10/06:
Design Day Booklet Production Process

The Capstone Experience

Dr. Wayne Dyksen
James Mariani
Luke Sperling

Department of Computer Science and Engineering
Michigan State University
Fall 2021
Design Day Booklet

• Professional Publication
 ▪ Corporate Relations
 ▪ Alumni Relations
 ▪ Recruiting
 ▪ Keepsake for You

• Contents
 ▪ Schedule of Events
 ▪ Project Descriptions
The Capstone Experience

• Professional Publication
 ▪ Corporate Relations
 ▪ Alumni Relations
 ▪ Recruiting

• Contents
 ▪ Capstone Projects
 ▪ Academic Year
Use Microsoft Windows Office 365 Version of Word.
Team’s Job

• Read instructions carefully.
• Check everything.
• Use Microsoft Windows Office 365 version of Word.
• Read the instructions carefully.
• Write the project description.
• Read the instructions carefully.
• Provide the artwork.
• Read the instructions carefully.
• Update the project description and artwork.
• Read the instructions carefully.
• Check everything 100 times.
• Read the instructions carefully.
Project Description

• Read the instructions carefully. ← Have I mentioned this yet?
• Newspaper / Magazine Style
• Target Audience == General Public
• Do NOT Start...
 ▪ “Our project is...”
 ▪ “Our sponsor asked us to...”
 ▪ “Our project aims to...”
• Use present tense throughout.
• Write as though your project is complete.
 ▪ It works.
 ▪ Your sponsor is using it.
• Fill the entire textbox, no less, no more.
• Read Past Examples
 ▪ The Capstone Experience Booklet
 ▪ Previous Design Day Booklets (Design Day > Booklet)
 ▪ MSU Men’s Basketball
• Make a Check List
Project Description

• Beginning
 ▪ Sponsor Overview
 ▪ 2 to 3 Lines

• Middle
 ▪ The Problem & Your Solution
 ▪ Magazine Style
 ▪ Understandable by Non-Technical Person

• End
 ▪ Technical Jargon
 ▪ 2 to 3 Lines
Volkswagen Group of America is the North American operation headquarters and subsidiary of the Volkswagen Group, one of the world's leading automobile manufacturers. They are comprised of 8,000 employees in the United States and sell their vehicles through a 1,000-strong dealer network.

Electric vehicles are one of the latest innovations in the automobile industry. Volkswagen, who just released their first electric vehicle, the ID.4, want a way to show potential customers the benefits of electric vehicles compared to gas powered vehicles as well as address and correct some of the common misconceptions many people have about electric vehicles.

Our VW Car-Net Electric Vehicle Route Planner application is displayed in Volkswagen dealerships and educates potential car buyers about the benefits of buying an electric vehicle.

A major concern many buyers have about electric vehicles is the car's range and charging options available on the road. Our application generates driving routes for gas vehicles and electric vehicles that stop at charging stations. Buyers can compare these various routes with respect to route length, route path, fuel costs and carbon emissions.

Our application also allows for extensive customizability including sliders to adjust starting battery charge, climate control, temperature and weather conditions to account for the effects these factors have on battery consumption.

Our Electric Vehicle Route Planner helps assuage the fears of potential electric vehicle buyers by showing them that their daily routine will have minimal disruptions, and significant benefits if they switch to an electric vehicle.

Our Electric Vehicle Route Planner is developed as an Android application that utilizes API calls to handle route altering attributes and route generation. Our application is written in Kotlin.
Example Project Description: Spartan Basketball Player Timer

Michigan State University’s Men’s Basketball is elite, one of the top programs in the NCAA.

NCAA Division I basketball is very competitive. Although it may not be apparent to the casual observer, every detail of each game is carefully planned and scripted.

One aspect of a game plan is that of playing times. For each player, the coaches determine target times for how long he can play at a stretch, how long he needs to rest before playing again, and the total amount of time he should play in a game.

Developed with Coach Tom Izzo, our Spartan Basketball Player Timer is used by the basketball staff on the bench during the game.

