Theorem 1. Let A be an array having n integers, then the running time of BuildMaxHeap(A) is $\Theta(n)$.

Proof. We denote the total running time as T. We know that the algorithm of BuildMaxHeap calls the function MaxHeapify(A, i) for $i = n/2$ down to 1. So we can directly obtain $T = \Omega(n)$.

It is also easy to know that the running time of MaxHeapify(A, i) is bounded by $O(h_i)$, where h_i denotes the height of the sub-tree rooted at the node i. Thus, we have

\[T = O(\sum_{i=n/2}^{1} h_i). \tag{1} \]

For convenience, we denote $k = \log n$ (the base is 2). So we have one node with $h_i = k$ (i.e., the root), two nodes with $h_i = k - 1$, four nodes with $h_i = k - 2$, and so on. In total, we rewrite (1) as:

\[T = O(\sum_{j=0}^{k-1} 2^j \times (k - j)). \tag{2} \]

In order to calculate $\sum_{j=0}^{k-1} 2^j \times (k - j)$, we express the sum as

\[A = k + 2 \times (k - 1) + 2^2 \times (k - 2) + \cdots + 2^{k-2} \times 2 + 2^{k-1} \times 1, \tag{3} \]
\[2A = 2 \times k + 2^2 \times (k - 1) + \cdots + 2^{k-1} \times 2 + 2^k \times 1. \tag{4} \]

(4) is directly obtained by doubling both sides of (3). Then we have

\[A = (4) - (3) = -k + 2 + 2^2 + \cdots + 2^{k-1} + 2^k = \Theta(n). \tag{5} \]

Back to (2), we have $T = O(A) = O(n)$. Since we have $T = \Omega(n)$ before, we know $T = \Theta(n)$. \qed

Remark 1. We have another solution for proving $T = O(n)$. It is easy to know $h_i \leq \log \frac{n}{i} + 1$. Then

\[A \leq \sum_{i=n/2}^{1} \left(\log \frac{n}{i} + 1 \right) \]
\[= \frac{n}{2} \log n - \sum_{i=1}^{n/2} \log i + n/2. \tag{6} \]

For $\sum_{i=1}^{n/2} \log i$, we can use integration method, i.e.,

\[\sum_{i=1}^{n/2} \log i \geq \int_{x=1}^{n/2} \log x \, dx = \frac{n}{2} \log \frac{n}{2} - \frac{n/2 - 1}{\ln 2}. \tag{7} \]

Plug (7) into the right hand of (6), we have $A = O(n)$. Thus, $T = O(n)$.