Security Patterns

Ronald Wassermann and Betty H.C. Cheng

Motivation

- Today’s systems have various communication features
- Many security-critical dependencies exist
- Security is a non-functional requirement that is difficult to evaluate (e.g., metrics, etc.)
- Which security features are necessary in certain domains?

> It is difficult to design secure systems [Bis02]

> Expert knowledge is needed
Approach

• In order to overcome the knowledge gap among developers we use patterns to
 – provide relevant information in a structured way
 – convey experience
• We use a variation of the well-known design pattern template [Gam94] to present more security-specific information

Our goal is to enable the reuse of security knowledge

Security Principles (1)

• References ten guiding security principles [Viega and McGraw 2002]

Ten Security Principles
• Secure the weakest link.
• Practice defense in depth.
• Fail securely.
• Follow the principle of least privilege.
• Compartmentalize.
• Keep it simple.
• Promote privacy.
• Remember that hiding secrets is hard.
• Be reluctant to trust.
• Use your community resources.
Security Principles (2)

1. Secure the weakest link
 - Intruders will attack parts that are most likely to break
 - Identify and strengthen weak parts to improve overall security

2. Practice defense in depth
 - Implement overlapping security mechanisms
 - Every protection layer adds to overall security

3. Fail securely
 - Failures are not avoidable
 - Security flaws are often inherent to system failures
 - Plan failure modes that assure that the system's security is not compromised by exceptional behavior

Security Principles (3)

4. Follow the principle of least privilege
 - Grant only the minimum set of permissions
 - Thereby reducing the risk of privilege-abuse

5. Compartmentalize
 - Structure your system in a way that protects different parts independently.
 - Reduces amount of damage that is caused by a security breach in one unit.

6. Keep it simple
 - Avoid unnecessary complexity
 - Usability is an important part of simple design
Security Principles (4)

7. Promote privacy
 - Minimize the information that can be gathered about a system and its users
 - Use misinformation to deter attackers

8. Remember that hiding secrets is hard
 - A system’s security depends on certain secrets being kept
 - Be aware of critical information that could compromise security

9. Be reluctant to trust
 - Do not extend trust unnecessarily
 - Design systems that mistrust information of other parts

Security Principles (5)

10. Use your community resources
 - Public scrutiny improves code as it exploits weaknesses and errors
 - Code written by individuals is usually less secure

Tradeoffs:

- Compartmentalize (P5) ↔ Keep it simple (P6)
- Usability (P6) ↔ Promote privacy (P7)
- Practice defense in depth (P2) ↔ Keep it simple (P6)
Patterns

“Each pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice.”

Christopher Alexander [Ale77]

• Essential elements of a pattern [GHJV94]
 ➔ Name
 ➔ Problem
 ➔ Consequences
 ➔ Solution

• Benefits
 ➔ Improves communication and establish terminology
 ➔ Provides structured information and captures knowledge
 ➔ Unifies design and improves comprehensibility

Design Patterns

• “Design patterns are patterns that express solutions to recurring software design problems in terms of objects and interfaces” [GHJV94].

• Gamma et al. propose template structure

[Pattern name and Classification
 • Intent
 • Also known as
 • Motivation
 • Applicability
 • Structure
 • Participants
 • Collaborations
 • Consequences
 • Implementation
 • Sample Code
 • Known Uses
 • Related Patterns]
Previous work

- Other pattern-based approaches to security problems
 - Fernandez [Fer02]
 - Collection of security patterns (using few UML diagrams)
 - Kienzle et al. [KETE02]
 - Tutorial for writing security patterns
 - Schumacher and Roedig [SR01]
 - Propose the use of patterns in security engineering (no specific template)
 - Yoder and Barcalow [YB97]
 - Collection of security patterns (no diagrams)

Security Pattern Definition

- How can the information be structured to reflect the needs of the security domain?

 "A Security Pattern describes a particular recurring security problem that arises in a specific context and presents a well-proven generic scheme for its solution."