When a player enters the game, his playing time is displayed with a solid green background. When his target playing time goes under two minutes, it is displayed in yellow. When the time goes below zero, it is displayed in red.

The color coding of times provides visual cues that can be seen by the coaches at a distance. If there are many yellow or red boxes, the coaches begin to plan substitutions.

A game summary for all the players can be displayed at any time whether the game clock is running or stopped.

Our software runs on a Microsoft Windows Tablet PC about the size of a traditional clipboard only slightly thicker. With no mouse or keyboard, all input is done with a pen.

Spartan Basketball Player Time is written in Visual Basic. The underlying database is Microsoft Access.
Artwork

• Read the instructions carefully.
• Take 2 to 3 screenshot(s) of working software.
 ▪ Use eye-catching examples.
 ▪ Avoid boring or trivial things.
 o Splash Screens
 o Login Screens
• Fill up the entire artwork space. Whitespace is bad!
• Overlap artwork if necessary.
• Include “framing” for web and mobile apps.
 ▪ Browser
 ▪ iPhone, iPad
 ▪ Android Phone or Tablet
 ▪ NOT Laptop or Desktop
 ▪ See https://mockuphone.com.
Artwork

• Read the instructions carefully. ← Have I mentioned this yet?
• Add borders if necessary.
 ▪ If Blends Into White Background
 ▪ Create a single PNG for each piece of artwork using PowerPoint.
 ▪ Read Instructions
• Capture and provide very high-resolution images.
• Preserve aspect ratios.
• Crop to eliminate transparent “borders.”
• Eliminate all surrounding “whitespace.”
• Use paint.net.
• See examples.
 ▪ The Capstone Experience Booklets
 ▪ Design Day Artwork Feedback, Spring 2021
 ▪ Previous Design Day Booklets (Design Day > Booklet)
 ▪ MSU Men’s Basketball
• Make a Check List
Artwork

White Whitespace

Too Much Transparent Whitespace

Nicely Cropped Transparent Whitespace
Artwork

Border Shows Transparent Whitespace
Artwork

Select All. Rescale to 3” Height.
Artwork Example
Artwork Example

Aptiv is a global technology company that is transforming mobility with its portfolio of safe, efficient, and connected solutions for its customers. As a leader in autonomous vehicle development, Aptiv maintains an extensive test fleet of autonomous vehicles, which must be managed and monitored. Our Autonomous Vehicle Fleet Connectivity App provides connectivity to Aptiv’s autonomous test fleet, which operates across the U.S., Europe, and Asia, and includes various vehicles with software for every level of autonomy. Among other features, our app provides scheduling of test vehicles. After logging in, Aptiv engineers see a calendar view of the entire fleet from which they can select a particular day and filter a list of available vehicles. Once a vehicle is selected, our app displays a complete set of information about it including its past usage, reservations, and diagnostic information. In addition to checking availability of vehicles based on dates, our app provides advanced search to narrow the scope based on things like type of vehicle, location of vehicle, and level of autonomy.

The “My Reservations” tab shows a user’s upcoming vehicle reservations as well as enabling them to make and cancel reservations. Our Autonomous Vehicle Fleet Connectivity App is written using the Angular web framework, obtaining information from Aptiv’s native servers. Communications are implemented using Microsoft Azure Services.

Michigan State University
Team Members (left to right): Alex Patton, Howard Flora, Drew Mage, Emilie Castillo, Klint Kaeche, Chad Knause, Aptiv Project Sponsor: Chris Lussentrop, Troy, Michigan, Joe Lynn, Troy, Michigan, Tom Magee, Troy, Michigan, Jim Goosenberry, Troy, Michigan.
Artwork Example
Artwork Example

Proofpoint
Improved Detonation of Evasive Malware

Headquartered in Sunnyvale, California, Proofpoint provides cybersecurity to many organizations, including Fortune 500 companies and educational institutions such as Michigan State University.

Analyzing malware is challenging. Viruses, spyware, ransomware, and other malicious programs come in many complex forms. To protect its customers, Proofpoint uses tools called sandboxes, which are restricted computing environments where potentially harmful malware can be tested and analyzed safely.

