Outline

1. Single Source Shortest Path Problem
2. Dijkstra’s Algorithm
3. Bellman-Ford Algorithm
4. All Pairs Shortest Path (APSP) Problem
5. Floyd-Warshall Algorithm
Single Source Shortest Path (SSSP) Problem

Input: A directed graph $G = (V, E)$; an edge weight function $w : E \rightarrow R$, and a start vertex $s \in V$.
Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \rightarrow u$ path.
Single Source Shortest Path (SSSP) Problem

Input: A directed graph $G = (V, E)$; an edge weight function $w : E \rightarrow \mathbb{R}$, and a start vertex $s \in V$.
Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \rightarrow u$ path.

There are several different versions:

- G can be directed or undirected.
Single Source Shortest Path (SSSP) Problem

Input: A directed graph $G = (V, E)$; an edge weight function $w : E \to R$, and a start vertex $s \in V$.
Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \to u$ path.

There are several different versions:

- G can be directed or undirected.
- All edge weights are 1.
Single Source Shortest Path Problem

Input: A directed graph $G = (V, E)$; an edge weight function $w : E \rightarrow R$, and a start vertex $s \in V$.

Find: for each vertex $u \in V$, $\delta(s, u)$ = the length of the shortest path from s to u, and the shortest $s \rightarrow u$ path.

There are several different versions:

- G can be **directed** or **undirected**.
- All edge weights are 1.
- All edge weights are **positive**.
Single Source Shortest Path (SSSP) Problem

Input: A directed graph $G = (V, E)$; an edge weight function $w : E \rightarrow R$, and a start vertex $s \in V$.
Find: for each vertex $u \in V$, $\delta(s, u)$ = the length of the shortest path from s to u, and the shortest $s \rightarrow u$ path.

There are several different versions:

- G can be directed or undirected.
- All edge weights are 1.
- All edge weights are positive.
- Edge weights can be positive or negative, but there are no cycles with negative total weight (why?).
Note 1: There are natural applications where edge weights can be negative.
SSSP Problem

- Note 1: There are natural applications where edge weights can be negative.
- Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s, \ast)$ indefinitely.
Note 1: There are natural applications where edge weights can be negative.

Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s, \ast)$ indefinitely.

Then the problem is not well defined. We will need an algorithm to detect such condition.
SSSP Problem

- **Note 1**: There are natural applications where edge weights can be negative.

- **Note 2**: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s, \ast)$ indefinitely.

Then **the problem is not well defined.** We will need an algorithm to detect such condition.

For **the case when $w(e) = 1$ for all edges**, we have shown that the problem can be solved by BFS in $\Theta(n + m)$ time.
SSSP Problem

Note 1: There are natural applications where edge weights can be negative.

Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s, *)$ indefinitely.

Then the problem is not well defined. We will need an algorithm to detect such condition.

For the case when $w(e) = 1$ for all edges, we have shown that the problem can be solved by BFS in $\Theta(n + m)$ time.

We next discuss algorithms for more general cases.
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.
SSSP Problem: Positive Edge Weight

We consider the case where \(G \) is directed and \(w(e) \geq 0 \) for all \(e \in E \). If \(G \) is undirected, the algorithm is almost identical.

General Description:

- Each vertex \(u \in V \) has a variable \(d[u] \), which is an upper bound of \(\delta(s, u) \).
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

- Each vertex $u \in V$ has a variable $d[u]$, which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

- Each vertex $u \in V$ has a variable $d[u]$, which is an upper bound of $\delta(s,u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s,u)$ has been computed. Initially S contains s only and $d[s] = \delta(s,s) = 0$.
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

- Each vertex $u \in V$ has a variable $d[u]$, which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in $V - S$ are stored in a priority queue Q. $d[u]$ is the key value for Q.
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

- Each vertex $u \in V$ has a variable $d[u]$, which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in $V - S$ are stored in a priority queue Q. $d[u]$ is the key value for Q.
- In each iteration, the vertex in Q with min $d[u]$ value is included into S.

©Hu Ding (Michigan State University) CSE 331 Algorithm and Data Structures 4 / 35
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

- Each vertex $u \in V$ has a variable $d[u]$, which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in $V - S$ are stored in a priority queue Q. $d[u]$ is the key value for Q.
- In each iteration, the vertex in Q with min $d[u]$ value is included into S.
- For vertex $v \in Q$ where $u \rightarrow v \in E$, $d[v]$ is updated.
SSSP Problem: Positive Edge Weight

We consider the case where G is directed and $w(e) \geq 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

- Each vertex $u \in V$ has a variable $d[u]$, which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in $V - S$ are stored in a priority queue Q. $d[u]$ is the key value for Q.
- In each iteration, the vertex in Q with min $d[u]$ value is included into S.
- For vertex $v \in Q$ where $u \rightarrow v \in E$, $d[v]$ is updated.
- When Q is empty, the algorithm stops.
To implement the algorithm, we need a data structure.

Priority Queue

A **Priority Queue** is a data structure Q. It consists of a set of **items**. Each item has a **key**. The data structure supports the following operations.

- **Insert**(Q, x): insert an item x into Q.
- **Extract-Min**(Q): remove and return the item with minimum key value.
- **Min**(Q): return the item with minimum key value.
- **Decrease-Key**(Q, x, k): decrease the key value of an item x to k.

By using a Heap data structure, priority queue can be implemented so that:

- **Min**(Q) takes $O(1)$ time.
- All other three operations take $O(\log n)$ time (n is the number of items in Q).
To implement the algorithm, we need a data structure.