 Schumacher and Roedig [SR01]

New template that is customized for use in the development of secure software
Security Pattern Template

- We use the design pattern template of Gamma et al. [GHJV94] and extend and modify it to fit our needs:

<table>
<thead>
<tr>
<th>Design Pattern Template</th>
<th>Security Pattern Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pattern name and Classification</td>
<td>• Pattern name and Classification</td>
</tr>
<tr>
<td>• Intent</td>
<td>• Intent</td>
</tr>
<tr>
<td>• Also known as</td>
<td>• Also known as</td>
</tr>
<tr>
<td>• Motivation</td>
<td>• Motivation</td>
</tr>
<tr>
<td>• Applicability</td>
<td>• Applicability</td>
</tr>
<tr>
<td>• Structure</td>
<td>• Structure</td>
</tr>
<tr>
<td>• Participants</td>
<td>• Participants</td>
</tr>
<tr>
<td>• Collaborations</td>
<td>• Collaborations</td>
</tr>
<tr>
<td>• Consequences</td>
<td>• Behavior</td>
</tr>
<tr>
<td>• Implementation</td>
<td>• Constraints</td>
</tr>
<tr>
<td>• Sample Code</td>
<td>• Consequences</td>
</tr>
<tr>
<td>• Known Uses</td>
<td>• Known Uses</td>
</tr>
<tr>
<td>• Related Patterns</td>
<td>• Related Security Patterns</td>
</tr>
<tr>
<td></td>
<td>• Related Design Patterns</td>
</tr>
<tr>
<td></td>
<td>• Related Principles</td>
</tr>
</tbody>
</table>

Classification

- Similar to design patterns [GHJV94] we organize security patterns by purpose in
 - structural,
 - behavioral, and
 - creational
 patterns

- Furthermore, we denote the following abstraction levels for patterns:
 - Application level (objects are deployed at a client)
 - Host level (objects are running on a server)
 - Network level (objects are distributed over a network)
Overview

- Several patterns were identified by the security pattern community [Fer01][YB97]

- We present the **Single Access Point, Check Point** and the **Role-Based Access Control** pattern
Single Access Point (SAP) (1)

- SAP was introduced by Yoder and Barcalow [YB97]
- **Name and Classification**
 - Single Access Point, structural pattern
- **Intent**
 - Proposes single interface to the system to improve control
- **Also known as**
 - Guard Door, Login Window, One Way In, or Validation Screen
- **Motivation**
 - Various access points and hidden back doors make protection difficult
 - Monitoring of external communication should be possible
- **Applicability**
 - For self-contained systems that communicate with external entities
 - Several entry points for greater flexibility cannot be realized with this pattern

Single Access Point (SAP) (2)

- **Structure**

![Diagram of Single Access Point (SAP) (2)]
Single Access Point (SAP) (3)

- **Participants**
 - External Entities
 - Internal Entities
 - Single Access Point

- **Collaborations**
 - SingleAccessPoint is contacted by external entities
 - It works as mediator

- **Behavior**

Single Access Point (SAP) (4)

- **Constraints**
 - **Authenticity**: A message that is directly sent to an internal component originates either from a system internal component or the SAP
 - **Confidentiality**: Communication between internal components is not disclosed to outside entities
 - **Integrity**: Messages inside the system cannot be modified by external entities

- **Consequences**
 - **Accountability**: The SAP could perform logging tasks and thereby improve accountability
 - **Confidentiality, Integrity**: SAP provides a place for monitoring of communication
 - **Availability**: If the SAP cannot handle all accesses, availability might be reduced; information for the detection of DoS attacks can be gathered
 - **Performance**: Substantial logging operations at the SAP can affect the performance of a system
Single Access Point (SAP) (4)

- **Consequences (cont’d)**
 - **Cost:** Depending on the extent of communication with external parties, development can be more difficult and expensive
 - **Manageability:** Security-code not be scattered over the entire system
 - **Usability:** Access to system might be more inconvenient for a user

- **Known uses**
 - Linux telnet application
 - Windows NT login application

- **Related Security Patterns**
 - Check Point (monitors communication that passes the SAP)
 - Role-Based Access Control (is initialized upon login)
 - Session (is created upon login)

- **Related Design Patterns**
 - Singleton (to implement the SAP)

Single Access Point (SAP) (5)

- **Related Principles**
 - **Principle 1:** Secure the weakest link (the pattern considers the interface to external entities to be a possible weakness)
 - **Principle 6:** Keep it simple (the SAP pattern propagates a simplification of the systems access)
 - **Principle 9:** Reluctance to trust
Check Point (1)

• The Check Point pattern was first presented in a framework by Yoder and Barcalow [YB97]

• Name and Classification
 – Check Point, structural pattern

• Intent
 – A structure for checking incoming requests and handling violations

• Also known as
 – Access Verification, Authentication and Authorization, Holding off hackers, Validation and Penalization, or Make the punishment fit the crime

• Motivation
 – Systems that communicate with external entities have to take into account illegal requests and attacks
 – Monitoring and access validation is necessary

Check Point (2)

• Structure
Check Point (3)

- **Applicability**
 - Check Point can be applied in any system that needs to monitor communication
 - In order to perform checks the system needs a security policy