Unfortunately, a new class of malware called “evasive malware” is rapidly emerging, thereby presenting a new, more dangerous class of cybersecurity threats.

Evasive malware has the ability to detect the presence of the sandbox environment. After doing so, it changes what it does, thereby evading analysis.

Our Improved Detonation of Evasive Malware system modifies evasive malware to block its ability to detect the sandbox environment, which causes it to terminate. When the evasive malware does execute, its behavior is analyzed to determine precisely what it does so that Proofpoint can design countermeasures to protect against it.

Our web app, shown at the right, displays the results of processed malware. Users can check the status of the malware samples being tested as well as see the evasive techniques being used. Both harmless and harmful evasive results are presented.

Our Improved Detonation of Evasive Malware system is implemented in Python, using the CuBios sandboxing framework and Gurobi’s network monitor. Our web app is implemented using Python and Flask, with the interface framed in Bootstrap and Java.

Proofpoint
Project Assurns
Lerant Ajiok
Sunnyvale, California
Knut Gao
Sunnyvale, California
Brad Woodberg
Joy, Michigan

Michigan State University
Team Members (left to right)
Jack Mansour
Bastyr Hills, Michigan
Tea Park
Canton, Michigan
Sean Joseph
Grand Lago, Michigan
Ryan Gallant
Midland, Michigan
Ian Murray
Midland, Michigan
The Capstone Experience

MSU Federal Credit Union
Banking with Amazon’s Alexa and Apple’s Siri

Founded in 1937, Michigan State University Federal Credit Union offers financial services to Michigan State University and Oakland University faculty, staff, students, alumni association members, and their families. With 26,000 members and over $1.3 billion in assets, MSUFCU is the largest university-based credit union in the world.

MSUFCU currently offers mobile banking apps on both Apple (iOS) and Android devices for members to access their accounts and perform banking transactions at any time.

Our Banking with Amazon’s Alexa and Apple’s Siri systems streamline MSUFCU’s technological edge by expanding existing banking offerings to voice-controlled smart devices such as Amazon Alexa-enabled devices, Apple Watch, and Apple Siri.

Voice-controlled technologies give MSUFCU members new ways to interact with their accounts, including accessing their account balance, transferring money, and obtaining information about recent transactions. Members can request other information about MSUFCU such as branch hours, current loan rates, and the location of the nearest ATM or branch.

Our companion administrative web portal enables MSUFCU staff to manage the available information and services offered by these voice technologies. Frequently asked questions can be added to the apps in minutes to improve the user experience.

The Alexa skill is written in Python, Apple Watch in Swift, and Android Wear in Java. All three connect to a MySQL database through JSON. The administrative web portal is written in PHP.

Michigan State University
Team Members (left to right)

Steven Jorgenson
Saranac, Michigan

Kieran Hall
Van Meter, City, Michigan

Will Rudnick
Chicago, Illinois

Ethan Boyd
Sulina, Michigan

Claire Reif
Reno, Ohio

MSUFCU Project Sponsors

Santosha Ambapuri
East Lansing, Michigan

April Gubisch
East Lansing, Michigan

Emily Fedci
East Lansing, Michigan

Cade Lockwood
East Lansing, Michigan

Andy Lynch
East Lansing, Michigan

Ken Haxton
East Lansing, Michigan

Andy Wardell
East Lansing, Michigan
Michigan State University Men's Basketball
Spartan Basketball Player Timer

NCBA Division I basketball is very competitive. Although it may not be apparent to the casual observer, every detail of each game is carefully planned and scripted. One aspect of a game plan is that of playing times. For each player, the coaches determine target times for how long he can play at a stretch, how long he needs to rest before playing again, and the total amount of time he should play in a game.

Developed with Coach Tom Izzo, our Spartan Basketball Player Timer is used by the basketball staff on the bench during the game. When a player enters the game, his playing time is displayed with a solid green background. When his target playing time goes under two minutes, it is displayed in yellow. When the time goes below zero, it is displayed in red.

The color coding provides visual cues that can be seen by coaches at a distance. If there are many yellow or red boxes, coaches begin to plan substitutions.