Priority Queue

A Priority Queue is a data structure Q. It consists of a set of items. Each item has a key. The data structure supports the following operations.

- **Insert**(Q, x): insert an item x into Q.
- **Extract-Min**(Q): remove and return the item with minimum key value.
- **Min**(Q): return the item with minimum key value.
- **Decrease-Key**(Q, x, k): decrease the key value of an item x to k.

By using a Heap data structure, priority queue can be implemented so that:

- **Min**(Q) takes $O(1)$ time.
- All other three operations take $O(\log n)$ time (n is the number of items in Q).
Priority Queue

To implement the algorithm, we need a data structure.

A **Priority Queue** is a data structure Q. It consists of a set of items. Each item has a key. The data structure supports the following operations.

- **Insert**(Q, x): insert an item x into Q.
- **Extract-Min**(Q): remove and return the item with minimum key value.
- **Min**(Q): return the item with minimum key value.
- **Decrease-Key**(Q, x, k): decrease the key value of an item x to k.

By using a **Heap** data structure, priority queue can be implemented so that:

- **Min**(Q) takes $O(1)$ time.
- All other three operations take $O(\log n)$ time (n is the number of items in Q.)
Outline

1. Single Source Shortest Path Problem
2. Dijkstra’s Algorithm
3. Bellman-Ford Algorithm
4. All Pairs Shortest Path (APSP) Problem
5. Floyd-Warshall Algorithm
Dijkstra’s Algorithm

Main Data structures:

- G: Adjacency List Representation.

```plaintext
Initialize (G, s)
for each u ∈ V do
    d[u] = ∞; π[u] = NIL;
    d[s] = 0;
```
Dijkstra’s Algorithm

Main Data structures:

- \(G \): Adjacency List Representation.
- For Each vertex \(u \in V \):
 - \(\text{Adj}[u] \): the adjacency list for \(u \)
 - \(d[u] \): An upper bound for \(\delta(s, u) \)
 - \(\pi[u] \): indicates the first vertex after \(u \) in the shortest \(s \rightarrow u \) path
- \(S \): A set that holds the finished vertices.
Dijkstra’s Algorithm

Main Data structures:

- G: Adjacency List Representation.

For Each vertex $u \in V$:

- $\text{Adj}[u]$: the adjacency list for u
- $d[u]$: An upper bound for $\delta(s, u)$
- $\pi[u]$: indicates the first vertex after u in the shortest $s \rightarrow u$ path

- S: A set that holds the finished vertices.

- Q: A priority queue that holds the vertices not in S.
Dijkstra’s Algorithm

Main Data structures:

- G: Adjacency List Representation.
- For Each vertex $u \in V$:
 - $\text{Adj}[u]$: the adjacency list for u
 - $d[u]$: An upper bound for $\delta(s, u)$
 - $\pi[u]$: indicates the first vertex after u in the shortest $s \to u$ path
- S: A set that holds the finished vertices.
- Q: A priority queue that holds the vertices not in S.

Initialize(G, s)

1. for each $u \in V$ do
2. $d[u] = \infty; \pi[u] = \text{NIL}$;
3. $d[s] = 0$
Dijkstra’s Algorithm

Relax\((u, v, w(\ast))\)

1. if \(d[v] > d[u] + w(u \rightarrow v)\) do
2. \(d[v] = d[u] + w(u \rightarrow v)\)
3. \(\pi[v] = u\)
Dijkstra’s Algorithm

\textbf{Dijkstra}(G, s, w(*))

1. \textbf{Initialize}(G, s)
2. \(S \leftarrow \emptyset \)
3. \(Q \leftarrow V \)
4. while \(Q \neq \emptyset \) do
5. \hspace{1em} \(u \leftarrow \text{Extract-Min}(Q) \)
6. \hspace{1em} \(S \leftarrow S \cup \{u\} \)
7. \hspace{1em} for each \(v \in Adj[u] \) do
8. \hspace{2em} \textbf{Relax}(u, v, w(*))
9. \hspace{1em} end for
10. end while
Dijkstra’s Algorithm: Example

The number inside each circle indicates the d value.
Dijkstra’s Algorithm: Analysis

- **Initialize**: $\Theta(n)$

- **Relax** This is actually the decrease-key operation of the priority queue, which takes $O(\log n)$ time.

- Line 1: $\Theta(n)$

- Line 2: Initialize an empty set takes $O(1)$ time.

- Line 3: Insert n items into Q, $\Theta(n)$ time.

- Line 4: While loop (not counting the time for the for loop, lines 7-9):
 - The loop iterates n times. (Q has n items in it initially. Each iteration removes one item from Q. Nothing is added into it. The loop stops when Q is empty.)
 - In the loop body, Extract-Min takes $O(\log n)$ time. The line 6 takes $O(1)$ time.
 - Thus the total run time of the while loop (not counting lines 7-9) is $O(n \log n)$.
Dijkstra’s Algorithm: Analysis

The total runtime of the lines 7-9:

- Each entry in $Adj[u]$ is processed once.
- When it is processed, we call Relax once.
- Thus the processing of each entry takes $O(\log n)$ time.
- There are a total of $\Theta(m)$ entries in all $Adj[u]$’s (m is the number of edges in G).
- So the total run time for lines 7-9 is: $O(m \log n)$ time.
Dijkstra’s Algorithm: Analysis

The total runtime of the lines 7-9:

- Each entry in $Adj[u]$ is processed once.
- When it is processed, we call Relax once.
- Thus the processing of each entry takes $O(\log n)$ time.
- There are a total of $\Theta(m)$ entries in all $Adj[u]$’s (m is the number of edges in G).
- So the total run time for lines 7-9 is: $O(m \log n)$ time.

