10/07:
Design Day Booklet Production Process

The Capstone Experience

Dr. Wayne Dyksen
James Mariani
Luke Sperling

Department of Computer Science and Engineering
Michigan State University
Fall 2020
Design Day Booklet

- Professional Publication
 - Corporate Relations
 - Alumni Relations
 - Recruiting
 - Keepsake for You

- Contents
 - Schedule of Events
 - Project Descriptions
Team Project Page

• Template Distributed by Dr. D.
 ▪ Sponsor Name
 ▪ Sponsor Logo
 ▪ Project Title
 ▪ MSU Team Photo
 ▪ MSU Team Members’ Names
 ▪ Corporate Sponsors’ Names
 ▪ Headers and Footers
 ▪ Posted On Downloads Page

• Template Completed by Team
 ▪ Project Description
 ▪ Artwork
 ▪ Use Microsoft Windows Office 365 Version of Word.
Team’s Job

• Read instructions carefully.
• Check everything.
• Use Microsoft Windows Office 365 version of Word.
• Read the instructions carefully. ← Updated 2X This Morning
• Write the project description.
• Read the instructions carefully.
• Provide the artwork.
• Read the instructions carefully.
• Update the project description and artwork.
• Read the instructions carefully.
• Check everything 100 times.
• Read the instructions carefully.
Project Description

• Read the instructions carefully.
• Newspaper / Magazine Style
• Target General Public
• Do NOT Start...
 ▪ “Our Project is...”
 ▪ “Our sponsor asked us to...”
• Use present tense throughout.
• Write as though your project is complete.
• Fill the entire textbox, no less, no more.
• See Examples
 ▪ The Capstone Experience Booklet
 ▪ Previous Design Day Booklets (Design Day > Booklet)
 ▪ MSU Men’s Basketball
Project Description

• Beginning
 ▪ Sponsor Overview
 ▪ 2 to 3 Lines
 ▪ See Previous Examples

• Middle
 ▪ The Problem & Your Solution
 ▪ Magazine Style
 ▪ Understandable by Non-Technical Person

• End
 ▪ Technical Jargon
 ▪ 2 to 3 Lines
 ▪ See Previous Examples
Example Project Description: Spartan Basketball Player Timer

Michigan State University’s Men’s Basketball is elite, one of the top programs in the NCAA.

NCAA Division I basketball is very competitive. Although it may not be apparent to the casual observer, every detail of each game is carefully planned and scripted.

One aspect of a game plan is that of playing times. For each player, the coaches determine target times for how long he can play at a stretch, how long he needs to rest before playing again, and the total amount of time he should play in a game.

Developed with Coach Tom Izzo, our Spartan Basketball Player Timer is used by the basketball staff on the bench during the game.

When a player enters the game, his playing time is displayed with a solid green background. When his target playing time goes under two minutes, it is displayed in yellow. When the time goes below zero, it is displayed in red.

The color coding of times provides visual cues that can be seen by the coaches at a distance. If there are many yellow or red boxes, the coaches begin to plan substitutions.

A game summary for all the players can be displayed at any time whether the game clock is running or stopped.

Our software runs on a Microsoft Windows Tablet PC about the size of a traditional clipboard only slightly thicker. With no mouse or keyboard, all input is done with a pen.

Spartan Basketball Player Time is written in Visual Basic. The underlying database is Microsoft Access.
Artwork

