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ABSTRACT that can be codified and used to evolve cooperative behaiviors
silico. An early explanation for the emergence of cooperation in
natural systems wagroup selectionwhich proposed that a team
é:romprising selfish, “cheating” individuals would die outedio the
over-exploitation of resources, whereas one composedapfera-
{tive members would constrain their behavior for the benafitsur-
vival of the group as a whole [1]. While the concept is intiigy
later studies show that, in nature, groups do not go extinickty
enough, and individuals move between groups at a suffigibigh
rate, to render group selection an implausible explandtorthe
emergence of cooperation.

Fortunately, computational methods used to search fotienki
to engineering problems are not limited to biological rusidies
in evolutionary robotics and related areas have shown ttoatpg
selection is indeed an effective way to obtain cooperatifeliors.
Moreover, teams where all members are genetically iddrieze
been shown to be highly effective in evolving cooperatichtte
risk of cheating is diminished [4].

In this work, we investigate the role of team relatednessiand
dividual selection in evolving cooperative predation hebis in

A key issue in cooperative task completion is team compmsiti
Prior studies have addressed two ends of a spectrum, witlo-hom
geneous teams on one end and heterogeneous teams on the oth
In this paper we explore a space in betweenbibased group se-
lection subpopulations compete against one another with respec
to a cooperative task, but an external bias favors the geribese
individuals actually participating in the task. We evatuthis se-
lection model on a cooperative predation task in digitaboigms,
where feasible solutions can be carried out by either homemes

or heterogeneous teams. Our results show that, consisitbreay-

lier studies, homogeneous teams tend to find better oveslat s
tions than their heterogeneous counterparts. Howeverjlatopns
comprising teams with some degree of heterogeneity fouhd so
tions more frequently. Effectively, while evolution pushieetero-
geneous teams toward functional homogeneity for this @aer
task, heterogeneity with a selection bias proved more &ffeat
exploring the search space.

Categories and Subject Descriptors digital organisms. We focus on the relatively unexploreacspof
1.2.8 [Computing M ethodologies]: Atrtificial Intelligence—Prob- a spectrum where homogeneous teams reside at one end, and at
lem Solving, Control Methods, and Search the other, heterogeneous teams where intra-team genetiiarsi

ity is not necessarily greater, on average, than inter-wanifarity.
General Terms In between lie varying levels of group relatedness whichdee

termined by user-defined parameters. biased group selection
members of a group that contribute to the completion of tasks
have a higher fitness within the group, making them moreyite|

Experimentation

KewNords replicate. With this study, we hope to increase knowledgaugb
Artificial life, digital evolution, multi-agent system, operative be- the relationship between selection and team compositi@om-
havior, self-organization, group selection, predation. putational evolution, and help to explain why it is so difficto

evolve heterogeneous teams with performance comparaltato
1. INTRODUCTION of homogeneous teams.

Cooperative behavior within and among natural organisroeés
of the most important and pervasive phenomena found on Earth 2. METHODS

Now, through evolutionary computation, we are “harnessihe The task of cooperative predation, where multiple agengs ar
benefits of these behaviors to advance several emergingdiech needed to successfully hunt a prey, allows us to comparepgrou
gies, such as multi-agent systems and swarm robotics,abaire with varying levels of heterogeneity. Evolution could fishgs find
cooperation among multiple, autonomous entities [2]. Likgu- solutions for this task using strategies that are evolved either

ral organisms, these systems need to adapt to dynamic arcsadv.  homogeneous or heterogeneous groups.

conditions, conserve energy, and compensate for failateshile The Avida digital evolution platform [3] provided a framerko
cooperating to meet global objectives. A logical approacke- suitable for carrying out the experiments in this study. d&pro-
veloping these systems is to look to biology for selectiorihods vides an environment through which digital organisms cawveno

and interact. Each organism comprises a circular list afilctions
Copyright is held by the authorfowner(s). (its genomg and a_wrtual CF’_U on wh_|ch th(_ey are executed. We
GECCO'11,July 12-16, 2011, Dublin, Ireland added new instructions for this study, includingrack, whereby
ACM 978-1.4503-0690-4/11/07. a predator launches an attack on the prey; aad., which en-



ables an organism to draw the attention of other organisntenv
a hunter hails, all other predators within a certain rangenfthe
source will automatically turn their facing towards thelbaiThis
can be considered an instinctual behavior, as in animatstha
their heads towards the source of a loud sound.

