Index

- Introduction
- Probabilistic Systems
- Probabilistic Logics
- PRISM
- Performance Evaluation
- Model Checking and Performance Evaluation
- Challenges
Introduction

- Non-probabilistic model checking
 - Qualitative correctness
 - e.g. is there any execution path in which more than one processes are in the critical section?

- Probabilistic model checking:
 - Quantitative correctness:
 - e.g. is the probability that more than one processes are in the critical section below 0.1?
Introduction (Cont.)

- Model checking of systems that exhibit probabilistic behavior:
 - e.g. randomized algorithms/protocols
 - e.g. systems with failures/unreliability

- Markov models
 - Discrete-Time Markov Chains (DTMCs)
 - Markov Decision Processes (MDPs)
 - Continuous-Time Markov Chains (CTMCs)

- Probabilistic Timed Automata (PTAs) (not covered here)
Probabilistic Systems
Discrete-Time Markov Chains (DTMCs)

- State-transition systems augmented with probabilities
- Transitions occur in discrete time steps
Probabilistic Systems
Markov Decision Processes (MDPs)

- DTMCs + non-determinism
Probabilistic Systems
Continuous-Time Markov Chains (CTMCs)

- Transitions
 - Can occur in any real-valued time
 - Modeled using exponential distribution with rate λ
 - probability triggered before t time units: $1 - e^{-\lambda t}$

- Example:
 - state space: $S = \{s_i \mid i=0..3\}$ where s_i indicates i jobs in queue
 - maximum size of the queue is 3
 - jobs arrive with rate λ (i.e. mean inter-arrival time is λ)
 - jobs are served with rate μ (i.e. mean service time is μ)
Probabilistic Logics

- Logics for specifying properties of probabilistic systems
- Extensions of CTL
 - PCTL (and PCTL *)
 - CSL
 - PTCTL \((not\ covered\ in\ here)\)
Probabilistic Logics

PCTL

- Temporal logic for describing properties of DTMCs (and MDPs)
- Extends CTL
- Key addition: probabilistic operator P

$$
\Phi ::= \text{true} \mid a \mid \neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid P_{\sim p}[\psi] \quad \text{(state formulae)}
$$

$$
\psi ::= X\Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup^{\leq k} \Phi_2 \quad \text{(path formulae)}
$$

$$
s \models P_{\sim p}[\psi] \quad \text{iff} \quad Pr(s \models \psi)_{\sim p},
$$

where $Pr(s \models \psi) = Pr_s\{\pi \in \text{Path}(s) | \pi \models \psi\}$.
Probabilistic Logics

PCTL

- Examples:
 - $P_{<0.3}[F(Fail_{serverA} \land Fail_{serverB})]$: The probability of situation in which both server A and server B have failed is less than 0.3.
 - $down \rightarrow P_{>0.99}[true \cup_{\leq 10} Up]$: If the service is down, the probability of being repair in 10 time steps is greater than 0.99.
Probabilistic Logics

PCTL (Cont.)

- P is quantitative extension of A and E of CTL
- $P_{\geq 0}[\psi]$ is identical to $E[\psi]$,
- $P_{\geq 1}[\psi]$ is (similar to but) weaker than $A[\psi]$,
- $A[F success]$ is not satisfied
 - Counterexample:
 - $s_0, s_1, s_2, ...$
 - $P_{\geq 1}[F success]$ is satisfied
 - Probability of $s_0, s_1, s_2, ...$ is zero
Probabilistic Logics
CSL

- Temporal logic for describing properties of CTMCs
- Key addition:
 - probabilistic operator P
 - steady state operator S

\[
\begin{align*}
\Phi & ::= \text{true} \mid a \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid P_p[\psi] \mid S_p[\Phi] \quad \text{(State formulae)} \\
\psi & ::= X\Phi \mid \Phi_1 \cup' \Phi_2 \quad \text{(Path formulae)}
\end{align*}
\]

\[s \models S_p[\Phi] \quad \text{iff} \quad \sum_{s' \models \Phi} \pi_s(s') \sim p,\]

where $\pi_s(s')$ is the probability of, starting in state s, being in state s' in the long run.
Probabilistic Logics

CSL

- Examples:

- $S_{\geq 0.9}[Operational]$: The probability of being in the operational state in the long run is at least 0.9.