• Read the instructions carefully.
• Take 2 to 3 screenshot(s) of working software.
 ▪ Use eye-catching examples.
 ▪ Avoid boring or trivial things.
 ○ Splash Screens
 ○ Login Screens
• Fill up the entire whitespace.
• Overlap artwork if necessary.
• Include “framing” for web and mobile apps.
 ▪ Browser
 ▪ iPhone, iPad
 ▪ Android Phone or Tablet
 ▪ NOT Laptop or Desktop
 ▪ See https://mockuphone.com.
Read the instructions carefully.
Add borders if necessary.
 - If Blends Into White Background
 - Create a single PNG for each piece of artwork using PowerPoint.
 - Read Instructions
Capture and provide very high-resolution images.
Preserve aspect ratios.
Crop to eliminate transparent “borders.”
Eliminate all surrounding “whitespace.”
Use paint.net.
See examples.
The Capstone Experience Booklets
 - Design Day Artwork Feedback, Spring 2020
 - Previous Design Day Booklets (Design Day > Booklet)
 - MSU Men’s Basketball
Amazon
AVAST: Amazon Video And Shopping Technology

Founded in 1994 as an online bookstore, Amazon is the largest online retailer in the world. In addition to retail, Amazon offers services in cloud infrastructure through Amazon Web Services, and audio and video streaming through Amazon Music and Prime Video.

According to a recent study, 80% of internet usage will be people watching online videos by the year 2020. This presents a significant opportunity for all online retailers.

Our AVAST (Amazon Video And Shopping Technology) platform leverages the growth in online video streaming by providing users with an easy way to purchase products of interest that they see in the videos they are watching.

Using AVAST, an Amazon customer can stream videos from content providers such as YouTube and their favorite TV networks.

While a user is watching a video, AVAST analyzes it to find items of potential interest to the viewer. As the video plays, related Amazon products are displayed alongside the video as illustrated in the examples at the right.

For each item, AVAST displays a product description, picture, and ratings. A viewer can easily purchase any product simply by clicking on the conveniently provided link or image.

The frontend of AVAST (Amazon Video And Shopping Technology) is built using Angular 6. While the backend is implemented using PHP Laminas. In addition, several Amazon Web Services are used including Redshift to analyze videos and EC2 to host the AVAST website.

Michigan State University
Team Members (left to right):
M. Ninh
M. Shih
P. Enos
P. Wilson
P. Moseley
M. Elder
M. Wang
M. Karp
H. Wang
M. Zhang
M. Yao

Amazon
Project Sponsors
Garret Gw
Detroit, Michigan
Derek Godley
Detroit, Michigan
Kyle Gray
Detroit, Michigan
Peter Hoffner
Detroit, Michigan
Aptiv is a global technology company that is transforming mobility with its portfolio of safe, green, and connected solutions for its customers. As a leader in autonomous vehicle development, Aptiv maintains an extensive test fleet of autonomous vehicles, which must be managed and monitored.

Our Autonomous Vehicle Fleet Connectivity App provides connectivity to Aptiv’s autonomous test fleet, which operates across the U.S., Europe, and Asia, and includes various vehicles with software for every level of autonomy.

Among other features, our system provides scheduling of test vehicles. After logging in, Aptiv engineers see a calendar view of the entire fleet from which they can select a particular day to view a list of available vehicles. Once a vehicle is selected, our app displays a complete set of information about it including its past usage, reservations and diagnostic information.

In addition to checking availability of vehicles based on dates, our app provides advanced search to narrow the scope based on things like type of vehicle, location of vehicle and level of autonomy.

The “My Reservations” tab shows a user’s upcoming vehicle reservations as well as enabling them to make and cancel reservations.

Our Autonomous Vehicle Fleet Connectivity App is written using the Angular web framework, obtaining information from Aptiv’s native servers. Communications are implemented using Microsoft Azure Services.

Michigan State University Team Members (left to right):

Alex Patton
Humboldt, Michigan

Drew Gage
Dexter, Michigan

Emilio Castilla
Lansing, Michigan

Klint Keenzer
Lansing, Michigan

Chad Krease
Novi, Michigan

Aptiv Project Sponsors:

Chris Lussemburg
Troy, Michigan

Joe Lynn
Troy, Michigan

Bass Magatte
Troy, Michigan

Jim Geeserberry
Troy, Michigan
Artwork Example

Auto-Owners Insurance
Jeffrey: Virtual Insurance Claim Advisor

Auto-Owners Insurance is a Fortune 500 company that provides automotive, home, life and commercial insurance. Headquarters in Lansing, Michigan, Auto-Owners is represented by over 64,000 licensed insurance agents across 28 states, and provides insurance to nearly 3 million policyholders.

