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a b s t r a c t

The recognition performance of a biometric system varies significantly from one enrolled user to another.
As a result, there is a need to tailor the system to each user. This study investigates a relatively new fusion
strategy that is both user-specific and selective. By user-specific, we understand that each user in a
biometric system has a different set of fusion parameters that have been tuned specifically to a given
enrolled user. By selective, we mean that only a subset of modalities may be chosen for fusion. The
rationale for this is that if one biometric modality is sufficiently good to recognize a user, fusion by
multimodal biometrics would not be necessary, we advance the state of the art in user-specific and
selective fusion in the following ways: (1) provide thorough analyses of (a) the effect of pre-processing
the biometric output (prior to applying a user-specific score normalization procedure) in order to
improve its central tendency and (b) the generalisation ability of user-specific parameters; (2) propose a
criterion to rank the users based solely on a training score dataset in such a way that the obtained rank
order will maximally correlate with the rank order that is obtained if it were to be computed on the test
set; and, (3) experimentally demonstrate the performance gain of a user-specific and -selective fusion
strategy across fusion data sets at different values of "pruning rate" that control the percentage of
subjects for whom fusion is not required. Fifteen sets of multimodal fusion experiments carried out on
the XM2VTS score-level benchmark database show that even though our proposed user-specific and
-selective fusion strategy, its performance compares favorably with the conventional fusion system that
considers all information.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Information fusion in biometrics

Biometric authentication is the process of establishing a human
identity based on a person's physical or behavioral traits. An auto-
mated biometric authentication system inputs the raw biometric
data of an individual, extracts a set of features from the raw data, and
compares this set against the identity models residing in the
database to either verify a claimed identity or determine the
individual's identity. The performance of an automated biometric
authentication system is typically gauged by measuring the trade-off
between the false accept rate (FAR) and the false reject rate (FRR). For
a given system, it is not possible to reduce these two error rates
simultaneously. A promising approach to significantly decrease these
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two error rates is to employ more than one biometric system with
each system generating its own decision about an individual's
identity (or claimed identity). Such systems, known as multibio-
metric systems [1], reconcile the information presented by multiple
sub-systems. When N independently constructed sub-systems func-
tion together, the N output scores can be consolidated into a single
output. This is the problem of score-level fusion which is the most
popular fusion approach due to the ease of accessing scores from
commercial matchers. Most multibiometric systems described in the
literature employ a common fusion mechanism for all users. We refer
to such a fusion mechanism as user-independent fusion, in order to
contrast it with a user-specific fusion (to be explained later).
Furthermore, these systems typically assume that all N score outputs
are available, hence, requiring individual sub-systems to be
operational.
1.2. The Doddington's zoo effect

An automatic biometric authentication system operates by first
generating a model or template to represent each user (identity)
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enrolled in the database. During the operational phase, the system
compares the input biometric sample, also referred to as a probe,
with the model in the database in order to generate a score that is
eventually used to render a decision about the identity of the
probe sample. Recent literature has suggested that some user
models (and consequently the users they represent) are system-
atically better (or worse) in authentication performance than
others. This effect has been referred to as “Doddington's zoo” with
individual users characterized by animal labels [2] as listed below:
�
 sheep: persons who can be easily recognized;

�
 goats: persons who are particularly difficult to be recognized;

�
 lambs: persons who are easy to imitate;

�
 wolves: persons who are particularly successful at imitating

others.

Goats contribute significantly to the False Reject Rate (FRR) of a
system while wolves and lambs increase its False Acceptance Rate
(FAR). A more recent work [3] further distinguishes four other
semantic categories of users by considering both the genuine
and impostor match scores for the same claimed identity
simultaneously.

The literature on biometric menagerie or Doddington's zoo is
related to our study here the former attempts to detect and
categorize users according to their statistical behaviors at the
score level whereas our study here attempts to exploit these
behaviors in order to optimize the decision making process, which
is the ultimate objective.

Some literature suggests that Doddington's zoo or biometric
menagerie may not entirely be caused by the user himself or herself.
Instead, the phenomenon is likely to be associated with the template
or (statistical) reference model that represents the user. Suppose that
a user has four biometric samples, T1, T2, T3, and T4. Let MðTi; TjÞ
represent the matching score between template Ti and query Tj. Since
the matching scores MðT1; T2Þ and MðT1; T3Þ are generated from
template T1, they are likely to be dependent on each other. This
dependency is exploited by a user-specific score normalisation or
fusion in order to enhance the accept/reject decision.

This paper does not consider the case where two different
templates are used to represent a user. Therefore, we do not
offer an explanation as to whether or not there is a dependency
(positive correlation) between MðT1; T2Þ and MðT3; T4Þ. Answering
this question would address whether or not biometric menagerie
is indeed user-dependent. Although this is an important research
question, we do not intend to study this scientific problem in-depth.

On the contrary, we are interested to find out the generalisation
ability of a user-specific strategy when the same template remains
the same over a period of time. For instance, we want to find out if
the dependency between MðT1; T2Þ and MðT1; T3Þ still holds when
T2 and T3 have been collected with a gap of several weeks or
months apart, and the template T1 has been kept the same
throughout this period. This use scenario has practical importance
because this is how nearly all biometric systems operate. This is
the main research topic being pursued here.

1.3. User-specific fusion

Due to the score variation which is user-dependent, a recent
trend in the literature is to design a fusion classifier that differs for
each user (or client), hence, addressing the Doddington's zoo
effect. Such an approach is called client-specific (or user-specific)
fusion. In the literature, several user-specific fusion classifiers have
been proposed based on linear classifiers [4,5], Support Vector
Machines [6], Gaussian-based Bayesian classifiers [7], Multi-Layer
Perceptrons [8] and discriminative classifiers based on reduced
polynomial expansion [9]. These publications, however, do not
associate their proposed strategy with the Doddington's zoo effect,
except [10].

In [4], the authors propose a linear fusion classifier whose
weights are optimized by a brute-force search and are, at the same
time, constrained to be as close as possible to equal weighting. An
improved scheme [5] considers the weight associated to each base
classifier as inversely proportional to the “d-prime” statistic which
characterizes the degree of separability between the genuine and
the impostor scores for a given user.

In [6], a standard support vector machine (SVM) is trained with
a user-independent set of scores as well as a user-specific one. The
contribution of each set of scores is controlled by the C parameter
in the SVM [11] which weights the relative influence of the user-
independent and the user-specific data.

A similar idea using a Bayesian adaptation (instead of SVM)
was reported by the same author in [7]. The architecture is
similar to the Gaussian mixture model (GMM) with Maximum A
Posteriori (MAP) adaptation, i.e., the current state-of-the-art system
in speaker verification [12]. Thanks to the adaptation process,
user-independent data can be exploited. However, a single
Gaussian component with a diagonal covariance matrix was used,
essentially realizing a Naive Bayes Gaussian classifier. This can
potentially reduce its applicability to combining non-Gaussian match
scores.

In [8], a multi-layer Perceptron (MLP) was used with N þ 1
inputs to combine N classifiers and the additional input is user
identity normalized to sum to one. While all the available training
data is used, by using a standard off-the-shelf MLP, there is no
mechanism that can explicitly control the contribution of the user-
independent and the user-specific information.

In [9], the authors suggested that both a user-specific fusion
classifier and a user-specific threshold should be used simulta-
neously in order to effectively use the scarce user-specific genuine
scores. However, in order to train the user-specific fusion classifier,
Gaussian noise is injected to increase the training sample size.

A drawback of user-specific fusion strategy is the need for a
substantial amount of training match scores. For instance, in [6], at
least six (model-specific) genuine samples are needed before the
user-specific procedure proposed therein can outperform the base-
line system while ten samples were required in [9]. Indeed, it is
difficult task to design a user-specific fusion classifier with one or
two genuine training scores. Consider combining two classifiers
using a Bayesian classifier built using two-dimensional Gaussian
density models (one for each class). In order to obtain a full
covariance, one needs at least three samples.

Rather than designing a single fusion classifier, in [13], the
authors proposed to learn this classifier in two stages: firstly
transform each of the sub-system output using a user-specific
score normalization procedure and then combine the resulting
outputs using a conventional (user-independent) fusion classifier.
Note that the user-specific score normalization is not the same
as the study reported in [14] because in user-specific
score normalization, one uses a different set of normalization
parameters for each user whereas in [14], a common normal-
ization function is used for all the users. Examples of user-specific
score normalization procedures are Z-norm [15,16], F-norm [17],
EER-norm [18], and a likelihood-ratio based normalization [19].
These methods have been considered and compared in [13]. It was
observed in [13] that the use of F-norm in the two-stage fusion
process gives consistently good performance across different
databases despite the lack of training samples (only 2 or
3 were used).

