feature: click on Pen Down in the Pen Menu and run it again*

Exercise: A fun looping program

- Position your sprite at the lower left
- Put the pen down
- Do the following forever
- Rotate +5 degrees
- Move around an equilateral triangle as before (turning 120 degrees each angle)
Doing your own exercises is important. Use www.learnsractch.org and www.scratch.mit/edu for help.

- Try different variations on the themes.
- Learn how to use a “background” picture on your stage.
- Learn how to make sounds or music in your loops.
- Learn how to detect when two of your sprites collide.
- And so forth and so on for infinite fun.