Since this term ($O(m \log n)$) dominates all other terms, the whole algorithm takes $O(m \log n)$ time.
SSSP Problem: Negative Edge Weight

If the edge weight of G can be negative, Dijkstra’s algorithm doesn’t work:
1. Single Source Shortest Path Problem
2. Dijkstra’s Algorithm
3. Bellman-Ford Algorithm
4. All Pairs Shortest Path (APSP) Problem
5. Floyd-Warshall Algorithm
Bellman-Ford Algorithm

Bellman-Ford\((G, s, w(\ast))\)

1. Initialize\((G, s)\)
2. for \(i = 1\) to \(n\) do
3. for each \(e = (u, v) \in E\) do
4. Relax\((u, v, w(\ast))\)
5. for each \(e = (u, v) \in E\) do
6. if \(d[v] > d[u] + w(u \rightarrow v)\) output “\(G\) has a negative cycle”
7. \(d[u]\) is the length of the shortest \(s \rightarrow u\) path for each \(u \in V\)
Bellman-Ford Algorithm

Bellman-Ford($G, s, w(*)$)

1. Initialize(G, s)
2. for $i = 1$ to n do
3. for each $e = (u, v) \in E$ do
4. Relax($u, v, w(*)$)
5. for each $e = (u, v) \in E$ do
6. if $d[v] > d[u] + w(u \rightarrow v)$ output “G has a negative cycle”
7. $d[u]$ is the length of the shortest $s \rightarrow u$ path for each $u \in V$

Analysis:

- This time, we don’t need Extract-Min operation. So we don’t need priority queue anymore. Relax now takes $O(1)$ time.
Bellman-Ford Algorithm

Bellman-Ford\((G, s, w(\ast))\)

1. Initialize\((G, s)\)
2. for \(i = 1\) to \(n\) do
3. for each \(e = (u, v) \in E\) do
4. \hspace{1em} Relax\((u, v, w(\ast))\)
5. for each \(e = (u, v) \in E\) do
6. \hspace{1em} if \(d[v] > d[u] + w(u \rightarrow v)\) output “\(G\) has a negative cycle”
7. \(d[u]\) is the length of the shortest \(s \rightarrow u\) path for each \(u \in V\)

Analysis:

- This time, we don’t need Extract-Min operation. So we don’t need priority queue anymore. Relax now takes \(O(1)\) time.
- The loop iterates \(n \cdot m\) times. The loop body takes \(O(1)\) time. Thus the algorithm takes \(\Theta(nm)\) time.
Why Bellman-Ford algorithm works?

Path-Relaxation Property

Let $G = (V, E)$ be a directed graph with edge weight function $w(*)$ and the starting vertex s. Consider any shortest path $P = ⟨v_0, v_1, \ldots, v_k⟩$ from $s = v_0$ to a vertex v_k. If G is initialized by $\text{Initialize}(G, s)$ and then a sequence of relaxation steps occurs that includes, in order, relaxations of the edges $v_0 \rightarrow v_1$, $v_1 \rightarrow v_2$, \ldots, $v_{k-1} \rightarrow v_k$, then $d[v_k] = \delta(s, v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur.
Why Bellman-Ford algorithm works?

Path-Relaxation Property

Let $G = (V, E)$ be a directed graph with edge weight function $w(\cdot)$ and the starting vertex s. Consider any shortest path $P = \langle v_0, v_1, \ldots, v_k \rangle$ from $s = v_0$ to a vertex v_k. If G is initialized by Initialize(G, s) and then a sequence of relaxation steps occurs that includes, in order, relaxations of the edges $v_0 \rightarrow v_1$, $v_1 \rightarrow v_2$, \ldots, $v_{k-1} \rightarrow v_k$, then $d[v_k] = \delta(s, v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur.

Proof: We show by induction that after the ith edge of path P is relaxed, we have $d[v_i] = \delta(s, v_i)$.

© Hu Ding (Michigan State University) CSE 331 Algorithm and Data Structures
Bellman-Ford Algorithm: Correctness Proof

Why Bellman-Ford algorithm works?

Path-Relaxation Property

Let $G = (V, E)$ be a directed graph with edge weight function $w(\ast)$ and the starting vertex s. Consider any shortest path $P = \langle v_0, v_1, \ldots, v_k \rangle$ from $s = v_0$ to a vertex v_k. If G is initialized by Initialize(G, s) and then a sequence of relaxation steps occurs that includes, in order, relaxations of the edges $v_0 \rightarrow v_1, v_1 \rightarrow v_2, \ldots, v_{k-1} \rightarrow v_k$, then $d[v_k] = \delta(s, v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur.

Proof: We show by induction that after the ith edge of path P is relaxed, we have $d[v_i] = \delta(s, v_i)$.