In [10], the properties of different animals species defined by
Doddington are explicitly exploited when constructing fusion.
Therefore, depending on the animal membership of a user for a
particular biometric modality, the final score could depend only on



1 Two obvious corrective actions can be taken: improve the performance of the
model by using more positive (genuine) and/or negative (impostor) training
samples; and, in the context of fusion, which is the central topic treated in this
paper, determine a subset of users who require or do not require fusion.
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one modality or the other, or both. However, this approach is not
scalable to more than two modalities. Indeed, the experiments
report only the fusion for two biometric modalities. For instance, if
a user is a goat in two biometric modalities, the two system
outputs will be fused; and, similar if a user is a lamb. However, if a
user is considered a goat in the first modality but a lamb in the
second modality, then the output of the first modality will be used.
Since there are four possible animal species in each modality, for a
fusion problem of two modalities, there will require 4�4/2¼8
enumerations (with division by two to take into account the
underlying symmetry or permutation). With 3 modalities, 16
enumerations will be needed; and with 4 modalities, 32 enumera-
tions will be needed, and so on.

Another study derives a client-specific score normalisation scheme
using the minimum of dissimilar scores resulted from exhaustive pair-
wise comparisons among all enrolment samples from one user [20].
This user-specific parameter is subsequently incorporated into the
matching score by multiplication prior to fusion.

The brief literature review above covers only user-specific
fusion algorithms. Although many novel user-independent fusion
algorithms have been proposed in the literature, they are not duly
covered here. By using the two-stage fusion strategy as discussed
in [13], effectively any user-independent fusion algorithm can be
made user-specific.

By the same token of argument, developments in user-specific
score normalisation can also benefit user-specific fusion. These
include group-specific score normalisation [21] and more recently,
discriminative user-specific procedures using logistic regression [22].

Other schemes aim at exploiting auxiliary information through
a score normalisation procedure prior to fusion. Two notable
schemes are cohort-based score normalisation and quality-based
score normalisation. A cohort score normalisation scheme attempts
to blindly calibrate the distortion of matching score due to varying
quality in a biometric sample via the use of a set of background of
impostor (non-match) subjects who are often external to an
experiment database. A prominent example of this is T-norm
[16] but a recent development also includes [23]. A quality-based
score normalisation scheme [24] attempts to model the distortion
of a particular class of signal quality via the explicit use of quality
measures. For example, one can objectively quantify image blur,
the likelihood of having detected a face image, the clarity of ridges
in fingerprints or texture in an iris image. These schemes need not
be considered in isolation; they can also be combined together,
e.g., [25]. Whilst the above schemes are certainly important, they do
not deal specifically with the user aspect, or biometric menagerie.
Therefore, they are not further discussed.

Other related literature such as user-specific feature level
fusion in [26] is also an important development. However, in
this paper, we will only consider user-specific fusion at the
score level.

1.4. Selective or sequential fusion

Another line of research in multimodal fusion dynamically
chooses only a subset of systems to be combined. In the context
of multiple classifiers system, this approach is called sequential,
cascaded, serial, multi-stage or cost-sensitive decision fusion [27–
31]. For the purpose of this paper, we refer to all of them as
selective fusion because only a subset of classifier (biometric
system) outputs are used in the fusion process. A number of
selective fusion strategies have been proposed for multimodal
biometrics, e.g., [32–34]. All these systems have a common
mechanism to determine at which stage in the sequence a decision
can be made confidently. A principled approach called sequential
probability ratio test was investigated by Allano and Takahashi
[34,35]. However, to our knowledge, none of the sequential or
selective fusion strategies studied so far is user-specific. As will
become clear in this paper, doing so is extremely challenging. The
solution requires intricate considerations of various aspects, such
as the variability of the system performance across the subjects
and the learnability of a user-ranking criterion based solely on a
design data set.
1.5. Our proposal and contributions

In this paper, we propose to a framework which exploits three
strategies in order to advance the state-of-the-art in user-specific
multimodal biometric fusion. They are enumerated below.
�
 User-specific normalization to facilitate multimodal fusion:
Following [13], we shall use a two-stage fusion strategy in
order to obtain a user-specific fusion classifier. Such an
approach has two significant advantages. Firstly, much fewer
training data is needed since the normalization is a one-to-one
mapping function and not multi-dimensional as is encountered
in the direct approach of designing a fusion classifier, e.g., [4–
6,9]. Secondly, by having a single fusion classifier, in our
approach, all available (user-independent) training score data
are effectively used. This is significantly different from direct
approaches such as [6,7] where only some (and not all) of the
user-specific data was used. Thirdly, inherent in user-specific
score normalization, the parameters of different users are
effectively shared by means of maximum a posteriori (MAP)
adaptation, i.e., the normalizing parameters are adapted from a
common set of parameters. As a result, the normalizing func-
tion varies slightly across users while at the same time its
behavior can be globally controlled. Note that although the
two-stage training approach has been examined in speaker
verification [13], it has not been examined in multimodal
biometric fusion as will be reported in this paper.
�
 Development of a robustness criterion to rank users according to
their performance: In the second step, we introduce a criterion
to rank users which will correlate very well with their rank
ordering even on unseen data, e.g., data acquired across
different sessions. This is in contrast to our prior work reported
in [36] which ranks the users a posteriori based on observed
data. Examples of criteria reported therein are Fisher-ratio [37],
F-ratio (for “Fisher-like” ratio) [17], and d-prime [38]. By sorting
the user templates/models, one can actually identify the ‘weak’
models. By weak models, we understand that the model
consistently gives low recognition performance. Put differently,
its genuine and impostor score distributions significantly
overlap each other. Although there are often very few weak
models, it is observed that they can disproportionately
contribute to high number of recognition errors [2,39]. Weak
users are made up of two species: lambs who will contribute to
high false acceptance errors, and goats who will contribute to
high false rejection errors. By employing discriminatory cri-
teria, our approach diverges from [2] because lambs and goats
are not distinguished. This is not a weakness because corrective
actions to be taken are often similar.1 To rank the user models,
it turns out that an effective solution is to use the parameters in
user-specific score normalization since these parameters
can effectively gauge the user-specific score variability
information.
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�
 A selective fusion strategy: Instead of using the output of all the
sub-systems, we propose a fusion model that will combine only a
subset of the most discriminative sub-systems, in a user-
dependent manner. In this way, not all biometric sub-systems
(devices) need to be operational for each transaction. The motiva-
tion of this strategy is that human can recognize people using only
the most discriminatory information. This is especially true in the
context of multi-modal biometrics because the participating
biometric systems can operate independently of each other.

The feasibility of combining a user-ranking criterion with
selective fusion strategy (hence using two of the above three
mentioned strategies) has been recently supported by our work in
[10]. In this study, we aim to integrate all the three mentioned
strategies in a single fusion operator called the OR-switcher. As a
fusion classifier, it has the following characteristics:
�
 user-specific, i.e., adapted to each user, and

�
 selective – it has a tunable criterion that chooses its constituent

biometric systems to combine.

The OR-switcher is executed in three steps:
(1)
 Reduce the variability across users by adopting a user-specific
score normalization procedure.
(2)
 Rank the users based on a training score dataset in such a way
that the obtained ranked order will maximally correlate with the
rank ordering that is obtained if it were computed on the test set.
(3)
 Selectively combine the sub-system outputs. If the OR-
switcher determines that a single system is “good enough”,
then, fusion is not needed.
Table 1
The 13 baseline experiments taken from the XM2VTS benchmark fusion database
were considered for studying the user-specific statistics as well as the proposed
OR-switcher fusion operator.

Labels Modalities Features Classifiers Used in fusion

P1:1 Face DCTs GMM Yes
P1:2 Face DCTb GMM Yes
P1:3 Speech LFCC GMM Yes
P1:4 Speech PAC GMM Yes
P1:5 Speech SSC GMM Yes
P1:6 Face DCTs MLP No
P1:7 Face DCTs MLPi Yes
P1:8 Face DCTb MLP No
P1:9 Face DCTb MLPi Yes

P2:1 Face DCTb GMM Yes
P2:2 Speech LFCC GMM Yes
P2:3 Speech PAC GMM Yes
P2:4 Speech SSC GMM Yes

Pm : n denotes the n-th system in the m-th protocol. MLPi denotes the output of
MLP converted to LLR using inverse hyperbolic tangent function. P1:6 and P1:7
(resp. P1:8 and P1:9) are the same systems except that the scores of the latter have
been transformed.
Due to its selective fusion capability, the OR-switcher performs
fusion only when necessary, exploiting the imbalance in perfor-
mance across the user models. This is made possible by a criterion
to rank them.