- **Participants**
 - Check Point
 - Countermeasure
 - Security Policy

- **Collaborations**
 - The Check Point monitors if messages are consistent with the Security Policy
 - Countermeasures are triggered if necessary

Check Point (4)

- **Behavior**
 - Diagram showing interactions between Check Point, Security Policy, and Countermeasure components.
Check Point (5)

• **Constraints**
 – Authenticity: Check Point’s policy requests may only be answered by the Security Policy object
 – Integrity: Messages that are sent between Check Point and Security Policy cannot be modified
 – Confidentiality, Integrity: External requests are not forwarded until the Security Policy approves it

Check Point (6)

• **Consequences**
 – Confidentiality: unauthorized access can be prevented
 – Integrity: malicious modification can be filtered
 – Availability: Check Point can trigger countermeasures to prevent DoS attacks (e.g. delays, blacklists)
 – Performance: Complex checks slow down the system
 – Cost: Development of an effective check algorithm is difficult and expensive
 – Manageability: combining security code in one place simplifies maintenance
 – Usability: depending on the check algorithm, harmless requests may be blocked if they match a certain pattern
Check Point (7)

• **Known Uses**
 – During the login to an ftp server a Check Point is usually used to control the access of users

• **Related Security Patterns**
 – Single Access Point
 – Session
 – Role-Based Access Control

• **Related Design Patterns**
 – Strategy (decouple Check Point from actual implementation of the security policy)

Check Point (8)

• **Related Principles**
 – Principle 1: *Secure the weakest link* (by applying the Check Point)
 – Principle 2: *Practice defense in depth* (further security measures should be considered in addition to the Check Point)
 – Principle 4: *Principle of least privilege* (should be reflected in the Security Policy)
 – Principle 9: *Reluctance to trust* (that all requests are harmless)
Role-Based Access Control (1)

- The Role-Based Access Control pattern was first presented in [YB97] and later in [Fer01]

- **Name and Classification**
 - Role-Based Access Control, structural pattern

- **Intent**
 - Facilitates the representation and maintenance of access structures

- **Also known as**
 - Roles, Actors, Groups, Projects, Profiles, Jobs, or User Types

- **Motivation**
 - The use of resources usually underlies certain restrictions
 - In order to facilitate enforcement restrictions need to be represented in some structure inside the system

- **Applicability**
 - Applicable in any system that restricts subjects’ access on resources

Role-Based Access Control (2)

- **Structure**

![Role-Based Access Control Diagram](image)
Role-Based Access Control (3)

- **Participants**
 - ProtectionObject
 - Right
 - Role
 - Roles
 - User

- **Collaborations**
 - Roles are associated to a set of Objects; a Right object defines the properties of each relationship (type, constraint, transferable)
 - Each user can be associated to Roles that determine his/her privileges
 - This information about access privileges can be queried by other system components

Role-Based Access Control (4)

- **Behavior**
• **Constraints**
 - Only authorized subjects may assign roles to
 - Only authorized subjects may assign privileges to roles.
 - The mapping between roles, users, and privileges adheres to the system’s access matrix.

• **Consequences**
 - **Confidentiality, Integrity**: An right structure enables definition of access privileges that protect confidentiality and integrity
 - **Availability**: Restriction of access to resources enhances availability
 - **Performance**: can be improved by reducing the overall amount of relationships that reflect the access structure
 - **Cost**: higher development cost, reduced maintenance
 - **Manageability**: Maintenance is simplified as subjects can be managed in groups

• **Known Uses**
 - Several applications, including various Database Management

Overview:

• **Related Security Patterns**
 - Check Point
 - Session
 - Limited View

• **Related Design Patterns**
 - Strategy (implement different behavior depending on users role)
 - Observer (keep structure consistent)

• **Related Principles**
 - Principle 4: *Principle of least privilege* (should be reflected in the right structure)
 - Principle 6: *Keep it simple* (by reducing relationships)
 - Principle 7: *Promote privacy* (by restricting access)
Conclusions

- Security patterns help to keep track of non-functional security requirements from the beginning of design
- A well-structured template can enhance the effectiveness of the pattern approach
- Avoiding errors is extremely important in security critical applications

Open problems

- Facilitate formal verification during the application of security patterns by providing formalized constraints that can be checked against the system model
- Continue to scan for security patterns
- Look at security patterns at requirements level.
- Explore how extending modeling languages (such as UML) can/should be extended for security.
References

- [GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. *Design Patterns: Elements of Reusable Object-Oriented Software*. Addison-Wesley, 1994.