Outline

1. Asymptotic Analysis
2. Sorting
3. Searching
4. Graph
Notations

- θ, O, o, Ω, and ω.

- Similar to $=\,\leq\,\lt\,\geq\,\gt$, and \gt.
Notations

- \(\theta, O, o, \Omega, \) and \(\omega \).

- Similar to \(=, \leq, <, \geq, \) and \(> \).
 - But not exactly the same, e.g., \(2n^2 > n^2 \) but \(2n^2 = \theta(n^2) \).
How to compare two growth rates?

Idea 1: using definition, e.g., find the two coefficients c_1, c_2, and the proper n_0 for proving θ.

Idea 2: limit test, may need L'Hospital rule in some case. Other ideas, such as integration method...
How to compare two growth rates?

Idea 1: using definition, e.g., find the two coefficients c_1, c_2, and the proper n_0 for proving θ.
How to compare two growth rates?

- Idea 1: using definition, e.g., find the two coefficients c_1, c_2, and the proper n_0 for proving θ.

- Idea 2: limit test, may need L'Hospital rule in some case.
How to compare two growth rates?

- **Idea 1**: using definition, e.g., find the two coefficients c_1, c_2, and the proper n_0 for proving θ.

- **Idea 2**: limit test, may need L'Hospital rule in some case.

- Other ideas, such as integration method...
Basic idea: scan the array A from left to right, and each i-th step ($2 \leq i \leq n$):
Insertion sort

- Basic idea: scan the array A from left to right, and each i-th step $(2 \leq i \leq n)$:
 - find the proper position for the i-th number in $A[1, \cdots, i]$, and then insert it.
Insertion sort

- Basic idea: scan the array A from left to right, and each i-th step ($2 \leq i \leq n)$:
 - find the proper position for the i-th number in $A[1, \cdots, i]$, and then insert it.
 - You can use either linear scanning or binary search on the first $i - 1$ numbers.

Time complexity is $\theta(n^2)$ in the worst case, and (extra) space complexity is $\theta(1)$.
Insertion sort

- Basic idea: scan the array A from left to right, and each i-th step ($2 \leq i \leq n$):
 - find the proper position for the i-th number in $A[1, \cdots, i]$, and then insert it.
 - You can use either linear scanning or binary search on the first $i - 1$ numbers.
- Time complexity is $\theta(n^2)$ in the worst case, and (extra) space complexity is $\theta(1)$.
Merge sort

- Basic idea: divide-and-conquer
 - Divide an n-number array into two equal sub-arrays, and recursively sort both of them; finally merge them to form the final solution.
 - $\theta(n \log n)$ time complexity and $\theta(n)$ extra space complexity. Easy to be parallel in practice.
Merge sort

- Basic idea: divide-and-conquer
 - Divide an n-number array into two equal sub-arrays, and recursively sort both of them; finally merge them to form the final solution.
 - $\theta(n \log n)$ time complexity and $\theta(n)$ extra space complexity. Easy to be parallel in practice.

- Master theorem for calculating the running time for general divide-and-conquer algorithms.

Master Theorem ($T(n) = aT(n/b) + f(n)$)

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $af(n/b) \leq cf(n)$ for some $c < 1$ for sufficiently large n, then $T(n) = \Theta(f(n))$.
Heap sort

- How to build a heap with linear time and constant extra space complexity.

Use heap to sort:
- each time output the max/min number from the root;
- replace the root by the final number of the current heap, and do max/min heapify.
Heap sort

- How to build a heap with linear time and constant extra space complexity.
- Use heap to sort:
How to build a heap with linear time and constant extra space complexity.

Use heap to sort:

- each time output the max/min number from the root;
Heap sort

- How to build a heap with linear time and constant extra space complexity.

- Use heap to sort:
 - each time output the max/min number from the root;
 - replace the root by the final number of the current heap, and do max/min heapify.
1. Asymptotic Analysis
2. Sorting
3. Searching
4. Graph
Binary search tree

- Simple BST: no bound for the height.
Simple BST: no bound for the height.

AVL-Tree: balanced BST, and the height is $\Theta(\log n)$:
Simple BST: no bound for the height.

AVL-Tree: balanced BST, and the height is $\theta(\log n)$:

- Four basic operations: LR, RR, LR+RR, RR+LR.
About the implementation for the basic operations, take RR as an example:

1. $y \rightarrow \text{parent} = x \rightarrow \text{parent}$;
2. $x \rightarrow \text{lchild} = y \rightarrow \text{rchild}$;
3. $y \rightarrow \text{rchild} \rightarrow \text{parent} = x$;
4. $y \rightarrow \text{rchild} = x$;
5. $x \rightarrow \text{parent} = y$;
Hashing

- Two types: chaining and open addressing.

Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.

Dynamically updating:
- Double the hash table and re-hash all the elements when n is bigger than the size m. Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.
- The total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.

When n is too small, we need to shrink the hash table.
- If we reduce m to be $m/2$ when $n = m/2$, imagine we have a sequence of operations like insertion, deletion, insertion, deletion, insertion,, we will alternatively double and shrink the hash table for $n = m/2$ and $n = m/2 + 1$, which is terrible.
- So we reduce m to be $m/2$ when $n = m/\alpha$, where $\alpha > 2$.
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
- Dynamically updating:

 - Double the hash table and re-hash all the elements when n is bigger than the size m.
 - Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.
 - So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.
 - When n is too small, we need to shrink the hash table.
 - If we reduce m to be $m/2$ when $n = m/2$, imagine we have a sequence of operations like insertion, deletion, insertion, deletion, insertion,, we will alternatively double and shrink the hash table for $n = m/2$ and $n = m/2 + 1$, which is terrible.
 - So we reduce m to be $m/2$ when $n = m/\alpha$, where $\alpha > 2$.

©Hu Ding (Michigan State University)
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
- Dynamically updating:
 - Double the hash table and re-hash all the elements when n is bigger than the size m.

Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.

So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.

When n is too small, we need to shrink the hash table.
If we reduce m to be $m/2$ when $n = m/2$, imagine we have a sequence of operations like insertion, deletion, insertion, deletion, insertion,, we will alternatively double and shrink the hash table for $n = m/2$ and $n = m/2 + 1$, which is terrible.
So we reduce m to be $m/2$ when $n = m/\alpha$, where $\alpha > 2$.

©Hu Ding (Michigan State University) CSE 331 Algorithm and Data Structures 11 / 13
Two types: chaining and open addressing.

Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.

Dynamically updating:
- Double the hash table and re-hash all the elements when n is bigger than the size m.
- Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.

So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
- Dynamically updating:
 - Double the hash table and re-hash all the elements when n is bigger than the size m.
 - Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^tm_0$; the current number of elements $n = 2^tm_0$.
 - So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.

When n is too small, we need to shrink the hash table. If we reduce m to be $m/2$ when $n = m/2$, imagine we have a sequence of operations like insertion, deletion, insertion, deletion, insertion,, we will alternatively double and shrink the hash table for $n = m/2$ and $n = m/2 + 1$, which is terrible. So we reduce m to be $m/2$ when $n = m/\alpha$, where $\alpha > 2$.

©Hu Ding (Michigan State University)
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
- Dynamically updating:
 - Double the hash table and re-hash all the elements when n is bigger than the size m.
 - Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.
 - So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.
 - When n is too small, we need to shrink the hash table.
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
- Dynamically updating:
 - Double the hash table and re-hash all the elements when n is bigger than the size m.
 - Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.
 - So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.
 - When n is too small, we need to shrink the hash table.
 - If we reduce m to be $m/2$ when $n = m/2$, imagine we have a sequence of operations like insertion, deletion, insertion, deletion, insertion,, we will alternatively double and shrink the hash table for $n = m/2$ and $n = m/2 + 1$, which is terrible.
Hashing

- Two types: chaining and open addressing.
- Search time: expected $\theta(1)$, but could be as bad as $\theta(n)$ in the worst case.
- Dynamically updating:
 - Double the hash table and re-hash all the elements when n is bigger than the size m.
 - Suppose the initial size of the hash table is m_0, update t times; then the size becomes $m_0 \rightarrow 2m_0 \rightarrow 2^2m_0 \rightarrow \cdots \rightarrow 2^t m_0$; the current number of elements $n = 2^t m_0$.
 - So the total re-hash time is $T = \sum_{j=0}^{t} 2^j m_0 = \theta(n)$, i.e., $T/n = \theta(1)$.
 - When n is too small, we need to shrink the hash table.
 - If we reduce m to be $m/2$ when $n = m/2$, imagine we have a sequence of operations like insertion, deletion, insertion, deletion, insertion,, we will alternatively double and shrink the hash table for $n = m/2$ and $n = m/2 + 1$, which is terrible.
 - So we reduce m to be $m/2$ when $n = m/\alpha$, where $\alpha > 2$.
Graph

- Representations: adjacency list and adjacency matrix.
Graph

- Representations: adjacency list and adjacency matrix.
- Traversal:

BFS: shortest path for unweighted graph.
DFS: DAG testing, topological sort.
Graph

- Representations: adjacency list and adjacency matrix.

- Traversal:
 - BFS: shortest path for unweighted graph.
Graph

- Representations: adjacency list and adjacency matrix.

- Traversal:
 1. BFS: shortest path for unweighted graph.
 2. DFS: DAG testing, topological sort.