Although selective fusion has been studied, for instance, [34],
that study did not take into account the user-induced score
variability.

Our contributions can be summarized as follows: (1) a thor-
ough analysis of generalisation ability of user-specific parameters,
which leads to (2) the proposal of a user ranking criterion capable
of generalising to unseen data, and (3) advancement in user-
specific fusion methodology via user-selective fusion. This paper
goes a long way in extending the analysis of user-specific para-
meters as reported in [40]. First, the current paper investigates the
generalisation ability of these parameters to unseen data in the
context of multimodal biometric fusion. Second, we investigate in
details the effect of pre-processing the biometric output in order
to improve its central tendency which is central to parameterisa-
tion of any user-specific score normalisation procedure. Last but
not least, a user-selective fusion strategy is proposed.

1.6. Paper organization

This paper is organized as follows: Section 2 first presents an
overview of a standard multimodal benchmark database to be used.
Section 3 then presents a moment-based user-specific analysis as a
tool to describe Doddington's zoo/biometric menagerie. Section 4
explains the three important steps of the OR-switcher. Section 5 gives
a possible implementation of the algorithm. Section 6 then presents
some empirical findings carried out on the 15 XM2VTS multimodal
fusion tasks. Finally, Section 7 concludes the paper. The XM2VTS
score-level benchmark database will be first presented in Section 2
since it is used in Sections 3–6. A detailed description of this database
can be found in [41].
2. The XM2VTS score-level benchmark database

The XM2VTS database [42] contains synchronized face video and
speech data from 295 subjects, of which, 200 are classified as
genuine users and 95 as impostors. Out of the 95 impostors, 70 are
used in the fusion development (i.e, training) set and 25 in the fusion
evaluation (test) set. The data were processed independently by
multiple face and speech algorithms (sub-systems) [41] according to
the Lausanne Protocols I and II resulting in the generation of match
scores. The two protocols differ mainly in the way the development
(training) data is partitioned to build the baseline systems. The
evaluation (test) data in both protocols remain the same.

All speech systems are based on Gaussian mixture models
(GMMs) [43] and differ only by the nature of the feature repre-
sentation used: Linear Frequency Cepstral Coefficients (LFCC) [44],
Phase-Auto-Correlation (PAC) [45] and Spectral Subband Centroids
(SSC) [46,47]. These feature representations are selected such that
they exhibit different degrees of tolerance to noise. We observe
that the highly tolerant feature representation schemes perform
worse in clean conditions whilst the highly accurate feature
representation schemes degrade quickly under noisy conditions.

The face system considered in this study is based on the
Discrete Cosine Transform (DCT) coefficients [48]. The DCT proce-
dure operates with two image block dimensions, i.e., small (s) or
big (b), and is denoted by DCTs or DCTb, respectively. Hence, the
matching process is local as opposed to a holistic matching
approach such as the Principal Component Analysis [49].

Table 1 presents a list of baseline experimental scores used in
this study. The score data set is publicly available at “http://www.
idiap.ch/�norman/fusion” and was reported in [41]. Note that
each system can be characterized by a feature representation
scheme and a classifier. Two types of classifiers were used, i.e.,
GMMs and multi-layer Perceptrons (MLPs).

The score data sets used here are very similar to [41] with the
following minor changes:
�
 A face system based on a downsized face image concatenated
with color Histogram information (FH) [50] was not considered
here since a procedure, aimed at improving the central ten-
dency of match scores (to be described in Section 3.3), gives −∞
and ∞ values. We originally included this system in our
experiments and handled these two exceptions but determined
that its inclusion only complicates the analysis without giving
any additional insight into the problem.

http://www.idiap.ch/~norman/fusion
http://www.idiap.ch/~norman/fusion
http://www.idiap.ch/~norman/fusion
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�
 We applied the above mentioned probabilistic to two score
data sets, labeled as “P1:6” and “P1:8” in Table 1. The resulting
score sets are labeled as “P1:7” and “P1:9”.

While all the 13 score data sets, including the transformed ones
using the above mentioned procedure, are used in the experi-
ments reported in Section 3, the last column in Table 1 shows the
actual systems used in the fusion experiments, which will be
reported in Section 4. According to this column, by exhaustively
pairing the available face and speech systems in both the Lausanne
Protocols (noting that P1:6 and P1:8 are not used), we obtained
4�3 + 1�3¼15 fusion possibilities. The pairing of these 15 fusion
tasks is shown in Fig. 7.
3. User-specific analysis of scores

This section will begin by introducing some notation. Then, we
will present a mechanism to describe Doddington's phenomenon.
The remaining sections will then analyze the zoo effect based on
real data.

3.1. Notation

Let j∈J to be one of the identities f1;…; Jg and there are J users.
We also assume that there is only a single model (template)
associated with each user. In a usual identification setting, one
compares all samples belonging to j′∈J against the model of j (the
target user) in order to obtain a score set Yðj; j′Þ. When j′¼ j, the
matching score set is said to be genuine, whereas when j′≠j, it is
said to be non-match or impostor. We further introduce two
user-specific score sets, both dependent on the claimed identity:
YC

j ≡Yðj; jÞ for the genuine class, and YI
j for the impostor class. In

this study, for the impostor class, the scores are a union or
aggregation of all other users except the target user j
YI

j ≡⋃j′∈J ;j′≠jY′ðj; j′Þ.

3.2. Describing user-specific class-conditional score distributions
using moments

Using the above notation, we shall use the score variable y to
represent an element in the set Yk

j for a given class k¼ ½G;Ig
(genuine or impostor) and a given claimed identity j. The
unknown distribution from which Yk

j was generated is denoted
by pðyjk; jÞ. Thus, the unconditional distribution of y is
pðyÞ ¼∑k;jpðyjk; jÞPðjjkÞPðkÞ where PðjjkÞ is the prior class-
conditional probability claiming identity j and P(k) is the prior
class probability. Similarly, the class-conditional distribution is
given by

pðyjkÞ ¼∑
j
pðyjk; jÞPðjjkÞ ð1Þ

The user-specific class-conditional expected value of y is

μkj ¼
Z
y
pðyjk; jÞy dy≡Ey½yjk; j�

The global (system wide) class-conditional expected value of y is

μk ¼ ∑
J

j ¼ 1

Z
y
pðyjk; jÞy dy

� �
PðjjkÞ

≡Ej½Ey½yjk; j�jk� ¼ Ej½μkj jk� ð2Þ

where PðjjkÞ ¼ Pðj; kÞ=PðkÞ and we have used the following term

Ej½�jk�≡ ∑
J

j ¼ 1
�PðjjkÞ
to denote the expectation over all users (enrollees), conditioned on
k. We note here that the global mean, μk, is a function of user-
specific mean, μkj .

Let the global variance be defined as ðskÞ2≡Ey½ðy−μkÞ2jk� and
ðskj Þ2≡½ðy−μkj Þ2jk; j� be the user-specific variance. In the appendix,
we show that these two variances are related by

ðskÞ2 ¼ Ej½ðskj Þ2jk� þ Ej½ðμkj −μkÞ2jk� ð3Þ

We note again that the global variance is a function of user-specific
variance. The dependence of the class-conditional global moments
on the user-specific moments is consistent with Eq. (1) which says
that the global (class-conditional) distribution is effectively a
mixture of user-specific score distributions.

The moment-based analysis presented here has a very important
implication on the analysis of Doddington's zoo that we will carry out
on real data (to be described in Section 3.4). If one were to use only
the first two orders of moment to analyze the score distributions,
then these moments must be able to describe the data sufficiently
well. If the distributions are skewed, the first two orders of moment
will not be sufficient to describe the data. In this case, there are two
solutions: use higher order moments, or pre-process the score so that
only the first two orders of moment are sufficient.

In the first approach, one has to estimate the skewness of the
user-specific class-conditional distributions. Due to lack of genuine
score samples (only two or three in our experiments), it is often
impossible to estimate variance, let alone skewness (and kurtosis).
Since the first approach is not realizable, we shall use the
second approach. A possible procedure to pre-process the data
to exhibit high central tendency of distribution (which can
adequately be described by the first two order of moments) is
described in Section 3.3. In other words, we require that the
transformed global (class-conditional) score distributions to be
approximately Gaussian.