For the cooperative predation task in the context of Avida, a
group of organisms is placed in a two-dimensional toroidailgy
where they have to locate and successfully attack a singlgois-
ary prey. An attack is only successful if the number of predain
the prey vicinity is above a certain threshold qoorum when one
of those predators executes tReTACK instruction. The reward
for a successful attack translates to energy that allowgrthep to
replicate. The penalty for an unsuccessful attack is thghfliof
the prey to a new random location in the world, thereby wastin
efforts put by the organisms to organize around it, forclmgn to
start anew. Scenarios depicting cases in which the attaaldviail
and succeed are demonstrated in Figure 1.
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Figure 1. Attack scenarios. The prey is the 3x3 cell shaded
area. Therequired quorum is5. If an organism on the prey
executes an ATTACK instruction in (a), the attack fails because
quorum is not met. If the ATTACK isissued in (b), it succeeds
because quorum is met.

We tested several types of selection, from homogeneousgpgrou
at one end, to heterogeneous (unbiased) groups at the dther.
between these two extremes lie various degrees of biaseg gro
selection. This form of selection combines both group selec
and individual selection. When the group completes the, taisk
is selected to replicate and thus outcompetes another gnaine
run. However, when composing the new group, there is competi
tion within the group in the form of two levels of external bias. The
first is an automatic guarantee of producing one offspringgivis
exposed to mutations during the replication process) fosethor-
ganisms that participated in the task. The remaining dffigpare
selected using the second level of bias, a user-defined lptitpa
that the parent is selected from among the participantkelptob-
ability is 100%, then 100% of the remaining offspring popiala
will be the progeny of participants. If the rate is 50%, thbatt
fraction of the remaining offspring slots will be populat@ith or-
ganisms whose parents are participants, while the rentpgiats
will be occupied by the offspring of non-participants, ands.

3. SAMPLE RESULTS

A total of 50 runs were performed for each of five treatments
(Homogeneous, Biased-100%, Biased-50%, Biased-0%, ard Un
biased). In each run, 400 groups of 10 organisms would campet
during 75,000 Avidian time steps, apdates with evolution en-
abled. Afterwards, an ecological period of 25,000 updatiéisout
evolution would realize competition of the remaining greupl-
lowing the fastest team to populate all 400 worlds.

The results were evaluated by comparing the number of suc-

cessful attackskflls) completed per group per update within the
best run in each treatment. We also considered the fracfitmeo
50 runs that successfully evolvedparsistentsolution within the
treatment. We defined persistent solutions as those wheriegd
the last 100 updates of the ecological period, the entirailpep
tion of 400 groups carried out at least one successful att¥idk
also determined the composition of each team by calculdtiag
average Levenshteiistance(minimum number of edits required
to make two genomes equal) between all members in a group. A
larger distance suggests greater heterogeneity amongrteam
ber genomes. The resulting values for each of the treatnmests
30x 30 cell environment are shown in Table 1.

Table 1. Treatment Comparison.

Treatment Kills Persistence Distance
Homogeneous 0.53 48% 0.0%
Biased-100%  0.43 84% 4.6%
Biased-50% 0.39 64% 11.1%
Biased-0% 0.25 60% 18.0%
Unbiased 0.33 58% 2.2%

The Homogeneous treatment produced the overall best dhdivi
ual run. However, we also observed that the rate of persistén-
tions was higher in all the Heterogeneous treatments thgneiHo-
mogeneous treatment, meaning they all produced more ruhs wi
persistent solutions, even though their individual perfances were
lower. Considering only the Biased treatments, a greates jmio-
duced a more effective champion run and a higher rate ofgtersi
solutions. The Unbiased treatment did not adhere to thigrgén
trend by providing an individual run that outperformed Eid<%.

In general, we found that toward the homogeneous end of the
spectrum, groups are very good at enhancing solutions,drat ¢
pared to groups with heterogeneity, are not as effectiveqalbe
ing the search space. On the other hand, heterogeneousédrgat
find more solutions, but those solutions are not as effeavhiose
found by homogeneous groups. We also found that when pessent
with the choice of creating a homogeneous or heterogeneous g
composition, evolution opts for homogeneity, as demotestréy
our results where the best-performing heterogeneous graepe
effectively composed of functionally identical individaa
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