
Additional materials were collected by Philip McKinley at Michigan State University from various Internet sources.

Topics

We will briefly cover the following topics related to wireless and mobile networks:

- Wireless LANs
- Mobile IP
Elements of a wireless network

- **Network infrastructure**

 - **Wireless hosts**
 - laptop, smartphone
 - run applications
 - may be stationary or mobile
 - NOTE: wireless does not always mean mobility
Elements of a wireless network

- **base station**
 - Typically connected to wired network
 - Relay - responsible for sending packets between wired network and wireless host(s) in its "area" (usually one hop)
 - E.g., cell towers, 802.11 access points

- **wireless link**
 - Typically used to connect mobile(s) to base station
 - Also used as backbone link
 - Multiple access protocol coordinates link access
 - Various data rates, transmission distance
Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

- **Hidden terminal problem**
 - B, A hear each other
 - B, C hear each other
 - A, C can not hear each other means A, C unaware of their interference at B

- **Signal attenuation:**
 - B, A hear each other
 - B, C hear each other
 - A, C can not hear each other interfering at B

IEEE 802.11 Standards

- **802.11b**
 - 2.4-5 GHz unlicensed spectrum
 - up to 11 Mbps

- **802.11a**
 - 5-6 GHz range
 - up to 54 Mbps

- **802.11g**
 - 2.4-5 GHz range
 - up to 54 Mbps

- **802.11n**: multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mbps
Connecting to an Access Point

- **802.11b:**
 - 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP administrator chooses frequency for AP
 - interference is possible: channel might be same as that chosen by neighboring AP (think coffee shop)

- **host must **associate** with an AP**
 - scans channels, listening for **beacon frames** containing AP’s name (SSID) and MAC address
 - host (or the user) selects an AP
 - may perform authentication
 - host then typically uses DHCP to get IP address, subnet mask, etc. in AP’s subnet

MAC protocol: CSMA/CA (not CD)

- Like 802.3, 802.11 uses CSMA - sense before transmitting
 - Don’t transmit during ongoing transmission by other node!
- Unlike 802.3, however, 802.11 does not use collision detection! Reasons:
 - It is difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - Can’t sense all collisions in any case, due to hidden terminals, fading signal strength
 - So the goal is to **avoid collisions**: CSMA with C(ollision)A(voidance)
CSMA/CA Operation

802.11 sender
Sense channel
If idle for DIFS sec then
 transmit entire frame (no CD)
If busy then
 start random backoff timer
 timer counts down while channel idle
 NOTE: paused if channel becomes busy
 transmit when timer expires
 if no ACK received, increase random backoff
 interval, repeat

802.11 receiver
If frame is received OK
 return ACK after SIFS sec
 (ACK needed due to hidden terminal problem – another
 node sending but not heard by sender – as well as
 noise level)

CA vs. CD

- Recall 802.3 is 1-persistent
 - if two nodes sense a 3rd is sending, both nodes wait
 until idle and send unconditionally
 - If collision is detected, both stop sending (CD) and
 enter backoff protocol with small frames

- But we do not have CD, frames are sent in
 their entirety
 - So, enter backoff protocol immediately and hope
 nodes choose different numbers
 - If ACK is not received (possibly due to collision),
 double the backoff interval as in 802.3
RTS/CTS

- Optional component of 802.11 protocol
- Basic idea: allow sender to “reserve” channel rather than random access of data frames:
 - avoid collisions of long data frames
- Sender first transmits small request-to-send (RTS) packets to base station using CSMA
 - RTSs may still collide with each other (but they’re short)
- Base station broadcasts clear-to-send
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions
- NOTE: typically only applied to long frames; the default size is beyond max frame size of most WLANs

RTS-CTS Operation

[Diagram showing RTS/CTS operation with time axis and nodes A, B, and AP]
802.11 frame: addressing

Address 1: MAC address of wireless host or AP to receive this frame

Address 2: MAC address of wireless host or AP transmitting this frame

Address 3: MAC address of router interface to which AP is attached

Address 4: used only in ad hoc mode
Mobile IP

- DHCP handles cases where a laptop is closed and carried to a different network
- Mobile IP addresses how to remain connected while moving among networks
 - Standardized in 2002 (RFC 3344) and revised in 2010 (RFC 5944)
- Three main components to Mobile IP:
 - agent discovery
 - registration with home agent
 - indirect routing of datagrams

Indirect routing

- Packets forwarded by “home agent” to the current location of the mobile host:
 - Permanent address: 128.119.40.186
 - Care-of address: 79.129.13.2
 - Dest: 79.129.13.2
 - Packet sent by correspondent
 - Packet sent by home agent to foreign agent: a *packet within a packet*
 - Foreign-agent-to-mobile packet: dest: 128.119.40.186
Agent discovery

- Mobile host needs to register with an agent in the visited network to receive forwarded packets
- Agent will provide a “care of” address to the mobile node
- *Agent advertisement:* foreign agents advertise service by broadcasting ICMP messages (typefield = 9)

```
H,F bits: home and/or foreign agent
R bit: registration required
```

Mobile IP: registration example

```
visited network: 79.129.13/24
home agent
HA: 128.119.40.7

foreign agent
COA: 79.129.13.2

mobile agent
MA: 128.119.40.186

registration req.
COA: 79.129.13.2
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 9999
identification: 714
encapsulation format
....

registration reply
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 4999
identification: 714
encapsulation format
....
```

```
ICMP agent adv.
COA: 79.129.13.2

registration req.
COA: 79.129.13.2
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 9999
identification: 714
....

registration reply
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 4999
identification: 714
....
```
Packet delivery

- Packets arriving at home agent are **encapsulated** in packets with care of address and tunneled to the foreign agent.
- Foreign agent will deliver encapsulated packets to mobile host.
- If mobile host moves to another network, it will register with a new foreign agent and repeat process.

![Packet Delivery Diagram]

A few bits about IP and cellular...

- Important: Typically, only the last hop is wireless.
- Cell model enables re-use of frequencies.

MSC
- connects cells to wired tel. net.
- manages call setup
- handles mobility

cell
- covers geographical region
- base station (BS) analogous to 802.11 AP
- mobile users attach to network through BS
- air-interface: physical and link layer protocol between mobile and BS
Cellular Generations (high-level)

- New generation about every 10 years
- **1G ~ 1980s:**
 - Analog voice, circuit switched, frequency modulation
- **2G ~ 1990s:**
 - Digitized voice as well as text messaging, TDMA
- **3G ~ 2000s:**
 - Parallel access to phone network and Internet
 - Former is circuit-switched, latter is packet-switched
 - Emergence of smartphones
- **4G ~ 2010s:**
 - All-IP core, everything is packet switched
 - IP telephony, mobile Internet, television, gaming...
- **5G ~ emerging now:**
 - Multi-gigabit speeds, very fast tracking, etc., etc...

2G (voice) network architecture

![2G network architecture diagram]
3G versus 4G LTE architecture

3G

4G-LTE

IP in Cellular Networks

- Your cell phone has two IP-capable interfaces
 - Wifi - when you are near an access point
 - Cellular data - otherwise

- Cellular data mode
 - Think about your home cellular network as a huge coffee shop
 - Service provider assigns (network-internal) IP address with DHCP-like protocol when you turn on your device (leased)
 - NAT used to translate internal IP/port numbers to external IP/port numbers when accessing the Internet

- Amazing developments in the past 20 years. Stay tuned!