- $degraded \rightarrow$

 $P_{>0.99}[Degraded \cup [0,2] Operational]$: When the system is in the degraded state, the probability of changing to full operational state without leaving degraded state within 2 hours is greater than 0.99.
PRISM

- One of the important **probabilistic** model checkers
 - Developed by Oxford University
 - Supports DTMCs, MDPs, CTMCs, PTAs
 - Supports PCTL, CSL, LTL + reward extensions
 - Symbolic model checking techniques
 - GUI + Command line
PRISM
Modeling Language

- Fundamental components
 - Modules: Consisting variables
 - Variables: specifying states of a module
- Model:
 - Consisting of some module interacting with each other
 - Combination of the states of modules determines the global state of the model
- Commands: Behavior of the model

[action] guard -> prob_1: update_1 + ... + prob_N: update_N
PRISM Modeling Language

- DTMC

dtmc
module M1
 S : [0..3] init 0;
 [] s=0 -> (s'=1);
 [] s=1 -> 0.3: (s'=2)+0.7: (s'=3);
 [] s=2 -> (s'=0);
 [] s=3 -> (s'=3);
endmodule
PRISM Modeling Language

- MDP

```plaintext
mdp
module M1
    s : [0..4] init 0;
    [] s=0 -> (s'=1);
    [] s=1 -> 0.3:(s'=2)+0.7:(s'=3);
    [resend] s=2 -> (s'=0);
    [stop] s=2 -> (s'=4);
    [] s=3 -> (s'=3);
    [] s=4 -> (s'=4);
endmodule
```
PRISM Modeling Language

- CTMC

ctmc
cst int N = 3;
cst double mu = ;
cst double lambda = ;
module queue
 q : [0..N];
 [] q<N -> lambda: (q'=q+1);
 [] q>0 -> mu: (q'=q-1);
endmodule
Performance and Dependability Evaluation

- **Performance**: How well a system meets the expectations of its users?
 - Performance measures: response time, queue length, utilization, throughput
 - Ignores failure and repair

- **Dependability**: How much the service is reliable
 - Dependability measures: availability, reliability
 - Focuses on failure and repair

- **Performability**: Performance + Dependability
 - How well a system meets the expectations of its users in the presence of failure and repair?
Performance and Dependability Evaluation (Cont.)

- **Utilization** (in steady-state), U: The probability that the server is busy in the long-run.
- **Reliability**, $R(t)$: The probability that the system does not fail in time period $[0,t]$.
- **Instantaneous availability**, $a(t)$: The probability that the system works as expected in time t.
- **Steady-state availability**, A: The probability that the system works as expected in the long-run.
Performance and dependability measures can be specified using probabilistic logics.

For example, in PRISM:

- **Utilization**: $S \geq 0.9[\text{“Server.Busy”}]$
- **Reliability, $R(t)$**: $P \geq 0.9[\ G \ t \ ! \ “fail”]$
- **Instantaneous availability, $a(t)$**: $P \geq 0.99 \ [G[t,t] \ “up”]$
- **Steady-state availability, A**: $S \geq 0.99 \ [“up”]$
Probabilistic Model Checking for Performance evaluation

- **Advantages**
 - Stating requirements unambiguously
 - It is impossible to consider more than one interpretation for a specification.
 - Flexibility
 - By nesting operators in probabilistic logics, we can define very complex requirements
 - Single algorithm, many different measures
 - No need to develop new methods for new performance or dependability measures.
 - Specifying requirements over the selected paths of the model
 - Not easily possible in traditional performance and dependability evaluation
Challenges

- State space explosion problem
 - More severe than non-probabilistic model checking, as it includes:
 - Model checking algorithms
 - Performance evaluation computations (e.g. linear equation solving)
- Generating and representing the counterexample
 - For many properties, one trace is not enough
 - e.g. probability of a failure is less than 0.1.
Thank You

Questions?