Every day, hundreds of insurance claims are filed with Auto-Owners through its independent agents. This process can be tedious for both policyholders and agents.

Our Jeffrey Virtual Insurance Claim Advisor system is a virtual claim assistant that automates the entire claim reporting process. Our mobile app, shown on the right, enables both agents and policyholders to file a claim easily and efficiently.

Jeffrey engages in a dialogue with policyholders and agents to gather information required to process their claims through natural conversations. If necessary, Jeffrey prompts users to take photos, record videos or attach documents relevant to their claim.

After completing a dialogue with a user, Jeffrey automatically gathers the appropriate claim information and submits it to Auto-Owners.

Our companion web app enables agents and Auto-Owners associates to find and review claim information that is submitted through the mobile application.

Our Jeffrey Virtual Insurance Claim Advisor system features natural language processing, which is implemented using Google’s Dialogflow. A custom REST API, written in Kotlin, handles interactions between the applications and our MySQL database. Our web application is built using the React Javascript framework.
Artwork Example

Proofpoint
Improved Detonation of Evasive Malware

Headquartered in Sunnyvale, California, Proofpoint provides cybersecurity to many organizations, including Fortune 100 companies and educational institutions such as Michigan State University.

Analyzing malware can be challenging. Viruses, spyware, ransomware, and other malicious programs come in many complex forms. To protect its customers, Proofpoint uses tools called sandboxes, which are restricted computing environments where potentially harmful malware can be tested and analyzed safely.

Unfortunately, a new class of malware called "evasive malware" is rapidly emerging, thereby presenting a new, more dangerous class of cybersecurity threats.

Evasive malware has the ability to detect the presence of the sandbox environment. After doing so, it changes what it does, thereby evading analysis.

Our Improved Detonation of Evasive Malware system modifies evasive malware to block its ability to detect the sandbox environment, which causes it to terminate. When the evasive malware does execute, its behavior is analyzed to determine precisely what it does so that Proofpoint can design countermeasures to protect against it.

Our web app, shown at the right, displays the results of processed malware. Users can check the status of the malware samples being tested as well as see the evasive techniques being used. Both harmless and harmful evasive results are presented.

Our Improved Detonation of Evasive Malware system is implemented in Python, using the Cuckoo sandboxing framework and brittle network monitor. Our web app is implemented using Python and Flask, with the interface framed in Bootstrap and jQuery.

Proofpoint
Project Sponsor
Laelani Alexo
Sunnyvale, California
Knut Goo
Sunnyvale, California
Brad Woodberg
Sunnyvale, California

Michigan State University
Team Members (left to right):
Jack Messerli
Beverly Hills, Michigan
Tom Parks
Canton, Michigan
Sean Joseph
Grand Ledge, Michigan
Ryan Gallant
Midland, Michigan
Joe Murray
Midland, Michigan

PAGE 37
Artwork Example

MSU Federal Credit Union
Banking with Amazon’s Alexa and Apple’s Siri

Founded in 1937, Michigan State University Federal Credit Union offers financial services to Michigan State University and Oakland University faculty, staff, students, alumni association members and their families. With 20,000 members and over $1.3 billion in assets, MSUFCU is one of the largest university-based credit unions in the world.

MSUFCU currently offers mobile banking apps on both Apple (iOS) and Google (Android) devices for members to access their accounts and perform banking transactions at any time. Our Banking with Amazon’s Alexa and Apple’s Siri system further enhances MSUFCU’s technological edge by expanding their banking offerings to voice-controlled smart devices such as Amazon Alexa-enabled devices, Apple Watch and Android Wear.

