Explicit State Model Checking Algorithm for CTL
CTL Model Checking Problem

• Given
 – A model describing the behaviors of a system
 – A set of specifications expressed in CTL

• Algorithmically
 – Check that every behavior satisfies the specifications
Explicit-State MC Algorithm

• Operates on a FSM M of a system and a CTL specification f that has been put in a special form:
 – Uses only the operators: \neg, \land, EX, EU, and EG

• The algorithm proceeds in stages
 – Each stage considers a sub-formula f'' of f
 – Based on the Boolean structure of f'' and knowing the states at which the sub-formulas of f'' are true, determines the states at which f'' is true
 – Starts with the “smallest” sub-formulas of f and works up to f
System model:

CTL Specification: \(AG(p \Rightarrow AF(q)) \)
Example

Rewrite spec to use only \(\neg, \land, EX, EU, EG: \)

\[
AG(p \Rightarrow AF(q))
\equiv \neg EF[\neg(p \Rightarrow AF(q))]
\equiv \neg EF[p \land \neg AF(q)]
\equiv \neg E[True U (p \land \neg AF(q))]
\equiv \neg E[True U (p \land EG(\neg q))]
\]

Sub-formulas considered, bottom up:

\[
\neg E[True U (p \land EG(\neg q))]
\]

\[
E[True U (p \land EG(\neg q))]
\]

\[
p \land EG(\neg q)
\]

\[
EG(\neg q)
\]

\[
\neg q
\]

\[
True, p, q
\]
Example

Label states satisfying:
- True
- \(p \)
- \(q \)
- \(\neg q \)

Specification: \(\neg E[\ True \ U (p \land EG(\neg q))] \)
Example

Label states satisfying:

\[EG(\neg q) \]

Specification: \(\neg E[True \ U (p \land EG(\neg q))] \)
Example

Specification: $\neg E[True \ U (p \land EG(\neg q))]$

Label states satisfying:

- $EG(\neg q))$
- $p \land EG(\neg q))$
Example

Specification: $\neg E[True \ U (p \ \land \ EG(\neg q))]$

Label states satisfying:

$EG(\neg q))$

$p \ \land \ EG(\neg q))$

$E[True \ U (p \ \land EG(\neg q))]$
Example

Specification: $\neg E[\text{True} \ U (p \land EG(\neg q))]$

Label states satisfying:

$EG(\neg q))$
$p \land EG(\neg q))$
$E[\text{True} \ U (p \land EG(\neg q))]$
$\neg E[\text{True} \ U (p \land EG(\neg q))]$
CTL MC Algorithm

Input: FSM $M = (S, R, L)$ and CTL spec f

Algorithm: Compute $Labels(s)$ for each $s \in S$:

- For each $s \in S$, initialize $Labels(s) = L(s)$
- For $i = 1 .. d$, where d is the depth of the parse tree of f:
 - For each sub-formula g at depth $d - i$, perform the “stage computation”
- On termination, $(M, s) \models f$ iff $f \in Labels(s)$
Stage Computation for CTL formulas

Five cases: \neg, \land, EX, EU, EG

- Case g has the form $\neg f$:
 If $f \notin Labels(s)$, then add g to $Labels(s)$

- Case g has the form $f \land g$:
 If $f \in Labels(s)$ and $g \in Labels(s)$, then add g to $Labels(s)$

- Case g has the form EXf:
 If there is some some t such that $(s, t) \in R$ and $f \in Labels(t)$, then add g to $Labels(s)$
Stage Computation for CTL formulas

Five cases: \(\neg, \lor, EX, EU, EG\)

- Case \(g\) has the form \(E[f U h]\)
 - If \(h \in Labels(s)\), then add \(g\) to \(Labels(s)\)
 - Repeat until a fixed point is reached:
 - If there is some \(t\) such that \((s, t) \in R\) and \(f \in Labels(s)\) and \(g \in Labels(t)\),
 then
 add \(g\) to \(Labels(s)\)
Stage Computation for CTL formulas

Five cases: ¬, ∨, EX, EU, EG

- Case g has the form $EG(f)$:
 - Compute the sub-FSM M' of M produced by deleting all states for which $f \notin \text{Labels}(s)$.
 - Find the maximal strongly connected components (SCCs) of M'.
 - For each non-trivial SCC of M' and every s in M', if s reaches the SCC, add g to $\text{Labels}(s)$.
Example: $EG(q)$

Given FSM M:

Compute sub-FSM M':
Example: $EG(q)$

Compute max’l SCCs of M':

Compute states that reach the SCC:

$EG(q)$
Summary

• Stage computation labels each state of the FSM with sub-formulas that are true at that state
 – sub-formulas considered bottom-up
 – based on Boolean structure of sub-formulas
• Complexity is linear in the size of the formula and the size of the FSM
• Explicit-state because it needs to examine every state in a FSM, which is typically a source of state explosion