A game summary for all the players can be displayed at any time whether the game clock is running or stopped.

Our software runs on a Microsoft Windows Tablet PC about the size of a traditional clipboard only slightly thicker. With no mouse or keyboard, all input is done with a pen.

Spartan Basketball Player Timer is written in Visual Basic. The underlying database is Microsoft Access.
The DD Booklet Production Process

- Zip Folders to Teams
- Zip Folders From Teams
 - Edit Artwork Dr. D
 - Edit Project Descriptions James, Luke & Jill
- Merge Edits Dr. D.
- Zip Folders To Designer

- October 9 11:59 p.m.
- October 21
- October 24
The Capstone Experience

1. **Template From Dr. D. To Team**

 - All of the textboxes are named for processing.
 - Do NOT create your own textboxes.
 - If necessary, start over from the original downloaded template.

 There are four placeholders for artwork.

 The text boxes have red outlines for handles.

 Each textbox includes one embedded placeholder artwork, a grey png image.

 Delete the placeholders you don’t need.

 Do NOT create your own textboxes for artwork.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,200 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Porchelli
Patrick Michigan
Jack Gooshe
Naperville, Illinois
Laura Emili
Leonia, Michigan
Andrew Ferguson
Cleveland, Michigan

United Airlines
Project Sponsors
Ramon Arce
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda McCranie
Houston, Texas
Tom Williams
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including: instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our web and iOS apps, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes, taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors, and takes into account instructor preferences and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted on an app service on Azure Cloud Platform.

Round 1 edits by James and Ryan ...

- Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.
- When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.
- Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.
- The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.
- The web app is fully functional using both web browsers and mobile browsers.
- Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted on an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Paczekhi
Franklin, Michigan
Jack Soemke
Naperville, Illinois
Laura Danfa
Lansing, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines
Project Sponsors
Amadeus Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda Gantley
Highland, Texas
Tom Hiltun
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second-largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations Division has 100 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our web and iOS apps, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes, taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors, and takes into account instructor preferences and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular & Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
- Josh Parekh
- Franklin Welch
- Jack Seener
- Naperville, Illinois
- Laura Emilio
- Livonia, Michigan
- Andrew Ferguson
- Livonia, Michigan

United Airlines
Project Sponsors
- Amanda Anne
- Chicago, Illinois
- Craig Barnett
- Chicago, Illinois
- Nick Brown
- Chicago, Illinois
- Lynda McDaniel
- Houston, Texas
- Tam Wilson
- Chicago, Illinois
United Airlines Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right)
Josh Peceslli
Patrick Mecin
Jack Gooshe
Naperville, Illinois
Laura Emilia
Laurel, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines Project Sponsors
Jameelah Arme
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda McDaniel
Huntsville, Texas
Tom Wills
Chicago, Illinois
What’s wrong with this artwork?
3
Artwork Draft
Feedback by Dr. D.

Dr. D. duplicated existing artwork to illustrate requested update.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
- Josh Peresich
- Patrick Michigan
- Jack Sonka
- Naperville, Illinois
- Laura Emilia
- Lansing, Michigan
- Andrew Ferguson
- Grand Rapids, Michigan

United Airlines
Project Sponsors
- Andrew Anne
 Chicago, Illinois
- Craig Bennett
 Chicago, Illinois
- Rick Brown
 Chicago, Illinois
- Lynda Rechard
 Houston, Texas
- Tom Williams
 Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second-largest airline company operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availabilities.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Penczak
Patrick Mitchen
Jack Goehke
Naperville, Illinois
Laura Emilia
Leonia, Michigan
Andrea Ferguson
Lansing, Michigan

United Airlines
Project Sponsors
Amador Amor
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Jamie Hill
Chicago, Illinois
Lynda McDaniel
Nashville, Tennessee
Tom Wilson
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,500 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile-compatible website, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availability.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 6, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
Design Day Production Schedule