Recall that the objective of the second approach is to describe the
user-specific (class-conditional) distributions using only the first two
moments, and ignoring higher moments (skewness and kurtosis) that
cannot be practically computed. Effectively, the unknown user-specific
distribution can be approximated by a Gaussian distribution (with
zero skewness and zero kurtosis w.r.t. a Gaussian). It is natural to ask
why by ensuring that the global class-conditional distribution exhibit
high central tendency that the user-specific distribution may be
adequately be specified by the first two order of user-specific
moments. An explanation of this follows from Eq. (1): the global
class-conditional match scores are functionally dependent on the user-
specific class-conditional match scores. However, we also know that
the global class-conditional match score distribution cannot be Gaus-
sian, since it is, by definition, a mixture of user-specific (class-
conditional) score distributions; and the form of the latter distribution
is often unknown due to the lack of samples needed to perform a
standard Gaussian test. For instance, in face verification, pose and
illumination can greatly affect the genuine match scores distribution. It
is therefore difficult to determine the distribution in real life due to the
compounded effect of these factors. This implies that seeking a perfect
transformation to ensure that the system-wide scores conform to a
Gaussian distribution is not the goal, but to improve its central
tendency (zero skewness) is.

In this light, we took a rather practical approach in this paper,
summarized in the following steps:
(1)
 Project the system-wide match scores to exhibit high central
tendency (to be described in Section 3.3).
(2)
 Estimate the first two order of user-specific class-conditional
moments.
(3)
 Rigorously test the estimates of the user-specific moments
using different data sets (Refer Section 3.4).
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Fig. 1. Genuine (continuous lines) and impostor (dashed lines) density of match scores before (top) and after (bottom) transformation. (a) P1:6 (before) and P1:7 (after) and
(b) P1:8 (before) and P1:9 (after).
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To illustrate the utility of user-specific moments, we shall present
some criteria that have been used successfully to measure the
discriminative power of each user model using only the first two
orders of user-specific moments (see Section 3.5). Finally, we also
relate the user-specific moments to the Doddington's zoo phenom-
enon in Section 3.6 using a classifier taken from the XM2VTS score
database as an example.

3.3. Improving the central tendency of match scores

When the output of a classifier is bounded in ½a; b�, in [51], it was
recommended that the following order-preserving transformation is
used:

y′¼ log
y−a
b−y

� �
ð4Þ

As an example, if a classifier output corresponds to the probability
of being a client given an observed biometric sample x, i.e.,
yprob ¼ PðGjxÞ, then a¼0 and b¼1. The above transformation becomes

yllr ¼ log
y

1−y

� �
¼ log

PðGjxÞ
PðIjxÞ

� �

¼ log
pðxjGÞ
pðxjIÞ

� �
þ log

PðGÞ
PðIÞ

� �

¼ log
pðxjGÞ
pðxjIÞ

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}þ const: ð5Þ

We note here that the above underbraced term is another way of
constructing a classifier known as the likelihood ratio test and the
constant is the theoretically optimal decision threshold in this log-
likelihood ratio space. There is a practical advantage of working in the
log-likelihood space: its class-conditional density in the probability
space is less skewed, for both the system-wide and user-specific
component distributions, as opposed to the probability space.

We shall illustrate the application of Eq. (4) to two systems, i.e.,
P1:6 and P1:8, as already briefly mentioned in Section 2. Both
these systems have output values that lie in the range of −1 and
1 due to the hyperbolic tangent function (noting that the extreme
values of −1 and 1 are never observed). We therefore applied
Eq. (4) to both the system outputs by setting a¼ −1 and b¼1.2
2 It can be shown that the inverse of a hyperbolic tangent function is
argtanhðyÞ ¼ 1

2 logð1þ yÞ=ð1−yÞ. Hence, Eq. (4) differs from argtanh by a negligible
constant factor.
The match score distributions before and after transformation are
shown in Fig. 1. As can be observed, there is an obvious improve-
ment in terms of central tendency.

In order to assess the improvement in central tendency, we
propose to use the following three objective measures:
�
 the Komolgorov–Smirnov (KS) statistic: It is a measure of
deviation from a normal distribution and is bounded in [0,1].
Smaller KS values imply better conformance to a normal
distribution.
�
 skewness: It is a measure of the asymmetry of the data around
the sample mean. If skewness is negative, the data are spread
out more to the left of the mean and vice-versa for positive
skewness. The skewness of the class-conditional distribution
(subject to client or impostor matching) is defined by:

skewness¼ Ey½y−μkjk�3
ðskÞ3

The distribution of a Gaussian has zero skewness.

�
 kurtosis: It is a measure of how outlier-prone a distribution is.

We use the following definition of kurtosis (applied to class-
conditional match scores):

kurtosis¼ Ey½y−μkjk�4
ðskÞ4

As a guide, a Gaussian distribution has a kurtosis of 3.

Fig. 2 shows the three measures on the system-wide class-
conditional scores whereas Fig. 3 presents similar results but
conditioned on each user model and only for the impostor match
scores.

The three objective measures for the genuine scores are either
not computable (which is the case for the KS value) or deemed
useless due to insufficient sample size, recalling that only 2 or
3 samples are available for the user-specific genuine scores. In
comparison, there are 25�8¼200 impostor samples (25 out-of-
sample subjects each contributing 8 samples) for the development
set and 75�8¼600 samples for the evaluation set. In both
figures, it can be observed that the KS values are reduced in all
eight data sets (from these three dichotomies: development or
evaluation, client or impostor, and, P1:6 or P1:8). The skewness
and kurtosis are also reduced drastically after applying Eq. (4).
The above observation is consistent with Eq. (1) showing that
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the system-wide score distribution is a mixture of user-specific
score distributions. Because of this, the system-wide score dis-
tribution is a function of the user-specific score distribution. As a
result, even if the genuine user-specific score distributions are not
observable, we conjecture that, after transformation, they have
reduced skewness and kurtosis, making the distribution closer to a
Gaussian distribution, although not as close as their impostor
counterparts. The higher normality of the user-specific impostor
distributions compared to their client counterparts can be attrib-
uted to the compounded effect of impostor match scores, recalling
that user-specific impostor scores is an aggregation of scores
contributed by a set of out-of-sample subjects (see Section 3.1).

3.4. Predictability of user-specific statistics under session mismatch

In order to perform user-specific analysis, we have spent a
great deal of effort in the preceding sections to ensure the central
tendency and better conformance to normal distribution of user-
specific class-conditional scores. This allows us to characterize
each user-specific distribution by only the first two orders of
moments. This section validates the predictability, or stability of
these statistics in different data sets, i.e., development versus
evaluation set.

Two factors can affect the predictability of user-specific statis-
tics: cross-session matching and the computability of the esti-
mates. The first factor is due to the fact biometric matching is an
inherently stochastic process, i.e., two biometric samples can
never be matched perfectly. This variability is amplified when
samples are collected in different sessions (hence termed cross-
session matching) in speaker verification [52]. The second factor
concerns whether or not an estimate can be reliably computed due
to small sample-size. For instance, the genuine scores of our data
set has only 2–3 genuine sample per user model whereas larger
databases such as the NIST2005 speaker evaluation database [52]
have an average of 10 samples per subject. In comparison, the
number of impostor scores is in the order of hundreds. As a result,
we expect that the user-specific impostor statistics, μIj and sIj , can
be estimated reliably unlike their genuine counterparts, μGj and sGj .

In order to quantify the predictability of user-specific statistics
(for μGj and sGj separately), we propose to measure the correlation
between the estimates of these statistics derived from the devel-
opment set and the evaluation set. A perfect correlation of one
indicates perfect predictability; and this is impossible to attain due
to the stochastic nature of biometric matching and the acquisition
process. On the other hand, a correlation of zero indicates that a
given statistic cannot generalize from the development score data
set to the unseen evaluation one.

This correlation-based predictability analysis was performed on
the 13 XM2VTS score data sets. One of the experimental outcomes
is shown in Fig. 4(a). The result of the experiments are summar-
ized in Fig. 4(b) in boxplots. The experimental outcome shows that
sGj is not at all predictable (with correlation around 0.2) whereas
μGj is somewhat reliable (with correlation around 0.6). Further-
more, the statistics μIj and sIj are not sensitive to the choice of the
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3 See the attached supplementary materials for review.

N. Poh et al. / Pattern Recognition 46 (2013) 3341–33573348
impostor population, i.e., if two sets of casual impostors try to
impersonate the same user, the user-specific impostor statistics
due to the first and second impostor populations are still strongly
correlated (about 0.8 for μIj and 0.9 for sIj ). We conjecture that this
observation does not necessarily apply to the case where one set of
impostors is casual (zero-effort) and the other set is concerted
(deliberate spoofing). This is a subject of future investigation.

