Encryption

A Brief Overview

• Encryption:
 – Definition: mechanisms to disguise the message so that if the information is intercepted/diverted, the content of the message will not be understood.
 – Impact: foundational building block to security-based computing

Terminology

• Scenario:
 – S wants to send the message T to R, where an outsider, O, wants the message and tries to access it.
 – S: Sender
 – R: Receiver
 – T: Transmission Medium
 – O: Interceptor or Intruder.
• 4 ways O might try to access message.
 – Block it: prevent T from reaching R (availability)
 – Intercept it: read or listen to message (secrecy)
 – Modify it: obtaining message and changing it
 – Fabricate: generate an authentic-looking message to be delivered to R appearing to come from S
Terminology

- **Encryption**: process of encoding a message so that its meaning is not obvious
- **Decryption**: transforming encrypted message back to its normal form
- **Encode/decode**: translating phrases to other words or phrases
- **Encipher/decipher**: translating letters or symbols individually.
- **Plaintext**: original form of message: \(P = (p_1, p_2, \ldots, p_n) \)
- **Ciphertext**: encrypted form of message: \(C = (c_1, c_2, \ldots, c_n) \)
- **Encryption/decryption relationships**:
 - \(C = E(P); P = D(C); P = D(E(P)) \)

Encryption Algorithms

- Some encryption algs use a key \(K \)
 - \(C = E(K, P) \)
 - \(E \) is a SET of encryption algs
 - Key \(K \) selects specific one
- **Symmetric Encryption**: \(P = D(K, E(K, P)) \)
 - encryption/decryption keys are the same
- **Asymmetric Encryption**: \(P = D(K_D, E(K_E, P)) \)

Pictorial Representation

Symmetric Encryption:

- Key
- Plaintext
- Encryption
- Ciphertext
- Decryption
- Original Plaintext

Asymmetric Encryption:

- Encryption Key \(K_E \)
- Decryption Key \(K_D \)
- Plaintext
- Encryption
- Ciphertext
- Decryption
- Original Plaintext
More Terms

- Cryptography: (hidden writing)
 - Practice of using encryption to conceal text
- Cryptanalyst:
 - Person who studies encryption and encrypted messages
 - Intent: find hidden meaning
- Cryptographer and Cryptanalyst:
 - Both attempt to translate coded material to original form
 - Cryptographer: works on behalf of legitimate sender or receiver.
 - Cryptanalyst: Works on behalf of unauthorized interceptor
- Cryptology: research/study into encryption/decryption
 - Includes cryptography and cryptanalysis.

Cryptanalysis

- Objective: Break an encryption
 - Deduce the meaning of a ciphertext msg
 - Determine decrypting algorithm that matches an encrypting algorithm
- Possible techniques:
 - break single message
 - Recognize patterns in encrypted msgs
 - break subsequent msgs with straightforward decryption alg
 - Find general weaknesses in encryption alg
 - Without necessarily intercepting any msgs
- Tools:
 - Encrypted msgs, known encryption algs, intercepted plaintext, data elements known/suspected of being in ciphertext, mathematical/statistical techniques, pros of languages, computers, and luck

Breakable Encryption

- Encryption algorithm is BREAKABLE:
 - Given enough time/data, an analyst could determine alg.
 - Practicality is issue
 - For given cipher scheme, may have 10^{30} possible decipherments
 - Select one from 10^{30}
 - Current technology: perform 10^{10} ops/sec
 - Require 10^{20} secs == 10^{12} years
- Reality Check:
 - Cryptanalyst won’t just try the “hard” ways
 - Ex: more clever approach, might only take 10^{15} ops
 - 10^{10}/ops/sec, 10^{15} ops will take about one day
 - Breakability estimates are based on CURRENT technology
Character Representations

- Study ways to encrypt any computer material:
 - ASCII/EBCDIC chars
 - Binary data or Object code
 - Control stream

<table>
<thead>
<tr>
<th>ABCD</th>
<th>EFHIJKL</th>
<th>MNOPQRST</th>
<th>UVWXYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0123</td>
<td>456789</td>
<td>101112</td>
<td>131415</td>
</tr>
</tbody>
</table>

Substitution-based Encryption

- Monoalphabetic Ciphers
 - Caesar Cipher: $c_i = E(p_i) = p_i + 3$
 - wkhphvdjh lv qrw wrr kdug wr euhdn
 - Easy to perform in field (no written instructions)
 - Permutation: reordering of the elements
 - $c_i = a_{\pi}(p_i)$; $\pi(\lambda) = 25 - \lambda$
 - Use a key:

<table>
<thead>
<tr>
<th>ABCDEF</th>
<th>GHIJKL</th>
<th>MNOPQRST</th>
<th>UVWXYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
<td>ABCDEF</td>
<td>GHIJKL</td>
<td>MNOPQRST</td>
</tr>
<tr>
<td>SPEACT</td>
<td>LHRDF</td>
<td>GHIEJK</td>
<td>NQOVW</td>
</tr>
</tbody>
</table>

 - Weakness: study frequency distribution

Polyalphabetic Substitution Ciphers

- Desire flat distribution
- Combine distributions that are high with low ones
 - Encipher T as a and sometimes as b
 - Also encipher X as a and sometimes as b
- Use two separate encryption alphabets
 - Tables for odd and even positions
 - $a_1(\lambda) = (3 \times \lambda) \mod 26$
 - $a_2(\lambda) = (5 \times \lambda + 13) \mod 26$
 - TREAT YIMPO SSIBL E
 - Fumir dyft czysz h
Substitution Discussion

- Major weakness:
 - Frequency distribution
 - (Index of coincidence: measure of variation between frequencies in a distribution)
 - Some letters are used more frequently than others
 - Numerous enciphering techniques still make it difficult to hide these patterns
- Kasiski Method: find number of alphabets used
 - Identify repeated patterns of 3 or more characters
 - For each pattern, write down position at which each instance of pattern begins
 - Compute difference between start points of success instances
 - Determine all factors of each difference
 - If polyalphabetic substitution used, key length will be one of the factors that appears often in previous steps.

Transpositions (Permutations)

- Definition: encryption where letters are rearranged.
- Goal: diffusion, spread info from message or key out widely across the ciphertext.
- Try to break established patterns.

Transposition Techniques

- Columnar Transpositions:
 - Rearrangement of chars of plaintext into cols

C1 C2 C3 C4 C5
C6 C7 C8 C9 C10
C11 C12 Etc.

THIS IS
SAME S
SAGE T
SHOW O
HAW C
OLUMN
ART RA
POSITION
ITION
WORKS

tsosu oaniw haaso lristo inghw utpir seeoa nrook istwc nasns
Transpositions

- **Digram**: patterns of adjacent letters.
 - Study 2 and 3 letter combinations of adj letters
- **Double Transposition Alg**:
 - Involves 2 columnar transpositions
 - With different number of columns, applied sequentially
- **Fractionated Morse**:
 - Keyed monoalphabetic cipher
 - Result is subsequently blocked (clustered)
 - Morse code is used as its basis

Secure Encryption Systems

- Previous algs could be completed manually, although tedious
 - Decryption could also be done manually
- New technology requires more “hard” encryption algs to hinder cryptanalysts
- Review 3 key, important encryption algs
- Look at recent developments

Important Encryption Algs

- **Merkle-Hellman knapsack**:
 - Alg based on “hard” problems (NP-complete)
- **Rivest-Shamir-Adelman (RSA)**:
 - More resilient to attacks than Merkle alg
- **Data Encryption Standard (DES)**:
 - Developed with support from NIST
 - Provide secure encryption for commercial applications
- **Clipper program**:
 - Skipjack: cryptographic alg – maintain secrecy
Some “Hard” theories

- **NP-complete:**
 - Encryption algos that would require NP-complete alg to decrypt
- **Number theory:**
 - Inverses
 - Primes
 - Modular Arithmetic
 - Euclidean alg: procedure for computing gcd of 2 numbers.

Public Key Encryption

- **Traditional key system:**
 - Need a key for every pair of users
 - \(N(N-1)/2 \) keys, grows exponentially with users
 - Each user has to keep track of many keys
- **Public key (asymmetric encryption system):**
 - Each user has 2 keys: public and private key
 - May publish the public key freely, inverses
 - \(P=D(k_{PRIV}, E(k_{PUB}, P)) \)
 - Only 2 keys are needed per user
 - B, C, and D can ally encrypt mesgs for A with A’s public key

Merkle-Hellman Knapsacks

- **Knapsack problem:**
 - Set of positive integers
 - Target sum
 - Find subset of integers that equal the target
 - NP-complete alg.
- **Encode binary mesg as soln to knapsack problem**
 - Reduce ciphertext to target sum
 - By adding terms corresponding to 1s in plaintext
 - Convert blocks of plaintext to knapsack sum by adding into sum the terms that match with 1 bits in plaintext.
Superincreasing Knapsack