Voice-controlled technologies give MSUFCU members new ways to interact with their accounts, including accessing their account balance, performing transfers and obtaining information about recent transactions. Members can request other information about MSUFCU such as branch locations, current loan rates and the location of the nearest ATM or branch.

Our companion administrative web portal enables MSUFCU staff to manage the available information and services offered by these voice technologies. Frequently asked questions can be added to the apps in minutes to improve the user experience.

The Alexa skill is written in Python, Apple Watch in Swift and Android Wear in Java. All three connect to a MSUFCU database through JSON. The administrative web portal is written in PHP.

Michigan State University
Team Members (left to right)
Steven Jorgenson
Sarah, Michigan
Kieran Hall
Saranda City, Michigan
Will Rudnik
Chicago, Illinois
Ethan Boyd
Savile, Michigan
Clayton Smith
Savile, Michigan

MSUFCU Project Sponsors
Santosha Ambady
East Lansing, Michigan
April Gleske
East Lansing, Michigan
Emily Fiedler
East Lansing, Michigan
Cedell Lockwood
East Lansing, Michigan
Andy Lynch
East Lansing, Michigan
Ben Huests
East Lansing, Michigan
Adam Wierdell
East Lansing, Michigan
Michigan State University Men’s Basketball
Spartan Basketball Player Timer

NC A Division I basketball is very competitive. Although it may not be apparent to the casual observer, every detail of each game is carefully planned and scripted. One aspect of a game plan is that of playing times. For each player, the coaches determine target times for how long he can play at a stretch, how long he needs to rest before playing again, and the total amount of time he should play in a game.

Developed with Coach Tom Izzo, our Spartan Basketball Player Timer is used by the basketball staff on the bench during the game. When a player enters the game, his playing time is displayed with a solid green background. When his target playing time goes under two minutes, it is displayed in yellow. When the time goes below zero, it is displayed in red.

The color coding provides visual cues that can be seen by coaches at a distance. If there are many yellow or red boxes, coaches begin to plan substitutions.

A game summary for all the players can be displayed at any time whether the game clock is running or stopped.

Our software runs on a Microsoft Windows Tablet PC about the size of a traditional clipboard only slightly thicker. With no mouse or keyboard, all input is done with a pen.

Spartan Basketball Player Timer is written in Visual Basic. The underlying database is Microsoft Access.
The DD Booklet Production Process

1. Zip Folders to Teams
2. Zip Folders From Teams
3. Edit Artwork
4. Edit Project Descriptions
5. Merge Edits
6. Zip Folders To Designer

Dates:
- October 10
 - 11:59 p.m.
- October 22
- October 25
United Airlines
Training Scheduling and Optimization System II

1. Template
From Dr. D.
To Team

To insert your project description here. Read the Design Day Booklet Page Instructions thoroughly and over and over and over and over and over:

For examples, see previous Design Day booklets, which you can find here.

You must use the Microsoft Word version of Word. Do NOT even think about using anything else.

The first two or three lines must be about your client. The following is an example:

Auto-Owners Insurance is a Fortune 500 company that provides automotive, home, life and commercial insurance to nearly 3 million policyholders in 26 states.

Do NOT use phrases like “Our clients asked us to...” or “Our project is...”

Do NOT use phrases like “Our software aims to...” or “Our software is designed to...”

Write everything in the present tense.

Do NOT write phrases like “Our client’s current software is horrible, ours is better.”

Read the Design Day Booklet Page Instructions thoroughly and over and over and over and over and over.

It’s okay for a paragraph to have only one sentence as long as the sentence is long enough to take up at least 1½ lines.

The last few lines (and only the last few lines) must contain technical details about your project. The following is an example:

Read the Design Day Booklet Page Instructions thoroughly and over and over and over and over and over.

The front end of AVAST (Amazon Video And Shopping Technology) is built using Angular 6, while the backend is implemented using PHP Laravel. In addition, several Amazon Web Services are used including Rekognition to analyze videos.