3.5. Quantifying user-specific discrimination power

If pðyjk; jÞ is normally distributed, the corresponding False
Rejection Rate (FRR) and False Acceptance Rate (FAR) will each
be an integral of a Gaussian function, i.e,:

FRRjðΔÞ ¼ Pðy≤Δ G; jÞ
��

¼ 1
2
þ 1

2
erf

Δ−μGj
sGj

ffiffiffi
2

p
 !

; ð6Þ

FARjðΔÞ ¼ 1−Pðy≤Δ I; jÞ
��

¼ 1
2
−
1
2
erf

Δ−μIj
sIj

ffiffiffi
2

p
 !

; ð7Þ

where

erfðzÞ ¼ 2ffiffiffi
π

p
Z z

0
exp½−t2� dt;

which is known as the “error function” in statistics. Similar
derivations of FAR and FRR at the global level, i.e., without the
user index j, can be found in [53]. By plotting ðFARjðΔÞ; FRRjðΔÞÞ, for
all Δ∈½−∞; ∞�, one obtains a user-specific Receiver Operating Char-
acteristic (ROC) curve. The unique point where both FAR and FRR
intersect each other, i.e., FARjðΔnÞ ¼ FRRjðΔnÞ, is called the Equal
Error Rate (EER) and this happens at threshold

Δn ¼
μIjs

G
j þ μGj s

I
j

sIj þ sGj
ð8Þ

giving:

EERj ¼
1
2
−
1
2
erf

F�ratiojffiffiffi
2

p
� �

; ð9Þ

where we introduced the user-specific F-ratio (“F” for Fisher),
defined as

F�ratioj ¼
μGj −μ

I
j

sGj þ sIj
: ð10Þ

This term measures the class-separability of a given user. Other
measures include the d-prime statistics [38] and the two-class
Fisher ratio [37], defined as

d0j ¼
jμGj � μIj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ðsGj Þ2 þ

1
2
ðsIj Þ2

r and Fisher�ratioj ¼
μCj � μIj

ðsGj Þ2 þ ðsIj Þ2
;

respectively. Among these three criteria, the F-ratio has
the advantage that it is related to EER in a closed form due to
Eq. (9). In case of violation of this assumption, it can still be shown
via simulation that the estimated EER can be positively or
negatively biased.3 The ranked user turns out to be robust to such
bias since all user-specific distributions will subject to the same
distortion, hence, will in principle, have the same bias. In [36], the
Fisher ratio, F-ratio and d-prime statistics were used successfully
to rank users on three biometric modalities, i.e., face, fingerprint
and iris. This provides further evidence of the robustness of these
statistics under deviation from the Gaussian assumption.

An impending problem in relation to the application of these
criteria is that, from Section 3.4, we know that sGj is not compu-
table due to small sample-size. This will be treated in Section 4.2.

3.6. User-specific statistics and Doddington's menagerie

Having discussed the estimates of user-specific statistics, this
section attempts to relate the Doddington's menagerie with these
statistics, and their utility in reducing this phenomenon. Fig. 5
shows the match score distribution for each user model and each
class (genuine or impostor) of one of the XM2VTS systems.
Although there are 200 user models altogether, only 20 are shown
here in order to avoid cluttering the figure. Thus, there are 20
genuine-user match score distributions and 20 impostor match
score distributions. Figure (a) shows the distributions of the
original scores.

Referring to Doddington's menagerie, sheep are characterized
by high genuine match scores (high user-specific mean values)
whereas goats are characterized by low genuine match scores (low
user-specific mean). Lambs are defined as a symmetry of goats, i.e.,
having high impostor match scores (high user-specific impostor
mean). Finally, wolves are persons who can consistently give high
impostor similarity scores when matched against the user models
(enrolled templates in the gallery).

Note that although we do not identify the wolves directly, as
done in [2], the impostor population certainly contains some
wolves. By modeling the impostor score distributions, the F-ratio
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N. Poh et al. / Pattern Recognition 46 (2013) 3341–3357 3349
indeed takes them into consideration. What is not taken into
account here is the deliberate or active impostor attack, resulting in
very strong “wolves” attacking a particular enrolled subject/client.
The appropriate counter measure for such attempt is to use
liveness measures [54], a subject that is beyond the scope of the
study of Doddington's zoo [2], which, primarily concerns separ-
ability of genuine scores from non-match impostors (in which the
true identity differs from the claimed identity), i.e., in other words,
quantifying the recognizability of enrolled users.

Figures (b) and (c) show the scores after applying two different
user-specific score normalization procedures, called the Z-norm
and the F-norm, respectively (to be explained in Section 4.1). Both
normalization procedures aim to project the user-specific match
scores into a common domain in such a way that a single decision
threshold can be more easily found than designing one decision
threshold for each user (user-specific threshold).
4 This amount of difference can be now be quantified using a measure called
the zoo index [55], defined as the ratio of the expected bias of mean score from a
user-specific mean score (the second right hand term in Eq. (3)) and the total
variance (the left hand term in Eq. (3)).
4. The three steps of an OR-switcher

This section describes how an OR-switcher – a user-specific and
selective fusion classifier – can be built based on the three steps
mentioned earlier.

4.1. Reducing user-induced variability using user-specific score
normalization procedure

We examine three primary families of user-specific score-
normalization procedures: Z-norm, F-norm and EER-norm. These
three families have the following forms in the respective order:

yZj ¼
y−μIj
sIj

; ð11Þ

yFj ¼
y−μIj
μGj −μ

I
j
; ð12Þ

yEERj ¼ y−Δj: ð13Þ
Eq. (11) is found in [15]; Eq. (12) in [17]; and Eq. (13) in [18] and its
simplified form in [9].

The F-norm in Eq. (12) cannot be used directly because μGj is
stochastic in nature, as depicted in the left plot of Fig. 4(a) as well
as Fig. 4(b). Two factors can be attributed to this: First, the μGj
obtained from an enrollment session can be different from the μGj
obtained from a test session. This difference is known as a cross-
session variability, and can be caused by change in the environ-
mental condition or temporary alteration of biometric traits (e.g.,
growth of beards, change in facial expression, etc). Second, the
estimate of μGj can be severely affected by the small sample-size of
the user-specific genuine scores.

A practical solution to constraining the variability of μGj is to
compensate it with the system-wide genuine mean score, μG, via
an adjustable parameter γ∈½0;1�, i.e.,

μGadj ¼ γμGj þ ð1−γÞμG:

This adaptation strategy corresponds to the maximum a posteriori
solution where μG is the best guess (or the a priori value) of μGj . By
setting γ ¼ 0, one relies only on the a priori value. On the other
hand, by setting γ ¼ 1 one relies entirely on the observed user-
specific μGj . The parameter γ can be associated with the “relevance
factor” mentioned in [12]. The fundamental idea, is to further
parameterize γ as a function of the number of genuine samples
such that γ scales non-linearly with the sample size. However, we
assume that cross validation data is not available – a realistic
scenario – and so we set γ ¼ 0:5 in all experiments. This choice has
been shown to work well in our past experience [17]. The F-norm
with Bayesian adaptation becomes

yF ¼
y−μIj

γμGj þ ð1−γÞμG−μIj
: ð14Þ

In [17], the F-norm, Z-norm and EER-norm are compared. The
majority of the experiments show that the F-norm is superior to
the Z-norm. This can be attributed to two reasons: First, it takes
the client distribution into consideration; and this information
cannot be used by the Z-norm in its present form. Second, the
F-norm does not rely on the second-order moment (skj for both k).
As a result, it has the practical advantage of not requiring many
training samples since more samples are needed as one estimates
higher orders of moments. The EER-norm results in worse perfor-
mance than the baseline (non-normalized system) due to the poor
estimate of sGj which is caused by the small sample size of user-
specific genuine samples.

We shall provide an intuitive explanation why F-norm may be
more advantageous than Z-norm in a situation where the user-
specific genuine score distribution are significantly different from
each other.4 Referring back to Fig. 5, we observe that in the Z-norm
domain, all the user-specific impostor score distributions become
standard normal (with zero mean and unit variance). However, the
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genuine-user score distributions vary significantly from one user
model to another. The F-norm procedure, on the other hand,
projects the match scores such that the user-specific genuine and
impostor score distributions are centered on zero and one,
respectively. This effect is achieved, nevertheless, with the trade-
off that the user-specific impostor variances no longer become
standardized as in the Z-norm domain. Empirical comparisons
using various data sets [13] confirm the superiority of the F-norm
over the Z-norm.

