Decision Procedures in First Order Logic

Decision Procedures for Equality Logic

Outline

- Introduction
 - Definition, complexity
 - Reducing Uninterpreted Functions to Equality Logic
 - Using Uninterpreted Functions in proofs
 - Simplifications
- Introduction to the decision procedures
 - The framework: assumptions and Normal Forms
 - General terms and notions
 - Solving a conjunction of equalities
 - Simplifications

Basic assumptions and notations

- Input formulas are in NNF
- Input formulas are checked for satisfiability
- Formula with Uninterpreted Functions: ϕ^{UF}
- Equality formula: ϕ^E

First: conjunction of equalities

- **Input:** A conjunction of equalities and disequalities
 1. Define an equivalence class for each variable. For each equality $x = y$ unite the equivalence classes of x and y. Repeat until reach a fixed point.
 2. For each disequality $u \neq v$ if u is in the same equivalence class as v return 'UNSAT'.
 3. Return 'SAT'.
Example

- $x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1$

Is there a disequality between members of the same class?

Next: add Uninterpreted Functions

- $x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2)$

Next: Compute the Congruence Closure

- $x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2)$

Now - is there a disequality between members of the same class?

This is called the Congruence Closure

And now: consider a Boolean structure

- $x_1 = x_2 \lor (x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2))$

Syntactic case splitting: this is what we want to avoid!
Deciding Equality Logic with UFs

- Input: Equality Logic formula ϕ^{UF}
- Convert ϕ^{UF} to DNF
- For each clause:
 - Define an equivalence class for each variable and each function instance.
 - For each equality $x = y$ unite the equivalence classes of x and y. For each function symbol F, unite the classes of $F(x)$ and $F(y)$. Repeat until reach a fixed point.
 - If all disequalities are between terms from different equivalence classes, return 'SAT'.
- Return 'UNSAT'.

Basic notions

ϕ^E: $x = y \land y = z \land z \neq x$

- The Equality predicates: \{$x = y, y = z, z \neq x$\} which we can break to two sets: $E_\times =$\{$x = y, y = z$\}, $E_\neq =$\{$z \neq x$\}
- The Equality Graph $G^E(\phi^E) = (V, E_\times, E_\neq)$ (a.k.a “E-graph”)

Basic notions

ϕ_1^E: $x = y \land y = z \land z \neq x$ unsatisfiable
ϕ_2^E: $x = y \land y = z \lor z \neq x$ satisfiable

The graph $G^E(\phi^E)$ represents an abstraction of ϕ^E. It ignores the Boolean structure of ϕ^E.

Basic notions

- Dfn: a path made of E_\times edges is an Equality Path. We write $x =^* z$ if there is an equality path from x to z
- Dfn: a path made of E_\times edges and exactly one edge from E_\neq is a Disequality Path. We write $x \neq^* y$ if there is a disequality path from x to y.

Basic notions

- **Dfn.** A cycle with exactly one disequality edge is a **Contradictory Cycle.**
- In a Contradictory Cycle, for every two nodes x, y it holds that $x \neq^* y$ and $x \neq^* y$.

Basic notions

- **Thm:** Every Contradictory Cycle is either simple or contains a simple contradictory cycle

Simplifications, again

- Let S be the set of edges that are not part of any Contradictory Cycle
- **Thm:** replacing all solid edges in S with False, and all dashed edges in S with True, preserves satisfiability
Simplification: example

\[(x_1 = x_2 \lor x_1 = x_3) \land (x_1 \neq x_3 \lor x_2 = x_3)\]
\[(x_1 = x_2 \lor \text{True}) \land (x_1 \neq x_3 \lor x_2 = x_3)\]
\[\neg \text{False} \lor \text{True} = \text{True}\]

Satisfiable!

Syntactic vs. Semantic splits

- So far we saw how to handle disjunctions through syntactic case-splitting.
- There are much better ways to do it than simply transforming it to DNF:
 - Semantic Tableaux,
 - SAT-based splitting,
 - others…
- We will investigate some of these methods later in the course.

Now we start looking at methods that split the search space instead. This is called semantic splitting.

SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space etc.