Michigan State University
Team Members (left to right)
Josh Pozniak
Franco Moreira
Anita Zorion
Laura Dillius
Laura Martin
Audra Ferguson
Lauren, Michigan

United Airlines Training
Project Sponsors
Amadou Anne
Chicago, Illinois
Craig Cornett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda Chesney
Houston, Texas
Tom Wissman
Chicago, Illinois

PAGE N 23
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 65 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request input by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Pecenlli
Patrick, Michigan
Jack Scaife
Naperville, Illinois
Laura Emilia
Laurel, Michigan
Andrew Ferguson
Laurel, Michigan

United Airlines
Project Sponsors
Jennifer Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda Rebecca
Houston, Texas
Tom Wilkins
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,800 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our web and iOS apps, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes, taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors, and takes into account instructor preferences and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Round 1 edits by James and Ryan ...
- Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors and students for courses across the country.
- When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request submitted by instructors or supervisors.
- Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.
- The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.
- The web app is fully functional using both web browsers and mobile browsers.
- Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations Division has 60 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our web and iOS apps, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes, taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors, and takes into account instructor preferences and room availabilities. An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 2, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
United Airlines Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 600 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right)
Josh Pociotelli, Patrick, Michigan
Jack Goon, Naperville, Illinois
Laura Estrada
Monica, Arizona
Andrew Ferguson, Lansing, Michigan

United Airlines Project Sponsors
Chicago, Illinois
Chicago, Illinois
Chicago, Illinois
Nashville, Texas
Chicago, Illinois
3
Artwork Draft
From Team
To Dr. D.
Dr. D. duplicated existing artwork to illustrate requested update.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request input by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, and Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Porembi
Frankie Michigan
Jack Gooner
Naperville, Illinois
Laura Emilia
Lancaster, Michigan
Andrew Ferguson
Lancaster, Michigan

United Airlines
Project Sponsors
Amadeus Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda Heather
Houston, Texas
Tom Williams
Chicago, Illinois
4

Final Update
From Team
To Dr. D.

Computer Science CSE498 / 8:00 a.m. - Noon Engineering Building, 1300 Hallway | First Floor

United Airlines
Training Scheduling and Optimization System II

United Airlines is the worlds second largest airline company operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,100 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Pecenelli
Patrick Michna
Jack Gossler
Naperville, Illinois
Laura Ferrulli
Lansing, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines
Project Sponsors
Amelia Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Jamie Hill
Chicago, Illinois
Lynda Reichard
Naperville, Illinois
Tom Wilson
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule maximizes the distance traveled by instructors and takes into account instructor qualifications and venue availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right)
Josh Porembch
Patrick Michgan
Jack Goode
Naperville, Illinois
Laura Emadi
Lansing, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines Project Sponsors
Amandeep Anand
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Jamie Hall
Chicago, Illinois
Lynda McDaniel
Nashville, Tennessee
Tom Wilson
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training coordinators to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and distance travel. Using our mobile-compatible webapp, users can schedule classes manually or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in less time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of instructors, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments. The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availability.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, AngularJS, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right):
John Petrenko
Franklin, Michigan
Jack Sneake
Naperville, Illinois
Laura Danila
Livonia, Michigan
Andrew Ferguson
Livonia, Michigan

United Airlines
Project Sponsors:
Amazon Airline
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Jamie Hill
Chicago, Illinois
Lynda McDaniel
Houston, Texas
Tom Wilson
Chicago, Illinois
Design Day Production Schedule

