Overview

- Introduction to Software Inspection
 - Detect and remove defects as soon as the software artifacts are created
 - Benefits
 - Software-quality
 - Budget and time
 - Effect: 50%-90% [Gilb93]
 - Context
 - Design reviews
- Dimensions
 - Technical
 - Economic
 - Organizational
 - Tool

A Generic Software Development Model

The Technical Dimension of Software Inspection

The Original Approach

Fagan 1976

Five Phases:
- Overview
 - Author briefs the inspection team
- Preparation
 - Inspectors go through the document
- Inspection
 - A meeting to find defects, "synergy" effect
 - Reader, inspector, moderator, from start to finish
- Rework
 - Author addresses the defects found
- Correction or justification
- Follow-up
 - Moderator checks if re-inspection needed

Why Inefficient

Weiss and Parnas 1985

Problems with the Original Approach
- Difficult to find relevant information in the mass of documentation
- Unfamiliar with all the goals and constraints
- No concentrated examination
- Passive initiation, no explicit responsibility
- Limited interaction
- Wrong people selected
- Beyond competence
- Non-systematic
Active Design Reviews

- Making Design Reviewable
 - Desirable properties
 - Well structured, simple, efficient, adequate, flexible, practical, implementable, standardised
 - Making assumption explicit
 - Including redundant information
 - Organising document
 - Common information, cross-references, indices

- Identifying Review Types
 - Assumption validity, assumption sufficiency, consistency between assumptions and functions, function adequacy, etc.

- Classifying Reviewers (Inspectors)
 - Specialist, potential users, experienced designers, enthusiastic logical inconsistency detectors, etc.

Active Design Reviews (cont.)

- Designing The Questionnaires
 - Make the reviewers take an active stand
 - “Is there an assumption that justifies the implementation of the function?”
 - “Which assumptions tell you…?”

- Conducting The Review
 - Designer: present brief overview
 - Reviewer: ask question
 - Reviewer: review document sections, complete questionnaires
 - Designer: read the completed questionnaires
 - One-on-one or small group meeting
 - Discuss reviewer’s answer, reviewers defend their answers
 - Designer: produce new version of documentation, including the issues raised during the review

Impact

- Effects
 - Help select appropriate reviewers
 - Make good use of reviewer’s skill
 - Make effective use of reviewer’s time
 - Every reviewer contributes
 - Rapid focus on specific problems

- Results
 - More errors found

- Impacts on Research
 - Documentation
 - Role and responsibility
 - Reading techniques
 - Meeting
Related 1: Asynchronous Software Inspection

Problems of Conventional Meeting
- Cost, scheduling
- Effect, “synergy”?
- Gain and loss, meeting sensitivity, data variance
- Personal relationship

Asynchronous Inspection Model
- Email communication
 - Procedure: Individual detection → circulate defect list to others → Why I did not find the error → second round inspection → send final list to moderator → implicit voting and decision
 - Roles and responsibilities
 - Moderator: planning, monitoring communication, compiling final defect list
 - Author: answering questions from inspections
 - Inspector: looking for defects

Related 1 (cont.)

Tool Support
- Threads of discussion, sharing of information, train of thought, visual cues, reaching consensus, coordination

Effects
- No meeting cost
- Anytime, anywhere inspection
- Explicit contribution, inspection record
- Parallel conversation
- Automation
- Anonymity, etc.

How It Extends Parnas’ Idea?
- Common goals: reduce meeting cost, increase meeting efficiency
- Active review: one-on-one or small group meeting, specific discussion
- Asynchronous inspection: no meeting, specific discussion and parallel conversation

Reading Techniques

Motivation
- Inspection results depend on inspectors and their strategies
 - Good strategies make detection less dependent on human factors

Strategies
- Ad hoc
- Checklist-based
- Reading by Stepwise Abstraction
- Questionnaire-based (Active Design Reviews)
- Scenario-based
- Defect-based
- Function-based
- Perspective-based

Related 2: Detection Methods

Comparison of Detection Methods
- Non-systematic techniques:
 - Ad-hoc: little reading support, detection fully depends on inspectors.
 - Checklist-based: a list of questions
 - Ad-hoc/Checklist: search for a wide variety of faults
- Systematic techniques:
 - Scenario-based: search for different, specific classes of faults
 - Different scenarios: focus on different defect types, broad coverage
 - Efficiency depends on content and design of scenarios
 - Different classes: focus on different defect classes
 - Function Point Scenarios: focus on function point items
 - Perspective-based: depends on roles

Related 2 (cont.)
Systematic Inspection Hypothesis

Related 2 (cont.)
Detection Methods Relationship

<table>
<thead>
<tr>
<th>Detection Method</th>
<th>Checklist</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimistic</td>
<td>Optimistic</td>
<td>Optimistic</td>
</tr>
<tr>
<td>NFR</td>
<td>Necessary</td>
<td>Necessary</td>
</tr>
<tr>
<td>IRC</td>
<td>Incorrect</td>
<td>Incorrect</td>
</tr>
<tr>
<td>AI</td>
<td>Ad Hoc</td>
<td>Ad Hoc</td>
</tr>
<tr>
<td>BS</td>
<td>Checklist</td>
<td>Checklist</td>
</tr>
<tr>
<td>Ad Hoc</td>
<td>Scenario</td>
<td>Scenario</td>
</tr>
</tbody>
</table>
Related 2 (cont.)

Experiments

- Design
 - Multi-trial experiment
 - 48 CS graduate students → 16, 3-person teams
 - Two SRS each team
 - Combination of Ad hoc, Checklist or Scenario methods.

- Metrics
 - Individual fault detection rate
 - Team fault detection rate
 - Percentage of faults first identified at the collection meeting
 - Percentage of faults first identified by an individual, but never reported at the collection meeting

Related 2 (cont.)

Conclusion

- Conclusions
 - Higher fault detection rate (43/41/57, 31/24/45)
 - More effective detecting specific faults
 - Checklist no more effective than Ad hoc
 - Meetings have no net improvement

- How It Extends Parnas’ Idea?
 - Common approach: assigning inspectors to specific defect types
 - Scenario-based method more general
 - Coverage vs. Effective usage
 - Empirical results

Related 3: Perspective-Based Reading

- Inspected From Different Roles
- One Or Multiple Scenarios For Each Perspective
- Broad Coverage
- Experiment
 - Variables
 - Reading Technique: defect-based (MF, ID), perspective-based
 - Perspective: tester, designer, user
 - Documents: generic (A/NM), specific (Flight dynamics)
 - Metrics: team/individual defect detection rate
 - Goal: find relationship between variables
 - Training → detection
 - Analysis approach: statistical method
Related 3 (cont.)

Conclusion

- Conclusions
 - Better coverage (.51/3.3, .62/4.8, .85/7.9)
 - Independent on experience
 - Slightly higher individual detection rate (.51/4.7)
- How It Extends Parnas’ Idea?
 - Common approach: select appropriate inspectors
 - Coverage vs. Effective usage
 - Empirical results

Uncited:

Inspection Discipline and Flexibility

- Motivation
 - Exploring the relationship between discipline and flexibility
 - Designing tailorabe and effective inspection method for defect detection
- Discipline
 - Prescriptive metrics: roles, procedures; goals, quality model; inspection maturity; grade of competence
- Flexibility
 - Place and time independence; tailorability to process, varying number of participants
 - New types:
 - Virtual logging meeting
 - No logging meeting
 - Pair inspection
 - Limited logging meeting

Uncited (cont.)

Discipline/Flexibility Dimensions

It Extends Parnas’ Idea

- Pair inspection and limited logging meeting → one-on-one or small group meeting