<table>
<thead>
<tr>
<th>Weekday</th>
<th>Date</th>
<th>Task</th>
<th>Elapsed Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>October 4</td>
<td>Dr. D. posts zipped folders with templates for downloading.</td>
<td>0</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 6</td>
<td>Dr. D. discusses process at all-hands meeting.</td>
<td>2</td>
</tr>
<tr>
<td>Saturday</td>
<td>October 9</td>
<td>Teams submit zipped folders with first draft by 11:59 p.m.</td>
<td>5</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 10</td>
<td>Dr. D. edits the artwork and creates artwork feedback.</td>
<td>6</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 10</td>
<td>Dr. D. posts zipped folders with artwork feedback for downloading.</td>
<td>6</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 10</td>
<td>TAs begin editing project descriptions.</td>
<td>6</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 10</td>
<td>Teams begin updating artwork.</td>
<td>6</td>
</tr>
<tr>
<td>Monday</td>
<td>October 11</td>
<td>Dr. D. discusses artwork feedback at all-hands meeting.</td>
<td>7</td>
</tr>
<tr>
<td>Monday</td>
<td>October 11</td>
<td>TAs discuss project descriptions at split-hands meeting.</td>
<td>7</td>
</tr>
<tr>
<td>Monday</td>
<td>October 11</td>
<td>Teams submit zipped folders with updated artwork by 11:59 p.m.</td>
<td>7</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 12</td>
<td>Dr. D. edits the artwork and creates artwork feedback.</td>
<td>8</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 12</td>
<td>Dr. D. posts zipped folders with artwork feedback for downloading.</td>
<td>8</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 12</td>
<td>TAs submit project description edits by 11:59 p.m.</td>
<td>8</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 13</td>
<td>Dr. D. discusses artwork feedback at all-hands meeting.</td>
<td>9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 13</td>
<td>TAs discuss project descriptions at split-hands meeting</td>
<td>9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 13</td>
<td>TAs and Jill meet to discuss project descriptions.</td>
<td>9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 13</td>
<td>Jill begins editing project descriptions.</td>
<td>9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 13</td>
<td>Teams submit zipped folders with updated artwork by 11:59 p.m.</td>
<td>9</td>
</tr>
<tr>
<td>Friday</td>
<td>October 15</td>
<td>Jill submits project description edits by 8:00 a.m.</td>
<td>11</td>
</tr>
<tr>
<td>Friday</td>
<td>October 15</td>
<td>TAs and Jill meet to discuss project descriptions.</td>
<td>11</td>
</tr>
<tr>
<td>Friday</td>
<td>October 15</td>
<td>TAs begin final editing project descriptions.</td>
<td>11</td>
</tr>
<tr>
<td>Friday</td>
<td>October 15</td>
<td>TAs submit project description edits by 11:59 p.m.</td>
<td>11</td>
</tr>
<tr>
<td>Saturday</td>
<td>October 16</td>
<td>Dr. D. posts final version of project descriptions.</td>
<td>12</td>
</tr>
<tr>
<td>Monday</td>
<td>October 18</td>
<td>Dr. D. discusses project descriptions at all-hands meeting.</td>
<td>14</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 19</td>
<td>Teams submit final version of project description by 11:50 p.m.</td>
<td>15</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 20</td>
<td>Dr. D. discusses any remaining issues at all-hands meeting.</td>
<td>16</td>
</tr>
<tr>
<td>Thursday</td>
<td>October 21</td>
<td>Dr. D. merges final artwork with final project description.</td>
<td>17</td>
</tr>
<tr>
<td>Thursday</td>
<td>October 21</td>
<td>Dr. D. posts zipped folders with final version for downloading.</td>
<td>17</td>
</tr>
<tr>
<td>Friday</td>
<td>October 22</td>
<td>Teams submit zipped folders with final version by 11:59 p.m.</td>
<td>18</td>
</tr>
<tr>
<td>Saturday</td>
<td>October 23</td>
<td>Dr. D. submits zipped booklet assets to graphic designer.</td>
<td>19</td>
</tr>
<tr>
<td>SUNDAY</td>
<td>MONDAY</td>
<td>TUESDAY</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sep 26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1. Dr. Posts Zip Templates</td>
<td>2. Dr. Emails Instructions</td>
<td>Dr D Discusses Process at All-Hands</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>1. Dr D Edits Artwork</td>
<td>2. Dr Posts Artwork</td>
<td>1. Dr D Discusses Artwork</td>
<td>2. Dr Edits Artwork</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Dr D Posts Final PDS</td>
<td>Dr D Discusses Final PDS</td>
<td>Dr D Discusses Process at All-Hands</td>
<td>1. Dr D Discusses</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Dr D Submits Assets to Designer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Nov 1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Submission