<table>
<thead>
<tr>
<th>Weekday</th>
<th>Date</th>
<th>Task</th>
<th>Elapsed Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>October 6</td>
<td>Dr. D. posts zipped folders with templates for downloading.</td>
<td>0</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 7</td>
<td>Dr. D. discusses project at all-hands meeting.</td>
<td>1</td>
</tr>
<tr>
<td>Saturday</td>
<td>October 10</td>
<td>Teams submit zipped folders with first draft by 11:59 p.m.</td>
<td>4</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 11</td>
<td>TAs begin editing project descriptions.</td>
<td>5</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 11</td>
<td>Dr. D. edits the artwork and creates artwork feedback.</td>
<td>5</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 11</td>
<td>Dr. D. posts zipped folders with artwork feedback for downloading.</td>
<td>5</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 11</td>
<td>Teams begin updating artwork.</td>
<td>5</td>
</tr>
<tr>
<td>Monday</td>
<td>October 12</td>
<td>Dr. D. discusses artwork feedback at all-hands meeting.</td>
<td>6</td>
</tr>
<tr>
<td>Monday</td>
<td>October 12</td>
<td>TAs. discuss project descriptions at split-hands meeting.</td>
<td>6</td>
</tr>
<tr>
<td>Monday</td>
<td>October 12</td>
<td>Teams submit zipped folders with updated artwork by 11:59 p.m.</td>
<td>6</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 13</td>
<td>Dr. D. edits the artwork and creates artwork feedback.</td>
<td>7</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 13</td>
<td>Dr. D. posts zipped folders with artwork feedback for downloading.</td>
<td>7</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 13</td>
<td>TAs submit project description edits by 11:59 p.m.</td>
<td>7</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 14</td>
<td>Dr. D. discusses artwork feedback at all-hands meeting.</td>
<td>8</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 14</td>
<td>TAs. discuss project descriptions at split-hands meeting.</td>
<td>8</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 14</td>
<td>TAs and Jill meet to discuss project descriptions.</td>
<td>8</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 14</td>
<td>Jill begins editing project descriptions.</td>
<td>8</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 14</td>
<td>Teams submit zipped folders with updated artwork by 11:59 p.m.</td>
<td>8</td>
</tr>
<tr>
<td>Friday</td>
<td>October 16</td>
<td>Jill submits project description edits by 8:00 a.m.</td>
<td>10</td>
</tr>
<tr>
<td>Friday</td>
<td>October 16</td>
<td>TAs and Jill meet to discuss project descriptions.</td>
<td>10</td>
</tr>
<tr>
<td>Friday</td>
<td>October 16</td>
<td>TAs begin final editing project descriptions.</td>
<td>10</td>
</tr>
<tr>
<td>Saturday</td>
<td>October 17</td>
<td>TAs submit project description edits by 11:59 p.m.</td>
<td>11</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 18</td>
<td>Dr. D. posts final version of project descriptions.</td>
<td>12</td>
</tr>
<tr>
<td>Monday</td>
<td>October 19</td>
<td>Dr. D. discusses project descriptions at all-hands meeting.</td>
<td>13</td>
</tr>
<tr>
<td>Tuesday</td>
<td>October 20</td>
<td>Teams submit final version of project description by 11:50 p.m.</td>
<td>14</td>
</tr>
<tr>
<td>Wednesday</td>
<td>October 21</td>
<td>Dr. D. discusses any remaining issues at all-hands meeting.</td>
<td>15</td>
</tr>
<tr>
<td>Thursday</td>
<td>October 22</td>
<td>Dr. D. merges final artwork with final project description.</td>
<td>16</td>
</tr>
<tr>
<td>Thursday</td>
<td>October 22</td>
<td>Dr. D. posts zipped folders with final version for downloading.</td>
<td>16</td>
</tr>
<tr>
<td>Saturday</td>
<td>October 24</td>
<td>Teams submit zipped folders with final version by 11:59 p.m.</td>
<td>18</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 25</td>
<td>Dr. D. submits zipped booklet assets to graphic designer.</td>
<td>19</td>
</tr>
</tbody>
</table>
Design Day Production Calendar