Base case $i = 0$: Before any edges of P have been relaxed, from the Initialization, we have $d[v_0] = d[s] = 0 = \delta(s, s)$. Because the relaxation never increases the $d[\ast]$ value, $d[s] = 0$ always holds. So the statement is true for the base case.
Proof (continued):
Induction step: Assume \(d[v_{i-1}] = \delta(s, v_{i-1}) \), and we examine the relaxation of the edge \(v_{i-1} \rightarrow v_i \). Because \(P \) is the shortest \(s \rightarrow v_i \) path, after the relaxation of the edge \(v_{i-1} \rightarrow v_i \), we will have \(d[v_i] = \delta(s, v_i) \). Again, because relaxation never increases \(d[\ast] \) value, \(d[v_i] = \delta(s, v_i) \) remains valid afterward.
Lemma 24.2

Let $G = (V, E)$ be a directed graph with edge weight function $w(\ast)$ and the starting vertex s. Assuming G has no negative-weight cycles. Then after $|V| - 1$ iterations of the for loop of Bellman-Ford algorithm, we have $d[v] = \delta(s, v)$ for all vertices in v that are reachable from s.
Lemma 24.2

Let $G = (V, E)$ be an directed graph with edge weight function $w(\ast)$ and the starting vertex s. Assuming G has no negative-weight cycles. Then after $|V| - 1$ iterations of the for loop of Bellman-Ford algorithm, we have $d[v] = \delta(s, v)$ for all vertices in v that are reachable from s.

Proof: Consider any vertex v that is reachable from s. Let $P = \langle v_0, v_1, \ldots, v_k \rangle$ be the shortest path from $s = v_0$ to $v = v_k$. Because G has no negative-weight cycles, P contains no cycles. Thus P has at most $|V| - 1$ edges, namely $k \leq |V| - 1$.
Lemma 24.2

Let $G = (V, E)$ be an directed graph with edge weight function $w(\ast)$ and the starting vertex s. Assuming G has no negative-weight cycles. Then after $|V| - 1$ iterations of the for loop of Bellman-Ford algorithm, we have $d[v] = \delta(s, v)$ for all vertices in v that are reachable from s.

Proof: Consider any vertex v that is reachable from s. Let $P = \langle v_0, v_1, \ldots, v_k \rangle$ be the shortest path from $s = v_0$ to $v = v_k$. Because G has no negative-weight cycles, P contains no cycles. Thus P has at most $|V| - 1$ edges, namely $k \leq |V| - 1$.

Each of the $|V| - 1$ iterations of the for loop relaxes all $|E|$ edges. Among the edges relaxed in the ith iteration is the edge $v_{i-1} \to v_i$. According to the Path-Relaxation Property, $d[v] = d[v_k] = \delta(s, v_k) = \delta(s, v)$.
Correctness of Bellman-Ford Algorithm:

- If G contains no negative cycle, then by Lemma 24.2, the algorithm computes $\delta(s, v)$ for all v reachable from s.
Correctness of Bellman-Ford Algorithm:

- If G contains no negative cycle, then by Lemma 24.2, the algorithm computes $\delta(s, v)$ for all v reachable from s.

- If G has a negative-weight cycle C that is reachable from s, then for any vertex v on C, $\delta(s, v) = -\infty$. So the condition of the if statement at line 6 will be true for such vertex v. The algorithm will correctly output “G has a negative cycle”.
1. Single Source Shortest Path Problem
2. Dijkstra’s Algorithm
3. Bellman-Ford Algorithm
4. All Pairs Shortest Path (APSP) Problem
5. Floyd-Warshall Algorithm
All Pairs Shortest Path (APSP) Problem

Input: A directed graph $G = (V, E)$ and a weight function $w : E \to R$.
Output: for each pair $u, v \in V$, find $\delta(u, v) =$ the length of the shortest path from u to v, and the shortest $u \to v$ path.
All Pairs Shortest Path (APSP) Problem

Input: A directed graph $G = (V, E)$ and a weight function $w : E \to R$.
Output: for each pair $u, v \in V$, find $\delta(u, v) = \text{the length of the shortest path from } u \text{ to } v$, and the shortest $u \to v$ path.

- If $w(e) = 1$ for all $e \in E$:
 - Call BFS n times, once for each vertex u.
 - Total runtime: $\Theta(n(n + m))$.

© Hu Ding (Michigan State University) CSE 331 Algorithm and Data Structures 21 / 35
All Pairs Shortest Path (APSP) Problem

Input: A directed graph $G = (V, E)$ and a weight function $w : E \rightarrow R$.
Output: for each pair $u, v \in V$, find $\delta(u, v) =$ the length of the shortest path from u to v, and the shortest $u \rightarrow v$ path.

- If $w(e) = 1$ for all $e \in E$:
 - Call BFS n times, once for each vertex u.
 - Total runtime: $\Theta(n(n + m))$.
- If $w(e) \geq 0$ for all $e \in E$:
 - Call Dijkstra’s algorithm n times, once for each vertex u.
 - Total runtime: $\Theta(nm \log n)$.
All Pairs Shortest Path (APSP) Problem

Input: A directed graph $G = (V, E)$ and a weight function $w : E \to R$.
Output: for each pair $u, v \in V$, find $\delta(u, v) = \text{the length of the shortest path from } u \text{ to } v$, and the shortest $u \to v$ path.

- If $w(e) = 1$ for all $e \in E$:
 - Call BFS n times, once for each vertex u.
 - Total runtime: $\Theta(n(n + m))$.

- If $w(e) \geq 0$ for all $e \in E$:
 - Call Dijkstra’s algorithm n times, once for each vertex u.
 - Total runtime: $\Theta(nm \log n)$.

- If $w(e)$ can be negative:
 - Call Bellman-Ford algorithm n times, once for each vertex u.
 - Total runtime: $\Theta(n^2m)$. Since $m = \Theta(n^2)$ in the worst case, the runtime can be $\Theta(n^4)$.

© Hu Ding (Michigan State University) CSE 331 Algorithm and Data Structures 21 / 35
We will try to improve the algorithm for the last case.
We will try to improve the algorithm for the last case.

Since we need to compute $\delta(u, v)$ for all $u, v \in V$, we will use adjacency matrix representation for G.