- Superincreasing sequence:
 - Each integer is greater than sum of all preceding integers
 - \(s_k > \sum_{j=1}^{k-1} s_j \)
 - Solution of superincreasing knapsack (e.g., simple knapsack) is easy to find
- Convert simple knapsack into Hard knapsack
 - Pick superincreasing sequence \(S \) of \(m \) integers
 - \(S = [s_1, s_2, ..., s_m] \)
 - Choose multiplier \(w \) and modulus \(n \), \(n > \sum_{j=1}^{m-1} s_j \)
 - Choose \(n \) to be prime
 - Replace every \(s_i \) in simple knapsack with term:
 \[h_i = w * s_i \mod n \]
 - Hard knapsack: \(H = [h_1, h_2, ..., h_m] \)

Merkle-Hellman (cont’d)

- Merkle-Hellman is Public key cryptosystem
 - Each user has public key:
 - Set of integers of a (simple) knapsack problem
 - Each user has private key
 - Set of integers for corresponding superincreasing knapsack
- Contribution: design of technique to convert superincreasing knapsack into a regular one.
 - Change numbers in nonobvious, reversible way.

Merkle-Hellman (cont’d)

- Encryption alg starts with binary message
 - \(P = [p_1, p_2, ..., p_k] \)
 - Divide message into blocks of \(m \) bits, \(P_0 = [p_1, p_2, ..., p_m], P_1 = [p_1, p_2, ..., P_{2m}] \).
 - Value of \(m \) is number of terms in simple or hard knapsack
 - Encipherment of message \(P \) is sequence of targets
 - Each target is sum of some of the terms of the hard knapsack \(H \)
 - Terms selected correspond to 1 bits in \(P_i \)
 - \(P_i \) serves as selection vector for elts of \(H \)
 - Each term of ciphertext is \(P_i \cdot H \)
Merkle-Hellman (cont’d)

- Decryption:
 - Legitimate recipient knows simple knapsack and values of \(w \) and \(n \)
 \[
 H = w \cdot S \mod n
 \]
 \[
 C = H \cdot P = w \cdot S \cdot P \mod n
 \]
- To decipher, multiply \(C \) by \(w^{-1} \)
 \[
 w^{-1} \cdot C = w^{-1} \cdot H \cdot P = w^{-1} \cdot w \cdot S \cdot P = S \cdot P \mod n
 \]

- Weaknesses:
 - How easy is it to determine \(w \) or \(n \) from \(H \)?

Example

- \(S = \{1,2,4,9\}; H = \{15,13,9,16\} \)
- \(w = 15, n = 17, m = 4; h = w \cdot s \mod n \)
- \(P = 0100101110100101 \)
- Encode with \(H \) as follows:
 - \([0,1,0,0] \cdot [15,13,9,16] = 13 \)
 - \([1,0,1,1] \cdot [15,13,9,16] = 40 \)
 - \([1,0,1,0] \cdot [15,13,9,16] = 24 \)
 - \([0,1,0,1] \cdot [15,13,9,16] = 29 \)
- Encrypted message as integers: 13,40,24,29,
 - Public knapsack \(H = \{15,13,9,16\} \)

RSA: Rivest-Shamir-Adelman

- Superficially looks similar to Merkle-Hellman:
- Exploits number theory and finding prime factors of a target:
 \[
 C = P^e \mod n; P = C^d \mod n
 \]
- Symmetry in modular arithmetic
 - encryption/decryption are mutual inverses and commutative.
 \[
 P = C^d \mod n = (P^e)^d \mod n = (P^d)^e \mod n
 \]
- Choosing keys: \((e, n) \) and \((d,n) \)
 - Select value for \(n \)
 - should be quite large: a product of two large primes \(p \) and \(q \) (100 digits ea)
 - Select value for \(e \): relatively prime to \((p-1) \cdot (q-1) \)
 - \(E \) has no common factors with above product.
 - Choose \(e \) as prime larger than both \((p-1) \) and \((q-1) \)
 - Select value for \(d \): \(e \cdot d \equiv 1 \mod (p-1) \cdot (q-1) \)
- How to use: user distributes \(e \) and \(n \), keeps \(d \) secret
- To encrypt, need to find large prime numbers
DES: Data Encryption Standard

- Developed for US govt for general public use.
- Repeats 16 cycles of substitution and transposition
 - Shannon’s theory of information secrecy
 - Confusion: info is changed so that output bits have no obvious relation to input bits
 - Diffusion: spread the effect of one plaintext bits to other ciphertext bits.
 - Splits data block into 2 pieces:
 - Scrambles each half independently
 - Combines key with one half
 - (key is transformed during each cycle)
 - Swap 2 halves
 - Repeat 16 times.

One Cycle in DES

[Pfleeger97]