October 2020

<table>
<thead>
<tr>
<th>SUNDAY</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
<th>THURSDAY</th>
<th>FRIDAY</th>
<th>SATURDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>Oct 1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Posts Zip Templates</td>
<td>Dr D Discusses Process at All-Hands</td>
<td></td>
<td></td>
<td>Teams Submit Zip by 11:59pm</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1. Dr D Edits Artwork</td>
<td>1. Dr D Discusses Discusses Artwork</td>
<td>1. Dr D Edits Artwork</td>
<td>1. Dr D Discusses Discusses Artwork</td>
<td>1. JB Submits PDs by 8:00am</td>
<td>1. TAs Submit Proj Desc by 11:59pm</td>
<td></td>
</tr>
<tr>
<td>2. Dr Posts Artwork</td>
<td>2. Dr Posts Artwork</td>
<td>2. Dr Posts Artwork</td>
<td>2. Dr Posts Artwork</td>
<td>1. TAs & JB Discuss PDs</td>
<td>2. TAs & JB Discuss PDs</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Dr D Posts Final PDS</td>
<td>Dr D Discusses Final PDS</td>
<td></td>
<td>Dr D Discusses Process at All-Hands</td>
<td>1. Dr D Discusses Merges Art & PDs</td>
<td></td>
<td>Teams Submit Final Zips by 11:59pm</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Dr D Submits Assets to Designer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dyksen, Wayne

10/6/2020 4:34 PM
Submission

• READ Instructions Carefully
• Zipped Assets Folder
 ▪ Name: team-urban-science-design-day-booklet-page
 ▪ Contents
 o team-urban-science-design-day-booklet-page.docx
 o team-urban-science-artwork-1.png (Very High Resolution)
 o team-urban-science-artwork-2.png (Very High Resolution)
 o team-urban-science-artwork-3.png (Very High Resolution)
 ▪ Delete unused placeholder artwork files.
 ▪ Zipped
• Email ➡️ May Change to Google Form Submission
 ▪ Subject: Team Urban Science Design Day Booklet Project Page
 ▪ Body
 o Not Blank
 o Something Professional
 ▪ Attachment
 o Zipped Assets Folder
 o team-urban-science-design-day-booklet-page.zip
 ▪ Due 11:59 p.m., Saturday, October 10.
Team Photos

• Zoom Screen Grabs
 ▪ Some Okay
 ▪ Some Terrible
 ▪ None Great
Team Photos

- Tom Gennara
 - Individual Submitted Photos
 - Photoshopped Into Team Photo
 - Examples Based On Good Photos, Not Teams
Team Photos

- Individual Photos Requirements
 - Front Facing
 - Hands down to the sides
 - Hands out of pockets
 - ¾ Length, Just Below Knees
 - High Resolution as Possible
 - Solid Background
 - Good Lighting
Team Photos

- Resubmit
 - Use Google Form (Link Emailed to You)
 - May Use Same Photo if Meets Above Requirements
 - Due by 5:00 p.m. ET, Friday, October 9
 - This is not a test.
 - Failure to Submit
 - Not in Team Photo
 - Points Deducted from Team Contribution
What’s ahead?

Schedule
- 10/06: Dr. D. posts team page template zipped folder.
- 10/07: We discuss production at all hands.
- 10/09: Submit Individual Photos
- 10/10: Team submits first draft via zipped team folder.
- 10/18: Alpha Presentation Slide Decks
- 10/19: Team Alpha Presentations ←13 Days
- 10/24: DD Booklet Team Page Submitted by Team
- 11/16: Beta Presentations
- 12/07: Project Videos
- 12/09: All Deliverables
- 12/11: Design Day
What’s ahead?

• Alpha Presentation Conflicts?
 Email To Dr. D. & Cc TA

• Request for Excused Absence?
 Email To TA & Cc Dr. D.

• Attendance
 ▪ All-Hands, Split-Hands, Triage, and Team Meetings
 ▪ 5% of Final Grade
 ▪ Can Be Negative