Who Am I?

- I join CSE@MSU in 2016.
- I am working on Algorithms and the applications in real world.
• I join CSE@MSU in 2016.

• I am working on Algorithms and the applications in real world.

• I am NOT a harsh teacher.
What Is Algorithm?

- Algorithm is a set of operations in a step-by-step fashion.

- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much memory space needed?
 3. Quality: how far is it between the output and the objective?

- Example: GPS.
 1. Data: map, starting point and destination.
 2. Objective: a "shortest" path.
What Is Algorithm?

- Algorithm is a set of operations in a step-by-step fashion.

- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much memory space needed?
 3. Quality: how far is it between the output and the objective?

- Example: GPS.
 1. Data: map, starting point and destination.
 2. Objective: a "shortest" path.
What Is Algorithm?

Algorithm is a set of operations in a step-by-step fashion. What we care about an algorithm:

1. Time: how many steps?
2. Space: how much memory space needed?
3. Quality: how far is it between the output and the objective?

Example: GPS.

1. Data: map, starting point and destination.
2. Objective: a "shortest" path.
What Is Algorithm?

Algorithm

Data → Objective

- Algorithm is a set of operations in a step-by-step fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much memory space needed?
 3. Quality: how far is it between the output and the objective?
- Example: GPS.
 1. Data: map, starting point and destination.
 2. Objective: a “shortest” path.
What Is Algorithm?

- Algorithm is a set of operations in a step-by-step fashion.

Diagram:

Data → Algorithm → Objective

- Time: how many steps?
- Space: how much memory space needed?
- Quality: how far is it between the output and the objective?

Example: GPS.

1. Data: map, starting point and destination.
2. Objective: a "shortest" path.
Algorithm

Data → Objective

- **Algorithm** is a set of operations in a *step-by-step* fashion.
- What we care about an algorithm:

 1. **Time**: how many steps?
 2. **Space**: how much memory space needed?
 3. **Quality**: how far is it between the output and the objective?

Example: GPS.

- **Data**: map, starting point and destination.
- **Objective**: a "shortest" path.
What Is Algorithm?

- **Algorithm** is a set of operations in a **step-by-step** fashion.
- What we care about an algorithm:
 - Time: how many steps?

![Diagram showing Algorithm, Data, and Objective](image_url)
What Is Algorithm?

- **Algorithm** is a set of operations in a *step-by-step* fashion.
- What we care about an algorithm:
 1. **Time**: how many steps?
 2. **Space**: how much memory space needed?
Algorithm is a set of operations in a step-by-step fashion.

What we care about an algorithm:

1. Time: how many steps?
2. Space: how much memory space needed?
3. Quality: how far is it between the output and the objective?
Algorithm is a set of operations in a step-by-step fashion.

What we care about an algorithm:

1. Time: how many steps?
2. Space: how much memory space needed?
3. Quality: how far is it between the output and the objective?

Example: GPS.
What Is Algorithm?

- **Algorithm** is a set of operations in a **step-by-step** fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much memory space needed?
 3. Quality: how far is it between the output and the objective?
- Example: GPS.
 1. Data: map, starting point and destination.
What Is Algorithm?

- **Algorithm** is a set of operations in a step-by-step fashion.
- What we care about an algorithm:
 1. Time: how many steps?
 2. Space: how much memory space needed?
 3. Quality: how far is it between the output and the objective?
- Example: GPS.
 1. Data: map, starting point and destination.
 2. Objective: a “shortest” path.
Why Study Algorithms?
Why Study Algorithms?

• Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...
Why Study Algorithms?

- Useful:
 1. GPS
Why Study Algorithms?

- Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
Why Study Algorithms?

- Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
Why Study Algorithms?

• Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
Why Study Algorithms?

• Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...
Why Study Algorithms?

• Useful:
 1. GPS
 2. Search engine: Google
 3. Recommendation: Amazon, Netflix, Facebook
 4. Prediction: weather, stock, ...
 5. Many other...

• Probably the most important course for your job interview.
This is not a “programming” course

We will study much deeper:

- How to design an algorithm (a program is an implementation of an algorithm).
- How to analyze an algorithm: the correctness proof, time and space complexities.
This is not a “programming” course

We will study much deeper:

- How to design an algorithm (a program is an implementation of an algorithm).
- How to analyze an algorithm: the correctness proof, time and space complexities.

It is more challenging and interesting!
• **Content:** sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programing, approximation algorithms, complexity, etc.
Syllabus

- **Content:** sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programing, approximation algorithms, complexity, etc.

- **Grading:**
 - homework $56\% = 7 \times 8\%$ (I will enter the grades into D2L)
 - midterm exam 20%
 - final exam 20%
 - class participation 4%
• **Content:** sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programing, approximation algorithms, complexity, etc.

• **Grading:**
 - homework 56% = 7 × 8% (I will enter the grades into D2L)
 - midterm exam 20%
 - final exam 20%
 - class participation 4%

• All the homeworks are **paperwork** including algorithms design in pseudo code, analyses, and math proofs.
• **Content:** sorting, tree, heap, hashing, graph, greedy algorithm, dynamic programing, approximation algorithms, complexity, etc.

• **Grading:**
 - homework 56%=$7\times 8\%$ (I will enter the grades into D2L)
 - midterm exam 20%
 - final exam 20%
 - class participation 4%

• All the homeworks are **paperwork** including algorithms design in pseudo code, analyses, and math proofs.

• Several **optional coding tasks** may be released but not required; the purpose is to help students to understand the algorithms better and get more coding exercise
Office Hours

- Me: 1:30-3:30pm Mon at 2140 EB, huding@msu.edu
- TA (Manni Liu): 3-5pm Wed at 3100 EB, liumanni@msu.edu
- Please feel free to drop by our offices during the office hours or directly email us!

Note: please send a photocopy of your homework to TA's email address each time before the deadline, just for archive.
Office Hours

- Me: 1:30-3:30pm Mon at 2140 EB, huding@msu.edu
- TA (Manni Liu): 3-5pm Wed at 3100 EB, liumanni@msu.edu
- Please feel free to drop by our offices during the office hours or directly email us!
- **Note:** please send a photocopy of your homework to TA’s email address each time before the deadline, just for archive.
About the Slides

- I will post each slides before the class.
- In class, I may use slides or blackboard (if more mathematics/analyses need to be demonstrated).
- You can watch the slides during my lecture, when I use blackboard.