Let $w[1..n, 1..n]$ be a 2D array:

$$w[i, j] = w_{ij} = \begin{cases}
0 & \text{if } i = j \\
 w[i, j] & \text{if } i \neq j \text{ and } i \rightarrow j \in E \\
\infty & \text{if } i \neq j \text{ and } i \rightarrow j \notin E
\end{cases}$$
We will try to improve the algorithm for the last case.

Since we need to compute $\delta(u, v)$ for all $u, v \in V$, we will use adjacency matrix representation for G.

Let $w[1..n, 1..n]$ be a 2D array:

$$w[i, j] = w_{ij} = \begin{cases}
0 & \text{if } i = j \\
\inf & \text{if } i \neq j \text{ and } i \rightarrow j \notin E \\
w[i, j] & \text{if } i \neq j \text{ and } i \rightarrow j \in E
\end{cases}$$

We want to compute an array $D[1..n, 1..n]$ such that:

$$D[i, j] = d_{ij} = \delta(i, j)$$
We assume G contains no negative cycles for now.
We assume G contains no negative cycles for now.
Define: $d_{ij}^{(t)} = \text{the length of the shortest } i \rightarrow j \text{ path that contains at most } t \text{ edges.}$
We assume G contains no negative cycles for now.

Define: $d^{(t)}_{ij} = \text{the length of the shortest } i \rightarrow j \text{ path that contains at most } t \text{ edges.}$

Then:

$$d^{(0)}_{ij} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$
We assume G contains no negative cycles for now.

Define: $d_{ij}^{(t)}$ = the length of the shortest $i \rightarrow j$ path that contains at most t edges.

Then:

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

$$d_{ij}^{(1)} = w[i,j] = \begin{cases} 0 & \text{if } i = j \\ w[i,j] & \text{if } i \neq j \text{ and } i \rightarrow j \in E \\ \infty & \text{if } i \neq j \text{ and } i \rightarrow j \notin E \end{cases}$$
Since G contains no negative cycles, we have:

$$\delta(i, j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} \ldots$$
Since G contains no negative cycles, we have:

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} \ldots$$

This is because:

- If the shortest $i \rightarrow j$ path P contains $\geq n$ edges, it must contains a cycle C (since G has only n vertices).

- Since G has no negative cycles, we can delete C from P, without increasing the length, to get another $i \rightarrow j$ path P' with fewer edges.
Since G contains no negative cycles, we have:

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} \ldots$$

This is because:

- If the shortest $i \to j$ path P contains $\geq n$ edges, it must contain a cycle C (since G has only n vertices).
- Since G has no negative cycles, we can delete C from P, without increasing the length, to get another $i \to j$ path P' with fewer edges.
- So the shortest path contains at most $n - 1$ edges.
All we have to do is to compute $d_{ij}^{(n-1)}$.
All we have to do is to compute $d_{ij}^{(n-1)}$.

We need to find a recursive formula for $d_{ij}^{(n-1)}$:

\begin{align*}
d_{ij}^{(t)} &= \min \{d_{ij}^{(t-1)} \cdot \min_{1 \leq k \leq n} \left(1 + W_{kj} \right) \cdot \min_{1 \leq k \leq n} \left(2 + W_{kj} \right) \}
\end{align*}
All we have to do is to compute $d_{ij}^{(n-1)}$.

We need to find a recursive formula for $d_{ij}^{(n-1)}$:

$$d_{ij}^{(t)} = \min \{ d_{ij}^{(t-1)}, \min \{ d_{ik}^{(t-1)} + W[k,j] \mid 1 \leq k \leq n \} \}$$
APSP Problem: Negative Edge weight

- All we have to do is to compute $d_{ij}^{(n-1)}$.
- We need to find a recursive formula for $d_{ij}^{(n-1)}$:

$$d_{ij}^{(t)} = \min\left\{d_{ij}^{(t-1)}, \min_{1 \leq k \leq n}\left\{d_{ik}^{(t-1)} + W[k,j]\right\}\right\}$$

Case (1) The shortest $i \rightarrow j$ path actually only contains $t-1$ edges, so its length is $d_{ij}^{(t-1)}$.
Case (2) The shortest $i \rightarrow j$ path P contains t edges. Let k be the vertex on P right before reaching j.

The weight of the last edge is $W[k,j]$. The portion P' of P from i to k is the shortest $i \rightarrow k$ path containing at most $t - 1$ edges. The length of P' is $d^{(t-1)}_{ik}$.

(Do you realize that this is the Optical Substructure Property for this problem? We are using dynamic programming!)

$$c_{ij} = \min_{1 \leq k \leq n} \{d^{(t-1)}_{ik} + W[k,j]\}$$
Case (2) The shortest $i \rightarrow j$ path P contains t edges, Let k be the vertex on P right before reaching j. The weight of the last edge is $W[k, j]$. The portion P' of P from i to k is the shortest $i \rightarrow k$ path containing at most $t - 1$ edges. The length of P' is $d_{ik}^{(t-1)}$. (Do you realize that this is the Optical Substructure Property for this problem? We are using dynamic programming!)