• READ Submission Instructions Carefully
• Zipped Assets Folder
 ▪ Folder Name: team-urban-science-design-day-booklet-page
 ▪ Contents
 o team-urban-science-design-day-booklet-page.docx
 o team-urban-science-artwork-1.png (Very High Resolution)
 o team-urban-science-artwork-2.png (Very High Resolution)
 o team-urban-science-artwork-3.png (Very High Resolution)
 ▪ Delete unused placeholder artwork files.
 ▪ Zip Filename: team-urban-science-design-day-booklet-page.zip
• Upload to Microsoft Teams
 ▪ General Channel File Space
 ▪ Folder Named design-day-booklet-team-zip-files
 ▪ Team’s Private Channel File Space
 ▪ Due 11:59 p.m., Saturday, October 9. ← This Saturday
Team Photos

• Everyone Submits Individual Photos
• Photographer Photoshops Into Team Photo
Team Photos

Team Volkswagen Individual Photos
Team Photos

Team Volkswagen Team Photo
Team Photos

Team TechSmith Individual Photos
Team Photos

Team TechSmith Team Photo
Team Photos

- Individual Photos Requirements
 - Dress
 - Business
 - Very Nice Business Casual
 - Front Facing
 - Hands down to the sides
 - Hands out of pockets
 - ¾ Length, Just Below Knees (Including Hands)
 - High Resolution as Possible
 - Solid Background
 - Good Lighting
 - Relaxed
 - jpeg
Team Photos

- **Submission**
 - Use Google Form (Link Emailed to You)
 - September 17, 11:59 p.m.
 - Failure to Submit
 - Not in Team Photo
 - Points Deducted from Team Contribution
 - May Elect Not to Be in Team Photo
 - Religious Reasons
 - Cultural Reasons
 - Photographer May Require You to Resubmit
Design Day Grade

• 5% of Final Grade
• Two Factors
 ▪ Design Day Booklet Team Page Process
 ▪ Design Day
 ○ Performance In Person
 ○ Beta Presentation in Lieu of In-Person Design Day

• Formula
 ▪ $BPG = \text{Beta Presentation Grade}$
 ▪ $DDBPD = \text{Design Day Booklet Process Deductions}$
 ▪ $DD \text{ Grade} = 5.0 - DDBPD$

• Design Day Booklet Process Deductions Including But Not Limited To...
 ▪ Project Description Errors and Effort to Rewrite
 ▪ Artwork Errors and Effort to Correct
 ▪ Failure to Use Windows Version of Office 365
 ▪ Submission Errors
What’s ahead?

• Upcoming Meetings
 - 10/06: Design Day Booklet Production Process
 - 10/11: Resume Writing and Interviewing
 - 10/13: Creating and Giving Presentations
 - 10/18: Alpha Presentations
 - 10/20: Alpha Presentations
 - 10/25: Break Days
 - 10/27: Alpha Presentations
 - 11/15: Beta Presentations
What’s ahead?

• Important Dates for Planning
 - 09/26: Project Plan Slide Decks Due
 - 09/27: Project Plan Presentations Start
 Start Working Towards Alpha Presentation ←Key
 - 10/09: Design Day Booklet Zip File Due ←Saturday
 - 10/11: Design Day Updated Artwork Due
 - 10/17: Alpha Slide Decks Due
 - 20/18: Alpha Presentations Start
 Start Working Towards Beta Presentations ←Key
 - 11/14: Beta Slide Decks Due
 - 11/15: Beta Presentations Start
 Start Working on Project Videos ←Key