Based on above reasoning, we shall only use the F-norm as the
user-specific normalization procedure of choice throughout
this paper.
4.2. On user-ranking after removing user-induced variability

In the last section, we presented the F-norm as a user-specific
score normalization procedure. Although such a procedure can
effectively reduce the inter-model score variability, the mitigation is
not perfect. To the authors' knowledge, there exists no procedure to
remove this variability completely.5 As a result, one can still compute
the discrimination power of the user models in the F-norm domain.
In this section, we attempt to derive a user ranking criterion in the
F-norm domain, i.e., using scores after applying F-norm.

It is instructive to illustrate how this can be done using Fig. 5(c).
In this domain, the impostor mean is always zero whereas the
genuine mean is always one. Let yF be the projected score
according to Eq. (14). The first and second orders of moments of
yF are:

μF ;kj ¼ Ey½yF jk; j� and ðsF ;kj Þ2 ¼ Ey½yF−μFj jk; j�2

where we used the super-script F to differentiate the user-specific
parameters from those obtained in the original score domain (μkj
and skj ). We note that μF;Gj ¼ 1 and μF ;Ij ¼ 0 following observations
from Fig. 5(c). This observation can also be shown mathematically:

μF ;k ¼ G
j ¼ Ey½yF k¼ G; j�

��
¼ Ey

yF−μIj
μGj −μ

I
j
k¼ G; j
�� �"

¼
E½yF jk¼ G; j�−μIj

μGj −μ
I
j

¼ 1

since μGj ≡E½yF jk¼ G; j�. The derivation for the impostor case, leading
to μF ;Ij ¼ 0 can be done similarly.

The user-specific F-ratio in the F-norm domain becomes

F�ratioF
j ¼

μF ;Gj −μF ;Ij

sF ;Gj þ sF;Ij

¼ 1

sF;Gj þ sF;Ij

ð15Þ

However, as we have already observed in Section 3.4, the
estimate of sGj is very noisy due to small sample-size. There are
two solutions to limit the variability: First, use the Bayesian
adaptation strategy to compensate for the variability of sF ;Cj via
an adjustable parameter, γ2,

6 i.e.,

ðsF ;Gadj;jÞ2 ¼ γ2ðsF ;Gj Þ2 þ ð1−γ2ÞðsF ;GÞ2; ð16Þ
5 An ideal user-specific score normalization procedure will project each user-
specific class-conditional score distribution to a canonical class-conditional dis-
tribution, e.g., zero mean unit variance for the impostor distribution and unit mean
unit variance for the genuine distribution.

6 Note that this term is different from the one used in the F-norm shown in
Eq. (14).
in order to obtain the following term:

compensated F�ratioF
j ¼

μF ;Gj −μF ;Ij

sF ;Gj þ sF;Ij

¼ 1
sF;Gadj;j þ sF ;Ij

ð17Þ

Second, remove the term completely to obtain the following ratio,
which we shall call biometric class separation ratio, or the B-ratio:

B�ratioF
j ¼

1
sF ;Ij

ð18Þ

The second approach is heuristic, and the rationale of this is based
on the observation that the estimate sGj is not generalizable to the
unseen data (see Section 3.4). Despite being a heuristic, this
strategy turns out to generalise better.

Table 2 summarizes the F-ratio and its two variants applied to
both the original domain and the F-norm domain.

Using the same data sets described in Section 3.4, we compared
the six user-specific class-separability criteria (as listed in Table 2)
for all the 13 XM2VTS score data sets derived from the develop-
ment set versus its evaluation set counterpart. In this way, 13
correlation values can be measured.

Apart from using correlation, we also measured bias, which is
defined as the expected value of arithmetic difference between a
given criterion estimated on a development set and its counterpart
estimated on an evaluation set over all users j∈J , i.e,:

bias≡Ej½F�ratiojjdev−F�ratiojjeva�:

An ideal user-specific class-separability measure should have zero
bias and correlation as close to one as possible.

We summarized the correlation and bias values in Fig. 6(a) and
(b) in box-plots. We also show the user-specific F-ratios of the
development set versus that of the evaluation set, for all the 13
score data sets (from which a correlation value is measured), in
Fig. 6(c). A similar set of figures is plotted for the B-ratio in 6(d).

As can be seen, using the original F-ratio as given, this quantity
does not generalize well.

However, when the B-ratio is used, significant improvement is
observed, from median correlation of 0.35–0.6. Applying B-ratio in
the F-norm domain further improves the median correlation to
0.9. The high predictability of B-ratio across different data sets can
be attributed to the effectiveness of the F-norm, coupled with the
removal of the noisy term sGj . The tight-coupling of these two
techniques are not coincident. The F-norm reduces the user-
specific variability by projecting all user-specific genuine means
to 1 and all user-specific impostor mean to 0. The residual
variability is therefore due only to the user-specific class-condi-
tional second-order moments (variance terms) in this domain.
Since the user-specific client variance cannot be estimated,
describing the residual using only the user-specific impostor
variance (hence B-ratio) is sufficient.

In contrast, the compensated strategy, i.e., Eq. (16). does not
work as well as the B-ratio. We attempted to fine-tune γ2 with
different values and found that as this parameter is close to one,
correlation improves, up to a maximum of 0.7. However, its
median of bias (across the 13 XM2VTS score data sets) is still
non-zero.

The experimental results clearly support that the proposed B-
ratio can indeed be used to rank the user models according to their
performance. This criterion can be reliably estimated from merely
a separate development data, and at least an additional genuine
sample other than the one used to build the initial template/
reference model. The latter is the minimum requirement imposed
by the F-norm. There are two practical implications. Firstly, one
can determine the goodness of an enrollment template by using
the B-ratio in conjunction with an external development database
of users. When an enrollment template is judged not to be of
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Fig. 6. Comparison of the F-ratio, compensated F-ratio (via γ2 ¼ 0:5 for all settings) and the B-ratio as user-specific class-separability criterion (see Table 2) across all the 13
XM2VTS score data sets. (a) Summary of the 13 experiments using correlation measures, (b) summary of the 13 experiments using bias, (c) scatter plot of the F-ratio derived
from the original score domain. The X-axis (resp. Y-axis) is the F-ratio statistic calculated on the dev (resp. eva) set. Each scatter plot contains 200 points, corresponding to the
200 user models in each experiment setting and (d) Similar to (c) except that the B-ratios are used. Each diagonal (red) line in (c) and (d) represents the 45 degree line of
each panel. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Table 2
Summary of different class-separation criteria.

Type Original domain F-norm domain

F-ratio
F�ratioj ¼

μCj −μ
I
j

sCj þ sIj
F�ratioFj ¼

1

sF;Cj þ sF;Ij

Compensated F-ratio
Compensated F�ratioj ¼

μCj −μ
I
j

sCadj;j þ sIj
comp: F�ratioF

j ¼
1

sF ;Cadj;j þ sF ;Ij

B-ratio
B�ratioj ¼

μCj −μ
I
j

sIj
B�ratioF

j ¼
1

sF;Ij
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sufficient quality, e.g., has a value less than a pre-determined
value, corrective measures may be taken. Secondly, in the context
of fusion, the B-ratio can be used to decide if fusion is indeed
necessary or not. This issue is discussed in the next section.

4.3. On selective fusion

The selective fusion strategy is based on the fact that Eq. (18)
can predict relative user model performance for a particular
system setting. We would like to extend the user-specific B-ratio
to consider the setting due to different subsets of systems p, i.e.,
B�ratioj;p. For example, if there are 3 systems (hence N¼3), p will
be one of the possible power set of {1,2,3}, excluding the empty
set. In our notation, we write:

p∈Pðf1;2;3gÞ−f≡ff1g; f2g; f3g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}; f1;2g; f1;3g; f2;3g; f1;2;3gg:
We also denote the default fusion mode that uses all the systems
as com≡f1;2;3g. The underbraced terms are each a specific case of
B�ratioj as appeared in Eq. (18) for each of the three systems.

