CSE 331 Algorithms and Data Structures

Hu Ding

Computer Science and Engineering, Michigan State University
Who Am I
Who Am I

I join CSE@MSU in 2016
Who Am I

I join CSE@MSU in 2016

I am working on Algorithms and the applications in real world
Who Am I

I join CSE@MSU in 2016

I am working on Algorithms and the applications in real world

I am NOT a harsh teacher
What Is Algorithm?

- Algorithm is a set of operations in a step-by-step fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much extra space needed?
 3. Quality: how far is it between the output and the objective?
- Example: GPS.
 1. Data: map, starting point and destination.
 2. Objective: a "shortest" path.
What Is Algorithm?

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm is a set of operations in a step-by-step fashion.</td>
<td></td>
</tr>
<tr>
<td>What we care about an algorithm:</td>
<td></td>
</tr>
<tr>
<td>1 Time: how many steps?</td>
<td></td>
</tr>
<tr>
<td>2 Space: how much extra space needed?</td>
<td></td>
</tr>
<tr>
<td>3 Quality: how far is it between the output and the objective?</td>
<td></td>
</tr>
<tr>
<td>Example: GPS.</td>
<td></td>
</tr>
<tr>
<td>Data: map, starting point and destination.</td>
<td></td>
</tr>
<tr>
<td>Objective: a "shortest" path.</td>
<td></td>
</tr>
</tbody>
</table>
What Is Algorithm?

- Algorithm is a set of operations in a step-by-step fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much extra space needed?
 3. Quality: how far is it between the output and the objective?

Example: GPS.
- Data: map, starting point and destination.
- Objective: a "shortest" path.
What Is Algorithm?

Algorithm is a set of operations in a step-by-step fashion.

- What we care about an algorithm:
 1. **Time**: how many steps?
 2. **Space**: how much extra space needed?
 3. **Quality**: how far is it between the output and the objective?

Example: GPS.
- **Data**: map, starting point and destination.
- **Objective**: a "shortest" path.
What Is Algorithm?

- **Algorithm** is a set of operations in a step-by-step fashion.

Data → Algorithm → Objective

1. Time: how many steps?
2. Space: how much extra space needed?
3. Quality: how far is it between the output and the objective?

Example: GPS.

- Data: map, starting point and destination.
- Objective: a "shortest" path.
What Is Algorithm?

- **Algorithm** is a set of operations in a step-by-step fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much extra space needed?
 3. Quality: how far is it between the output and the objective?

Example: GPS.

Data: map, starting point and destination.

Objective: a "shortest" path.
What Is Algorithm?

• **Algorithm** is a set of operations in a *step-by-step* fashion.
• What we care about an algorithm:
 1. Time: how many steps?

![Diagram](image-url)
What Is Algorithm?

Algorithm is a set of operations in a *step-by-step* fashion.

What we care about an algorithm:

1. **Time**: how many steps?
2. **Space**: how much *extra* space needed?

Example: GPS.

- **Data**: map, starting point and destination.
- **Objective**: a "shortest" path.
What Is Algorithm?

- **Algorithm** is a set of operations in a *step-by-step* fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much *extra* space needed?
 3. Quality: how far is it between the output and the objective?
What Is Algorithm?

Algorithm is a set of operations in a step-by-step fashion.

What we care about an algorithm:

1. Time: how many steps?
2. Space: how much extra space needed?
3. Quality: how far is it between the output and the objective?

Example: GPS.
What Is Algorithm?

- **Algorithm** is a set of operations in a *step-by-step* fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much *extra* space needed?
 3. Quality: how far is it between the output and the objective?
- Example: GPS.
 1. Data: map, starting point and destination.
What Is Algorithm?

- **Algorithm** is a set of operations in a *step-by-step* fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much *extra* space needed?
 3. Quality: how far is it between the output and the objective?
- Example: GPS.
 1. Data: map, starting point and destination.
 2. Objective: a “shortest” path.
Why Study Algorithms?
Why Study Algorithms?

- Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...
Why Study Algorithms?

- Useful:
 1. GPS

- Probably the most important course for your job interview.
Why Study Algorithms?

• Useful:
 1. GPS
 2. Search engine: Google
Why Study Algorithms?

- Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...
Why Study Algorithms?

● Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
Why Study Algorithms?

- Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...
Why Study Algorithms?

- **Useful:**
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...

- Probably the most important course for your job interview.
• Content: sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programing, approximation algorithms, complexity, etc.

• Grading:
 • homework 40%
 • midterm exam 25%
 • final exam 30%
 • class participation 5%

• Office hours:
 • Me: 12:30-2:30pm Mon at 2140 EB
 • TA (Liyang Xie): 3-5pm Wed at 3203 EB
Syllabus

- **Content**: sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programing, approximation algorithms, complexity, etc.
- **Grading**:
 - homework 40%
 - midterm exam 25%
 - final exam 30%
 - class participation 5%

Office hours:
- Me: 12:30-2:30pm Mon at 2140 EB
- TA (Liyang Xie): 3-5pm Wed at 3203 EB
• Content: sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programming, approximation algorithms, complexity, etc.

• Grading:
 • homework 40%
 • midterm exam 25%
 • final exam 30%
 • class participation 5%

• Office hours:
 • Me: 12:30-2:30pm Mon at 2140 EB
 • TA (Liyang Xie): 3-5pm Wed at 3203 EB