The term (1) can be re-written as $d_{ij}^{(t-1)} + 0 = d_{ij}^{(t-1)} + W[j, j]$. It can be included into the term (2). Thus:

$$d_{ij}^{(t)} = \min_{1 \leq k \leq n} \{ d_{ik}^{(t-1)} + W[k, j] \}$$
APSP Problem: Negative Edge weight

For \(t = 1, 2, \ldots \) define:

\[
D^{(t)} = (d_{ij}^{(t)})_{1 \leq i, j \leq n}
\]

Then \(D^{(1)} = (d_{ij}^{(1)})_{1 \leq i, j \leq n} = W[1..n, 1..n] \) = the input adjacency matrix.
APSP Problem: Negative Edge weight

For \(t = 1, 2, \ldots \) define:

\[
D^{(t)} = (d^{(t)}_{ij})_{1 \leq i, j \leq n}
\]

Then \(D^{(1)} = (d^{(1)}_{ij})_{1 \leq i, j \leq n} = W[1..n, 1..n] = \) the input adjacency matrix.

Matrix Operator \(\otimes \)

Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be two \(n \times n \) matrices. Define:

\[
C = (c_{ij}) = A \otimes B
\]

where

\[
c_{ij} = \min_{1 \leq k \leq n} \{a_{ik} + b_{kj}\}
\]
APSP Problem: Negative Edge weight

For \(t = 1, 2, \ldots \) define:

\[
D^{(t)} = (d_{ij}^{(t)})_{1 \leq i, j \leq n}
\]

Then \(D^{(1)} = (d_{ij}^{(1)})_{1 \leq i, j \leq n} = W[1..n, 1..n] = \) the input adjacency matrix.

Matrix Operator \(\otimes \)

Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be two \(n \times n \) matrices. Define:

\[
C = (c_{ij}) = A \otimes B
\]

where

\[
c_{ij} = \min_{1 \leq k \leq n} \{a_{ik} + b_{kj}\}
\]

It is easy to see:

\[
D^{(t)} = D^{(t-1)} \otimes W
\]
Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \ldots$
Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \ldots$
- If $D^{(n-1)} = D^{(n)}$, then $D^{(n+1)} = D^{(n)} \otimes W = D^{(n-1)} \otimes W = D^{(n)}$. Thus:
 $D^{(n-1)} = D^{(n)} = D^{(n+1)} \ldots$
Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)}$.
- If $D^{(n-1)} = D^{(n)}$, then $D^{(n+1)} = D^{(n)} \otimes W = D^{(n-1)} \otimes W = D^{(n)}$. Thus: $D^{(n-1)} = D^{(n)} = D^{(n+1)}$.
- If G has a negative cycle C, let i, j be two vertices in on C. Then $\delta(i, j) = -\infty$. Therefore, $D_{ij}^{(t)}$ will go to $-\infty$ when $t \to \infty$. Thus, in this case $D^{(n-1)} \neq D^{(n)}$.

Hence, G contains a negative cycle if and only if $D^{(n-1)} \neq D^{(n)}$.

© Hu Ding (Michigan State University) CSE 331 Algorithm and Data Structures 28 / 35
APSP Problem: Negative Edge weight

Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \ldots$
- If $D^{(n-1)} = D^{(n)}$, then $D^{(n+1)} = D^{(n)} \otimes W = D^{(n-1)} \otimes W = D^{(n)}$. Thus: $D^{(n-1)} = D^{(n)} = D^{(n+1)} \ldots$
- If G has a negative cycle C, let i, j be two vertices in on C. Then $\delta(i, j) = -\infty$. Therefore, $D^{(t)}_{ij}$ will go to $-\infty$ when $t \to \infty$. Thus, in this case $D^{(n-1)} \neq D^{(n)}$.
- Hence G contains a negative cycle if and only if $D^{(n-1)} \neq D^{(n)}$.
APSP Problem: Negative Edge weight

SimpleAPSA(W) (W is the input adjacency matrix.)

1. $D^{(1)} = W$
2. for $t = 2$ to n do
 3. compute $D^{(t)} = D^{(t-1)} \otimes W$
4. if $D^{(n-1)} = D^{(n)}$ output solution matrix $D^{(n-1)}$
5. else output “G contains negative cycles”

Analysis: \otimes takes $\Theta(n^3)$ time. The loop iterates n times. So total runtime is $\Theta(n^4)$.
APSP Problem: Negative Edge weight

SimpleAPSA(W) (W is the input adjacency matrix.)

1. $D^{(1)} = W$
2. **for** $t = 2$ **to** n **do**
3. compute $D^{(t)} = D^{(t-1)} \otimes W$
4. **if** $D^{(n-1)} = D^{(n)}$ **output** solution matrix $D^{(n-1)}$
5. **else output** “G contains negative cycles”

Analysis:

- \otimes takes $\Theta(n^3)$ time.
APSP Problem: Negative Edge weight

SimpleAPSA\((W)\) \((W\) is the input adjacency matrix.)

1. \(D^{(1)} = W\)
2. \textbf{for} \(t = 2\) \textbf{to} \(n\) \textbf{do}
3. \hspace{2em} compute \(D^{(t)} = D^{(t-1)} \otimes W\)
4. \hspace{2em} \textbf{if} \(D^{(n-1)} = D^{(n)}\) \textbf{output} solution matrix \(D^{(n-1)}\)
5. \hspace{2em} \textbf{else} \textbf{output} “\(G\) contains negative cycles”

Analysis:

- \(\otimes\) takes \(\Theta(n^3)\) time.
- The loop iterates \(n\) times. So total runtime is \(\Theta(n^4)\).
We can do better than this. It can be shown \otimes is associative. Namely:

$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$
We can do better than this. It can be shown \(\otimes \) is associative. Namely:

\[
A \otimes (B \otimes C) = (A \otimes B) \otimes C
\]

So we can compute \(D^{(i)} \) by repeated squaring:

\[
D^{(2)} = D^{(1)} \otimes D^{(1)}, \\
D^{(4)} = D^{(2)} \otimes D^{(2)}, \\
D^{(8)} = D^{(4)} \otimes D^{(4)} \ldots
\]
APSP Problem

We can do better than this. It can be shown \otimes is associative. Namely:

$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$

So we can compute $D^{(i)}$ by repeated squaring: $D^{(2)} = D^{(1)} \otimes D^{(1)}$, $D^{(4)} = D^{(2)} \otimes D^{(2)}$, $D^{(8)} = D^{(4)} \otimes D^{(4)} \ldots$

FasterAPSA(W)

1. $k = \lceil \log_2(n - 1) \rceil$ (k is the smallest integer such that $2^k \geq (n - 1)$.)

