Due: Sep 29, 2016, in class.

Note: for simplicity, the base of “log” is always 2.

1. (10 × 2 = 20 points) Prove (1) \(\sum_{i=1}^n \log i = \theta(n \log n) \); (2) \(\sum_{i=1}^n i = \theta(n^2) \).

2. (10 × 2 = 20 points) Compare the growth rates of \(T_1(n) \) and \(T_2(n) \):
 1. \(T_1(n) = n^2 \) and \(T_2(n) = 6n \log n - \frac{1}{2}n \);
 2. \(T_1(n) = n^3 \) and \(T_2(n) = 1.5n^3 + (-1)^{\lceil n \rceil}n^3 \).

3. (20 points) Given an array \(A = [6, 3, 5, 7, 0, 2] \), use insertion sort algorithm to sort \(A \) in an increasing order. The algorithm scans \(A \) from left to right by \(\text{size}(A) = 6 \) steps, so please list the changes of \(A \) during these 6 steps.

4. (20 points) Array \(A = [a_1, a_2, \cdots, a_n] \) is unsorted, design an \(O(n \log n) \)-time algorithm to report the number of inversions in \(A \). An inversion is a pair of numbers \(a_i \) and \(a_j \) such that \(i < j \) but \(a_i \geq a_j \) (hint: you may use divide-and-conquer idea).

5. (20 points) Given an array \(A = [3, 10, 2, 7, 12, 4, 20] \), build the MaxHeap for \(A \). Please list the updated \(A \) after calling \texttt{MaxHeapify} each time.