Alpha Presentation

IMAGINE: IMAGe INtake Experience

The Capstone Experience

Team Auto-Owners

Nick Frederick
Zack Geizer
Xinyun Zhao
Reece Cole
Sean Larabell

Department of Computer Science and Engineering
Michigan State University
Spring 2018
Project Overview

• Auto-Owners wants a way to easily Evaluate Physical Environments

• Virtual Reality Application
 ▪ View 360° Images as if you are On Location using an Oculus Rift
 ▪ View Info and Make Notes on Objects using the Oculus Controllers

• Web Application
 ▪ Upload Images and Create Environments
 ▪ View and Edit Environment and Image Information
 ▪ View Inventory of Objects in an Environment
 ▪ Add or Edit Objects and their Information

• Object Detector/Classifier
 ▪ Identify Objects in an Image
 ▪ Classify General Types of Environments
System Architecture

Server-Side Applications
- Object Recognition System
 - Submits Environment Images for Object Identification
 - Manages User Data, Updates Data, Retrieves Data, Creates Data
 - Creates Object Listings in Object Database

User System
- Manages User Data, Updates Data, Retrieves Data, Creates Data

Database
- MariaDB

Client-Side Applications
- VR Application
- Web Application
 - Provides object data and image environments
 - Selects environment and edits object data
 - Provides object data and image environments

External Hardware
- Oculus Rift Headset
 - Displays panoramic view of uploaded environment and object info
- Oculus Rift Controllers
 - Provides user’s visual orientation and microphone input
- Omnidirectional Camera
 - Allows user to interact with UI and select available objects
 - User uploads omnidirectional images to web portal
Web: Environments List
Web: Inventory List

![Inventory List](webdev.cse.msu.edu/~larabel8/autoowners/inventory.php?id=1)

Inventory View

Smith Home
324 Maple Street

<table>
<thead>
<tr>
<th>Image</th>
<th>Object</th>
<th>Room</th>
<th>Characteristics</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sink</td>
<td>bathroom #1</td>
<td>Pedestal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shower/Tub</td>
<td>Bathroom #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mirror</td>
<td>Bathroom #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bed</td>
<td>Bedroom #1</td>
<td>Queen</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Drawer</td>
<td>Bedroom #1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Object Detection
VR: Selecting Object Nodes
What’s Left To Do?

• **Object Detection**
 - Implement Classification Abilities for Additional Objects
 - Implement Environment Classification Abilities
 - Overcome Effects of Warping in 360° Images

• **VR Application**
 - Complete UI Elements
 - Fix Image Distortion Issues

• **Web Application**
 - Add Image Gallery
 - Implement Exporting of Object Inventory to Other File Formats (i.e. csv, xml, json, etc.)

• **Integrate Web and VR Clients with Server Backend**
Questions?