In order to calculate B�ratioj;p, we first need to prepare the
combined score set due to using the system subset p after applying
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the F-norm to each system output independently, i.e., fyFpjjg. Note
that the F-norm has to be used because the B-ratio is only
applicable to the F-normalized scores. A good candidate to use is
the mean operator:

yFj;p ¼meani∈pyFi;j: ð19Þ

In this case, i denotes the i-th system in the set p. Since yFi;j can be
interpreted as an LLR, taking the sum (or mean in this case)
corresponds to making the independence assumption of the system
outputs i∈p. Using the labeled development set of scores fyFpjj; kg for
k∈fC; Ig, we can effectively assess B�ratioj;p for all j and all p. Two
applications are possible here. Firstly, keeping p constant and sorting
B�ratioj;p according to j enables us to rank users for the given system
subset p. Secondly, keeping j constant and sorting p for all possible
combinations enables us to choose the optimal subset of sub-systems
for each user. For the second application, when the system outputs
f1;…;Ng are not correlated, e.g., in the case of multimodal fusion, the
following property has to be satisfied:

B�ratioj;p24B�ratioj;p1; ð20Þ
for any subset p1; p2⊂f1;…;Ng−∅ where the number of elements in
p2 is higher than that in p1, i.e., ∥p2∥4∥p1∥. This is to say that the
discriminative power of multimodal biometric increases when more
biometric sub-systems are used. Unfortunately, in practice, we found
that Eq. (20) is not always true because the estimated user-specific
B-ratio is still unreliable enough for the second application but works
fairly well for the first application. The above can be explained by the
fact that B�ratioj;p1 and B�ratioj;p2 are not comparable when the
elements in p1 and p2 are not the same. This is a commonly
encountered situation in multimodal fusion where the scores pro-
duced by one classifier do not have the same statistical properties
than those produced by another classifier. Furthermore, reliably
estimating those parameters with a few samples would still be a
difficult task, recalling that the B-ratio is estimated from samples
conditioned on each user. As a result, we rank the users by arg maxj
B�ratioj;p where p is kept constant (instead of arg maxp B�ratioj;p by
keeping j constant). Note that in this way, evaluating arg maxj
B�ratioj;p is possible since the system subset p is constant and hence
the criterion B�ratioj;p (with p fixed) is comparable for different j.
5. The overall OR-switcher procedure

We have addressed the key issues of ranking users and system
subsets based on the user-specific B-ratio criterion. In this Section,
we propose one possible implementation of the OR-Switcher that
makes use of this criterion. We will consider here the case of
combining two biometric systems. The extension to N systems is
straightforward. It should be noted that there are two data sets:
development and evaluation sets. The development set is used to
derive all the training parameters, e.g., F-norm's parameters, the
user-specific and system subset dependent B-ratios, fusion classi-
fier and the optimal decision threshold. The evaluation set is used
to test the system. We utilize the following procedure:
(1)
 Apply the F-norm to each participating biometric system
output independently. Note that the F-norm parameters must
be derived from the development set.
(2)
 Train a Gaussian Mixture Model (GMM)-based fusion classifier
of the form yFcom ¼ log pðyF jGÞ=pðyF jIÞ by estimating the class-
conditional score distribution pðyF jkÞ for each k¼ fG;Ig sepa-
rately using a GMM. The GMM parameters are estimated using
Expectation-Maximization and its number of components are
found by cross-validation [37]. In order to make the accept/
reject decision, the output score yFcom is compared to a
threshold, which can be adjusted for different class priors.
(3)
 For each user j∈J and each possible combination subset p,
assess the B�ratioj;p criterion given the labeled combined
scores fyFpjk; jg based on the development set.
(4)
 Sort the users in descending order based on B�ratioj;com (the
default mode where all the systems are considered). Let r be
the pruning rate, a parameter that is set by the system
designer. This pruning rate is the proportion of users that will
not require fusion. For instance, if r¼0.1, then 10% of users will
not require fusion; this means that for the remaining 90% of
users fusion will always occur. In this example, the 90% of
users are those whose B�ratiocom values are inferior, meaning
that their resulting performance is likely to be inferior (hence
requiring fusion). For the 10% of users, we decide the next best
alternative of system subset p to use. In the case of N¼2
systems, these alternatives are p∈ff1g; f2gg. Therefore, we
choose the better of the two systems, i.e.,

pn

j ¼ arg max
p

B�ratioj;p:
(5)
 During the operational phase, the combined LLR score is
calculated as yOR ¼ log pðyF jG; pn

j Þ=pðyF jI; pn

j Þ where pðyF jk; pn

j Þ
is a marginalized distribution of pðyF jkÞ with respect to the
sub-systems not in p. This step is performed for all users. In the
case of a bimodal system, pn

j can be f1g, f2g, or f1;2g where
1 and 2 are the indices of the two sub-systems. Therefore, for
some user, pn

j ¼ f1g is considered optimal; for others, pn

j ¼ f2g
or pn

j ¼ f1;2g (no pruning). Section 5.1 explains in detail how to
marginalize a distribution estimated using a GMM.
By selective fusion, one will acquire less biometric data effec-
tively reducing the biometric acquisition time and consequently
the overall verification time. In this case, by employing the
proposed selective strategy, the system can automatically utilize
the most discriminatory biometric traits of an individual. The role
of the B-ratio is extremely important in Step 4.

Step 4 can be omitted when r¼0 (zero pruning rate), because
in this case all the system outputs are used, and one does not need
to evaluate B�ratioj;p.

5.1. Reconciling different modes of fusion

This section describes how to compute a marginal distribution
given the distribution pðyF jkÞ≡pðyF ;kÞ estimated using GMM. Let
yF ;k ¼ ½yF;k1 ;…; yF ;kN �′ be a vector of class-conditional scores to be
combined after applying the F-norm. Since pðyF;kÞ is a GMM, it can
be written as

pðyF ;kÞ ¼ ∑
Nk

cmp

c ¼ 1
wcN ðyjμF ;kc ;ΣF;k

c Þ; ð21Þ

where wc is the prior of the c-th Gaussian component whose
parameters are μF;kc and ΣF ;k

c and there are Nk
comp Gaussian compo-

nents, for k¼ fG;Ig. Note that the classifier log pðyF jCÞ=pðyF jIÞ is
user-independent but receives input from user-specific normal-
ized scores obtained via the F-norm. Due to the use of the F-norm,
its behavior is different for different users. In this sense, the
resultant classifier is user-specific.

Given the joint distribution described by the mixture of
Gaussian parameters fwc; μ

F;k
c ;ΣF ;k

c j∀cg, our goal here is to find the
marginal distribution spanned only by the subset (or subspace)
pDf1;…;Ng. One way is to marginalize the conditional joint
distribution pðyF;kÞ with respect to the output of the systems not
considered. Using the mixture of Gaussian parameters, this can be
done in a rather straight-forward way. First, let us drop the super-
or subscripts F, k and c from μF ;kc ;ΣF;k

c since the discussion that
follows will always be dealing with μ and Σ in the F-norm domain,
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applying to each k and each c Gaussian component individually.
Then, the marginalized parameters due to using the subset p
can be written as μp and Σp. The matrices before and after
marginalization are related by

μ¼ ½μp; μp �′

Σ¼
Σp Σq

Σ′q Σr

" #

where μp is the mean vector whose elements are systems not in
the set p; and, Σq and Σr are the rest of the sub-covariance
matrices which contains the elements not in p. The above margin-
alization procedure for GMM can be found in [56], for instance,
and is used for noisy band-limited speech recognition. Let us take
an example of N¼3 systems. Suppose the optimal subset is
p¼ f1;2g and the excluded system set is p ¼ f3g. Consequently,

μp ¼ ½μ1; μ2�′; μp ¼ ½μ3�′; Σp ¼
e1;1 e1;2
e2;1 e2;2

" #
;

Σq ¼
e1;3
e2;3

" #
; Σr ¼ ½e3;3�;

where em;n is the m-th row and n-th column element of the
covariance matrix Σ and em;n ¼ en;m (since the covariance matrix is
symmetric). The marginalised version of GMM will be written
similar to Eq 21 except that we will use mF,kp,c and RF,k

p,c instead of the
original parameter set.
7 From our previous study [57], the GMM fusion classifier performs as well as
the logistic regression and Support Vector Machines with a linear kernel. Since all
these classifiers rely on the same training sets with carefully tuned hyper-
parameters, their generalization performances are not expected to be significantly
different.

8 The DET curves for all the 15 fusion tasks can be found in “http://info.ee.
surrey.ac.uk/Personal/Norman.Poh/data/expe/zoo_fusion”.
6. Experiments

6.1. Evaluating the quality of selective fusion

Two types of evaluations are considered here, i.e., by agreement
and by computational saving.

6.1.1. Evaluation by agreement
Note that pn

j contains the subset of systems that are considered
optimal, in the F-norm domain, for a user j according to the
development set. One could evaluate the same parameter for the
evaluation set. A useful way to evaluate if pn

j jdev is optimal or not is
by comparing the same parameter derived from the evaluation set
pn

j jeva–which is considered the ground truth. Let Iðm;nÞ be an
indicator function that outputs 1 if the sets m and n are identical
and zero otherwise. The probability of choosing the “right” mode
of fusion, within the population of users considered, in the OR-
switcher, can be defined as

d¼
∑jIðpn

j jdev;pn

j jevaÞ
J

Higher d is thus clearly desired.