2. Compute $D^{(2)}$, $D^{(4)}$, $D^{(8)} \ldots D^{(2^k)}$, $D^{(2^{k+1})}$ by repeated squaring.

3. If $D^{(2^k)} = D^{(2^{k+1})}$ output solution matrix $D^{(2^k)}$

4. Else output “G contains negative cycles”
Analysis:

- \(D^{(2^k)} = D^{(2^{k+1})} \) implies \(D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})} \). So in this case \(D^{(2^k)} = D^{(n-1)} \) is the solution matrix.
Analysis:

- $D^{(2^k)} = D^{(2^{k+1})}$ implies $D^{(n-1)} = D^{(n)} = \ldots = D^{(2^k)} = \ldots = D^{(2^{k+1})}$. So in this case $D^{(2^k)} = D^{(n-1)}$ is the solution matrix.
- $D^{(2^k)} \neq D^{(2^{k+1})}$ implies $D^{(n-1)} \neq D^{(n)}$ and hence G has negative cycles.
Analysis:

- \(D^{(2^k)} = D^{(2^{k+1})} \) implies \(D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})} \). So in this case \(D^{(2^k)} = D^{(n-1)} \) is the solution matrix.
- \(D^{(2^k)} \neq D^{(2^{k+1})} \) implies \(D^{(n-1)} \neq D^{(n)} \) and hence \(G \) has negative cycles.
- We call \(\otimes k = \log_2 n \) times. So this algorithm takes \(\Theta(n^3 \log n) \) time.
Analysis:

- \(D^{(2^k)} = D^{(2^k+1)} \) implies \(D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})} \). So in this case \(D^{(2^k)} = D^{(n-1)} \) is the solution matrix.
- \(D^{(2^k)} \neq D^{(2^k+1)} \) implies \(D^{(n-1)} \neq D^{(n)} \) and hence \(G \) has negative cycles.
- We call \(\otimes k = \log_2 n \) times. So this algorithm takes \(\Theta(n^3 \log n) \) time.

Can we do better?
Outline

1. Single Source Shortest Path Problem
2. Dijkstra’s Algorithm
3. Bellman-Ford Algorithm
4. All Pairs Shortest Path (APSP) Problem
5. Floyd-Warshall Algorithm
We can improve by other ideas. We redefine:

\[d_{ij}^{(t)} = \text{the length of the shortest } i \to j \text{ path with all intermediate vertices in } \{1, 2, \ldots, t\} \]
We can improve by other ideas. We redefine:

\[d_{ij}^{(t)} = \text{the length of the shortest } i \rightarrow j \text{ path with all intermediate vertices in } \{1, 2, \ldots, t\} \]

Then

\[d_{ij}^{(0)} = W[i, j] \]
We can improve by other ideas. We redefine:

\[d_{ij}(t) = \text{the length of the shortest } i \rightarrow j \text{ path with all intermediate vertices in } \{1, 2, \ldots, t\} \]

Then

\[d_{ij}^{(0)} = W[i,j] \]

\(d_{ij}^{(0)} \) is the length of the shortest \(i \rightarrow j \) path with all intermediate vertices in \(\{1, 2, \ldots, 0\} = \emptyset \). So such path has no any intermediate vertices, and must be the edge \(i \rightarrow j \) (if it exists.)
We can improve by other ideas. We redefine:

\[d_{ij}^{(t)} = \text{the length of the shortest } i \rightarrow j \text{ path with all intermediate vertices in } \{1, 2, \ldots, t\} \]

Then

\[d_{ij}^{(0)} = W[i, j] \]

\(d_{ij}^{(0)} \) is the length of the shortest \(i \rightarrow j \) path with all intermediate vertices in \(\{1, 2, \ldots, 0\} = \emptyset \). So such path has no any intermediate vertices, and must be the edge \(i \rightarrow j \) (if it exists.)

As before, we need to derive a recursive formula.
APSP Problem: Floyd-Warshall Algorithm

\[d_{ij}^{(t)} = \min \{ d_{ij}^{(t-1)}, d_{it}^{(t-1)} + d_{tj}^{(t-1)} \} \]

Case (1): The shortest \(i \to j \) path \(P \) with all intermediate vertices in \(\{1, 2, ..., t-1\} \) does not pass the vertex \(t \). So all its intermediate vertices are in \(\{1, 2, ..., t-1\} \). Thus the length of \(P \) is \(d_{ij}^{(t-1)} \).

