1. Prove that x satisfies L if and only if y satisfies L.

2. Describe an algorithm that computes a function f mapping every instance of L to an instance of L'.

3. Select a known NP-complete problem L'.

4. Prove $L \in NP$.

- Method for proving that L is NP-complete:

 If $L \in NP$, then $L \in NP$.

 If $L \in NP$, then $L \in NP$.

 If L is a problem such that $L \leq_p L'$ for some L' in NP, then $L \in NP$.

Lemma 3.4.8
5. Prove that the algorithm computing \(f \) runs in polynomial time.

Example 3: Prove that SAT is NP-complete using Circuit-SAT to do reduction.
\[(
\begin{array}{c}
L \lor b \lor g \lor 8 \lor x = o^1x \\
L \land g \lor b \lor x = g^0x \\
9 \land 5 \land 3 \lor x = 4 \lor x \\
5 \lor 3 \lor x = 4 \lor x \\
7 \lor 5 \lor c \lor o \lor x = 4 \lor x \\
(x \lor y \lor z \lor 0 \lor x = 4 \lor x) \\
5 \lor 3 \lor x = 4 \lor x \\
\end{array}
)\]

\[\text{(circuit-sat)} = \text{O(reduction)} + \text{O(sat)}\]
Proof: satisfiability of boolean formula is NP-complete.

To prove \(\text{SAT} \in \mathsf{NP} \), we show \(\text{Circuit-SAT} \leq_p \text{SAT} \). We need to reduce any instance:

To prove \(\text{SAT} \in \mathsf{NP} \), we show that a certifying instance consisting of a satisfying assignment for an instance of \(\text{Circuit-SAT} \leq_p \text{SAT} \).
Given a circuit C, the algorithm produces \(\phi \) in polynomial time. Given C, let E be the set of \(\mathcal{V}(C) \) and \(\mathcal{E}(C) \) be the set of \(\mathcal{E}(C) \) for \(\mathcal{E}(C) \). Let \(V \subseteq \mathcal{V}(C) \) be a vertex cover of \(\mathcal{V}(C) \). If \(\mathcal{V}(C) \), then \(\mathcal{V}(C) \) or \(\mathcal{V}(C) \) (or both).

A vertex cover of an undirected graph \(G=(\mathcal{V},\mathcal{E}) \) is a subset \(V \subseteq \mathcal{V}(C) \) such that each edge of \(\mathcal{E}(C) \) is incident to a vertex in \(V \).

Example 4: Vertex cover problem.

Complete the proof.
The vertex cover problem is to find a vertex cover of minimum size in a given graph. The size of a vertex cover is the number of vertices in it.
③ Prove that the vertex cover is NP-hard. Clause NP-vertex cover

\[\text{\textbf{Claim:}} \quad \Delta(G) \] \(\leq 4 \)

\[6 \leq \Delta(G) \]

\[G = (V, E) \text{ is a graph.} \]

\[k = \left| V \right| \]

\[k' = \left| E \right| \]

\[(G, k) \text{ is a yes instance to CLIQUE} \]

```
Proof: Show that vertex cover is NP-hard.
```
2. Conversely, suppose \(C \) has a vertex cover \(\mathcal{V}_C \) where \(|\mathcal{V}_C| = k \). Then claim that \(T - V \) is a chain in \(G \).

1. Suppose that \(G \) has a chain, \(T \), of size \(|T| = k \). We claim that \(T \subseteq C \).

Graph \(G \) has a vertex cover of size \(|V| - k \). Prove that if graph \(G \) has a chain of size \(|T| \) if and only if the \(\mathcal{V}_C \) contains \(\mathcal{V}_C \) \(\subseteq \mathcal{C} \) \n \n1 \n\nIf \(C \), \(|V| - k \), \(\mathcal{V}_C \), \(\mathcal{C} \), the vertex cover problem. The reduction algorithm takes as input an instance \(G \), \(k \), of the chain problem.