Computation Tree Logic
Outline

• Motivation
• CTL structures
• Syntax of CTL
• Semantics of CTL
• Some examples
View Time as Branching

- Processes make *choices* as they execute
- Outcomes of choices cause different *futures*
- Branching-time logics allow quantification over the possible futures
View Time as Branching

Two types of operators

- Path operators:
 * U (until)
 * F (sometime)
 * G (always)

- State operators:
 * A (on all paths)
 * E (on some path)
CTL Structures: FSM

• Assume a set of primitive propositions, \(P \)

• A finite state model \(M \) is a triple \(M = (S, R, L) \) where
 – \(S \) is a finite set of states
 – \(R \subseteq S \times S \) is a (total) transition relation
 – \(L : S \rightarrow 2^P \) labels each state with a set of propositions

• A path, \(\rho \), is an infinite sequence of states
 \[\rho : s_0, s_1, s_2, \ldots \]
 such that \((s_i, s_{i+1}) \in R\), for \(i \geq 0 \)
CTL Structures: Computation Trees

• A finite state model $M = (S, R, L)$ and a state $s_0 \in S$ define an infinite *computation tree* T where:
 – the root of T is labeled s_0 and
 – T contains an edge from a node labeled s to a node labeled t iff $(s, t) \in R$

• A CTL formula is evaluated on a computation tree, i.e., at a state in a FSM
Example: FSM

- P: \{x=0, x=1, y=0, y=1\}
- S: \{s_0, s_1, s_2\}
- R:
 \{(s_0, s_1), (s_1, s_0),
 (s_1, s_2), (s_2, s_0)\}
- L:
 $L(s_0) = \{x=0, y=0\}$
 $L(s_1) = \{x=1, y=0\}$
 $L(s_2) = \{x=1, y=1\}$
Example: Some paths

s_0, s_1, s_0, s_1, s_0, s_1, s_0, ...

s_0, s_1, s_1, s_0, s_2, s_0, s_1, s_2, ...

s_0, s_1, s_0, s_1, s_2, s_0, s_1, s_2, s_0, ...

s_0, s_1, s_0, s_1, s_2, s_0, s_1, s_0, s_1, ...

…
Example: Computation Trees
Syntax of CTL

The CTL formulas over P are defined inductively:

If $p \in P$ and f and g are CTL formulas, then the following are CTL formulas:

(Propositions) p

(Boolean operators) $\neg f$ $f \land g$ $f \lor g$...

(Temporal operators) AXf On all paths, next f

EXf On some path, next f

$A[f \mathcal{U} g]$ On all paths, f until g

$E[f \mathcal{U} g]$ On some path, f until g
Semantics of CTL

• A CTL formula is evaluated at a state \(s_0 \in S \) in a finite state model \(M = (S, R, L) \).

• The models relation is defined inductively:

Proposition \(p \): \((M, s_0) \vDash p \) if \(p \in L(s_0) \)

Boolean operators, as usual:

\[
(M, s_0) \vDash \neg f \quad \text{iff} \quad \neg ((M, s_0) \vDash f) \\
(M, s_0) \vDash f \land g \quad \text{iff} \quad ((M, s_0) \vDash f) \land (M, s_0) \vDash g \\
(M, s_0) \vDash f \lor g \quad \text{iff} \quad ((M, s_0) \vDash f) \lor (M, s_0) \vDash g \\
\ldots
\]
Semantics: CTL Temporal Operators

Always Next:

\((M, s_0) \models AXf\)

iff

\[\forall t \ ((s_0, t) \in R \Rightarrow (M, t) \models f) \]

Sometime Next:

\((M, s_0) \models EXf\)

iff

\[\exists t \ ((s_0, t) \in R \land (M, t) \models f) \]
Semantics: CTL Temporal Operators

Always Until:

\[(M, s_0) \models A[f \mathcal{U} g] \quad \text{iff} \]

for all paths \((s_0, s_1, s_2, \ldots)\),

\[\exists i \geq 0 \ [(M, s_i) \models g \land \forall j (0 \leq j < i \Rightarrow (M, s_j) \models f)]\]
Semantics: CTL Temporal Operators

Always Until:

$$(M, s_0) \models E[f U g] \iff$$
for some path (s_0, s_1, s_2, \ldots),
$$\exists i \geq 0 \ [(M, s_i) \models g \land \forall j \ (0 \leq j < i \ \Rightarrow \ (M, s_j) \models f)]$$
Semantics: CTL Temporal Operators

Inevitably: \(AF(f) \equiv A[True \ U \ f] \)
Semantics: CTL Temporal Operators

Potentially: $EF(f) \equiv E[True \ U f]$

$(M, s_0) \models EF(f)$ iff

for some path $(s_0, s_1, s_2, ...)$, $\exists i \geq 0 \ [(M, s_i) \models f]$
Semantics: CTL Temporal Operators

\[EG(f) \equiv \neg AF(\neg f) \]

\((M, s_0) \models EG(f)\) iff

for some path \((s_0, s_1, s_2, \ldots)\), \(\forall i \geq 0\) \([(M, s_i) \models f]\)
Semantics: CTL Temporal Operators

Globally: $AG(f) \equiv \neg EF(\neg f)$

$(M, s_0) \models AG(f)$ iff for all path (s_0, s_1, s_2, \ldots), $\forall i \geq 0 \ [(M, s_i) \models f]$
Example: Mutex Protocol

C – in critical section (CS); N – not ready to enter CS; T – trying to enter CS
Example: Mutex Protocol

\[(M, s_{init}) \models AG(\neg C1 \lor \neg C2) \]
Example: Mutex Protocol

\[(M, s_{init}) \models AF(C1) ??\]
Example: Mutex Protocol

\((M, s_{init}) \models AG(T1 \Rightarrow AF(C1))??\)
Summary

• CTL allows reasoning about possible futures of a state
• CTL formula is evaluated at a state in a FSM (or equivalently on an infinite computation tree)
• Combine a state op with a path op
 – State ops: A, E – quantify over possible futures
 – Path ops: X, F, G – quantify over states in a path