Case (2): The shortest \(i \to j \) path \(P \) with all intermediate vertices in \(\{1, 2, ..., t\} \) does pass the vertex \(t \). The first part of \(P \) is the shortest \(i \to t \) path with all intermediate vertices in \(\{1, 2, ..., t-1\} \). The length is \(d_{it}^{(t-1)} \). Similarly the length of the second part of \(P \) is \(d_{tj}^{(t-1)} \).
APSP Problem: Floyd-Warshall Algorithm

\[d_{ij}^{(t)} = \min\{d_{ij}^{(t-1)}, d_{it}^{(t-1)} + d_{tj}^{(t-1)}\} \]

- Case (1): The shortest \(i \to j \) path \(P \) with all intermediate vertices in \(\{1, 2, \ldots, t\} \) does not pass the vertex \(t \). So all its intermediate vertices are in \(\{1, 2, \ldots (t-1)\} \). Thus the length of \(P \) is \(d_{ij}^{(t-1)} \)
APSP Problem: Floyd-Warshall Algorithm

\[
d_{ij}^{(t)} = \min\{d_{ij}^{(t-1)}, d_{it}^{(t-1)} + d_{tj}^{(t-1)}\}
\]

- **Case (1):** The shortest \(i \rightarrow j\) path \(P\) with all intermediate vertices in \(\{1, 2, \ldots, t\}\) does not pass the vertex \(t\). So all its intermediate vertices are in \(\{1, 2, \ldots (t-1)\}\). Thus the length of \(P\) is \(d_{ij}^{(t-1)}\).

- **Case (2):** The shortest \(i \rightarrow j\) path \(P\) with all intermediate vertices in \(\{1, 2, \ldots, t\}\) does pass the vertex \(t\). The first part of \(P\) is the shortest \(i \rightarrow t\) path with all intermediate vertices in \(\{1, 2, \ldots, (t-1)\}\). The length is \(d_{it}^{(t-1)}\). Similarly the length of the second part of \(P\) is \(d_{ij}^{(t-1)}\).
APSP Problem: Floyd-Warshall Algorithm

Floyd-Warshall(W)

1. $D^{(0)} = W$
2. for $t = 1$ to n do
3. Compute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
4. return $D^{(n)}$

Analysis:

By definition, $d^{(n)}_{ij}$ is the length of the shortest $i \rightarrow j$ path with all intermediate vertices in \{1, 2, ..., n\}. This is really not a restriction. So $d^{(n)}_{ij}$ is the length of the shortest $i \rightarrow j$ path. Thus $D^{(n)}$ is the solution matrix.

$D^{(t)}$ has n^2 entries in it. Each entry is min of two terms. So each entry of $D^{(t)}$ takes $O(1)$ time. $D^{(t)}$ can be computed from $D^{(t-1)}$ in $\Theta(n^2)$ time. The whole algorithm takes $\Theta(n^3)$ time.
Floyd-Warshall Algorithm

1. $D^{(0)} = W$
2. for $t = 1$ to n do
3. Compute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
4. return $D^{(n)}$

Analysis:

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \rightarrow j$ path with all intermediate vertices in $\{1, 2, \ldots, n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \rightarrow j$ path.
APSP Problem: Floyd-Warshall Algorithm

Floyd-Warshall(W)

1. $D^{(0)} = W$
2. for $t = 1$ to n do
3. Compute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
4. return $D^{(n)}$

Analysis:

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1, 2, \ldots, n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path.
- Thus $D^{(n)}$ is the solution matrix.
APSP Problem: Floyd-Warshall Algorithm

Floyd-Warshall\((W)\)

1. \(D^{(0)} = W\)
2. for \(t = 1\) to \(n\) do
3. Compute \(D^{(t)}\) from \(D^{(t-1)}\) by using the above formula.
4. return \(D^{(n)}\)

Analysis:

- By definition, \(d_{ij}^{(n)}\) is the length of the shortest \(i \rightarrow j\) path with all intermediate vertices in \(\{1, 2, \ldots, n\}\). This is really not a restriction. So \(d_{ij}^{(n)}\) is the length of the shortest \(i \rightarrow j\) path.
- Thus \(D^{(n)}\) is the solution matrix.
- \(D^{(t)}\) has \(n^2\) entries in it. Each entry is min of two terms. So each entry of \(D^{(t)}\) takes \(O(1)\) time.
APSP Problem: Floyd-Warshall Algorithm

Floyd-Warshall(W)

1. $D^{(0)} = W$

2. for $t = 1$ to n

3. Compute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.

4. return $D^{(n)}$

Analysis:

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \rightarrow j$ path with all intermediate vertices in $\{1, 2, \ldots, n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \rightarrow j$ path.

- Thus $D^{(n)}$ is the solution matrix.

- $D^{(t)}$ has n^2 entries in it. Each entry is min of two terms. So each entry of $D^{(t)}$ takes $O(1)$ time.

- $D^{(t)}$ can be computed from $D^{(t-1)}$ in $\Theta(n^2)$ time.
Floyd-Warshall Algorithm

Floyd-Warshall\((W)\)

1. \(D^{(0)} = W\)
2. **for** \(t = 1\) **to** \(n\) **do**
 3. Compute \(D^{(t)}\) from \(D^{(t-1)}\) by using the above formula.
4. **return** \(D^{(n)}\)

Analysis:

- By definition, \(d_{ij}^{(n)}\) is the length of the shortest \(i \rightarrow j\) path with all intermediate vertices in \(\{1, 2, \ldots, n\}\). This is really not a restriction. So \(d_{ij}^{(n)}\) is the length of the shortest \(i \rightarrow j\) path.
- Thus \(D^{(n)}\) is the solution matrix.
- \(D^{(t)}\) has \(n^2\) entries in it. Each entry is min of two terms. So each entry of \(D^{(t)}\) takes \(O(1)\) time.
- \(D^{(t)}\) can be computed from \(D^{(t-1)}\) in \(\Theta(n^2)\) time.
- The whole algorithm takes \(\Theta(n^3)\) time.