6.1.2. Evaluation by computational saving
One can also evaluate the computational savings due to not

using some of the biometric systems. It can be quantified by

computational saving¼ 1−
∑j∈J∑N

i ¼ 1Iðsystemi;jÞ
N � J

;

where Iðsystemi;jÞ is an indicator function that gives 1 if the i-th
biometric system of user j is used and zero otherwise and there are
J users. In the case of a conventional fusion classifier where all the
systems are used, the computational saving is simply zero. In our
case, when two systems are considered using the OR-switcher, the
pruning rate r as presented in Section 5 is directly related to the
computational saving in the following way:

computational saving¼ r
N
� 100%:

For this equation, we observe that one cannot go below
50% computational saving with two systems, 33 1/3% with
three systems, 25% with four systems, etc, because the maximum
value r can take is 1. This means that at least one system has to be
operational.

6.2. Experimental results

Using our proposed user-specific and system subset dependent
B-ratio, the percentage of correctness d is measured to be 88.5%
with minimum and maximum being 80% and 97.5%, respectively,
across all 15 fusion tasks. This is expected since the B-ratio has the
highest correlation in Fig. 6(a).

We then compared the OR-switcher with two baseline systems,
as follows:
�
 The conventional fusion classifier based on GMM : In this case,
the scores fyij∀ig are used.7
�
 The OR-switcher with various r values: The following fraction
values r¼ f0:4;0:3;0:2;0:1;0g are used. When r¼0 all the
systems are used.

Fig. 7 summarizes the result of 15 fusion experiments by plotting
the proposed client-specific approach as a function of the pruning
rate, r. Recall that when r¼1, no fusion is involved, e.g., only one of
the two unimodal systems are selected. On the other hand, when
r¼1, both modalities are combined via the client-specific fusion.
Plotted in the each sub-figure are the conventional score-level
fusion system based on the GMM-Bayes classifier as well as the
unimodal face and speech systems.

As can be observed, when r¼0.5, all the client-specific systems
outperform the best unimodal systems. Recall that with r¼5, the
client-specific system is composed of 50% of users utilizing
unimodal systems and the remaining 50% utilizing both modal-
ities. Furthermore, at zero pruning rate, all client-specific fusion
systems outperform the baseline GMM-Bayes fusion system.

Although only EER points are presented in Fig. 7, we also
assessed each of the 15 fusion tasks in DET curve.8 An example of
the second fusion task is shown in Fig. 8. In this experiment,
consistent of Fig. 7(b), at r¼0, i.e., by selectively selecting one of
the two biometric modalities (hence no multimodal fusion), our
user-specific strategy outperforms any single biometric system. By
increasing r, the system gradually and systematically improves in
performance.

6.3. Discussion

The experimental outcomes suggest that it is still possible to
make decisions based on incomplete information. The proposed
OR-switcher is really a proof of this concept. While consuming less
resources (depending on the pruning rate r), the OR-switcher is at
least as good as the conventional fusion classifier (in our case, a
Bayesian classifier whose class-conditional densities are estimated
using a mixture of Gaussian components), if not better. While it is
generally true that by using a higher pruning rate the system can

http://info.ee.surrey.ac.uk/Personal/Norman.Poh/data/expe/zoo_fusion
http://info.ee.surrey.ac.uk/Personal/Norman.Poh/data/expe/zoo_fusion
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degrade steadily in accuracy, the overall system also uses less
resources. It is of course unfair to compare these two systems since
the OR-switcher with non-zero pruning rate will always use less
resources; the only fair comparison would be between two
systems using the same amount of resources.

The added advantage of the OR-switcher is that it does not
fail completely when one of its sub-systems fails to operate, as
may be the case for the conventional fusion classifier. This is
because the OR-switcher can capitalize on the inherent system
redundancy.

In order to understand why the two-stage fusion process in the
OR-switcher can perform as well as or better than the conven-
tional (user-independent) classifier, we estimate the distribution
of user-specific class-conditional scores, pðyjk; jÞ, for all k and j
before normalization, as well as after normalization (using the
F-norm), i.e., pðyF jk; jÞ. For the purpose of visualization, pðyjk; jÞ and
pðyF jk; jÞ are each assumed to be a Gaussian with a full covariance
matrix (here, we took an example of three genuine scores per user
so that a full rank covariance matrix can be estimated; this is for
visualization purposes only because this estimate is likely to
overfit such a small amount of training data!). The Gaussian fits
of model-specific class conditional scores before and after normal-
ization are shown in Fig. 9. In (a), before the score normalization
takes place, the model-specific class conditional score distribu-
tions are not well aligned. When the actual fusion performance is
measured based on the pair of genuine and impostor score
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distributions, it is possible to rank the users, hence, identifying
goats from sheep [40]. In (b), after applying the F-norm [17], the
user-specific distributions are better aligned. In this example, we
show only the scores due to 20 user models selected at random.
Although a perfect class separation is possible in this case, this is
not so when the scores associated with all 200 user models are
considered. A special property of the F-norm is that the expected
model-specific genuine and impostor means after score normal-
ization are 1 and 0, respectively.
7. Summary and conclusions

Following the observations in [15,2] that each user exhibits
different performance in biometric authentication, we showed that it
is possible to derive a criterion to rank users according to their
performance strength. Such a criterion has to (a) be derived from
extremely few user-specific genuine samples; (b) be able to generalize
to previously unseen data; and (c) be unbiased. Guided by some
preliminary experiments, we found that such a criterion is best
imposed using the user-specific F-ratio after applying the F-norm.
The resultant criterion is known as the B-ratio. We demonstrated the
usefulness of this criterion in the context of multimodal fusion as a
“switch”, and the resultant fusion operator is hence termed the “OR-
swticher”. This fusion operator is different from the state-of-the-art
approach because it is user-specific, i.e., it varies across users, and
selective, i.e., it actively chooses only the most discriminative sub-
system outputs (depending on a pre-defined pruning rate). We show
that the OR-switcher outperforms some conventional (user-indepen-
dent) fusion classifiers at zero pruning rate. Although increasing the
pruning rate will degrade the system performance, the proposed OR-
switcher is still operational and, in some cases, can perform as good as
the state-of-the-art fusion classifier. Experimental results confirm our
hypothesis that the OR-switcher is an effective method to handle user-
induced variability in the context of multimodal biometrics.

There remains the following important concerns which need to
be further investigated/validated:
�
 The impact of extrinsic factors, e.g., change in acquisition
conditions and cross-session variability, on Doddington's
menagerie and the B-ratio.
�
 The impact of casual and concerted impostors on Doddington's
menagerie.
�
 The application of the B-ratio as a measure of goodness of a
reference model during enrollment.
�
 The use of non-parametric user-specific discriminatory criter-
ion. All the criteria studied here require the explicit use of
moments and implicit Gaussian assumption on the score
distributions. A possible extension to this study is to use non-
parametric discriminatory criteria.
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Appendix A

This section shows how class-conditional global (user-inde-
pendent) second-order moments of match scores are functionally
related to user-specific ones. To do so, we first calculate the class-
conditional global score variance, for a given claimed identity
j¼ jn, as follows:

Ey½ðy−μkÞ2jk; jn� ¼ Ey½ðy−μkjn þ μkjn−μ
kÞ2jk; jn�

¼ Ey½ðy−μkjn Þ
2jk; jn�

¼ Ey½ðμkjn−μ
kÞ2jk; jn�

þ2ðμkjn−μ
kÞEy½ðy−μkjn Þjk; jn�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

where we introduced the term μkjn . Under the expectation Ey½�jk; jn�,
the second term is invariant, and the third (underbraced) term
vanishes. As a result, we can rewrite the above equation as

Ey½ðy−μkÞ2jk; jn� ¼ Ey½ðy−μkj Þ2jk; jn�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ðμkj −μkÞ2 ð22Þ

We recognize that the above underbraced term is the second-
order moment of user-specific scores, i.e.,

ðskjn Þ
2 ¼ Ey½ðy−μkj Þ2jk; jn� ð23Þ

www.mobioproject.org
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The global class-conditional score variance, independent of any
user j, can be calculated by taking the expectation of Ej½�jk� on both
sides of Eq. (22). This is obvious by doing so on the left hand side
of Eq. (22):

Ej½Ey½ðy−μkÞ2jk; j�jk� ¼ Ey½ðy−μkÞ2jk�

which is the global variance ðskÞ2. The result of taking Ej½�jk� on
both sides of Eq. (22) can thus be written as

ðskÞ2 ¼ Ej½ðskj Þ2jk� þ Ej½ðμkj −μkÞ2jk� ð24Þ
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